
Dynamic Signaling Games under Nash and
Stackelberg Equilibria

Serkan Sarıtaş
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Abstract—In this study, dynamic and repeated quadratic
cheap talk and signaling game problems are investigated.
These involve encoder and decoders with mismatched per-
formance objectives, where the encoder has a bias term in the
quadratic cost functional. We consider both Nash equilibria
and Stackelberg equilibria as our solution concepts, under a
perfect Bayesian formulation. These two lead to drastically
different characteristics for the equilibria. For the cheap talk
problem under Nash equilibria, we show that fully revealing
equilibria cannot exist and the final state equilibria have to
be quantized for a large class of source models; whereas, for
the Stackelberg case, the equilibria must be fully revealing
regardless of the source model. In the dynamic signaling
game where the transmission of a Gaussian source over a
Gaussian channel is considered, the equilibrium policies are
always linear for scalar sources under Stackelberg equilibria,
and affine policies constitute an invariant subspace under
best response maps for Nash equilibria.

I. INTRODUCTION

Signaling games and cheap talk are concerned with
a class of Bayesian games where an informed player
(encoder, sender) transmits information to another player
(decoder, receiver). What makes such problems different
from the classical communication problems is that the
objective functions of the encoder and the decoder are
not identical; in the cheap talk setup the cost functions do
not depend on the transmitted signals and in the signaling
game the cost functions may explicitly depend on the
transmitted signals. The cheap talk problem was studied
by Crawford and Sobel [1], who obtained the striking
result that under some technical conditions on the cost
functions, the cheap talk problem only admits equilibria
that are essentially quantization policies. This is in contrast
with the case where the goals are aligned [2].

The cheap talk and signaling game problems find ap-
plications in networked control systems when a communi-
cation channel/network is present among competitive and
non-cooperative decision makers [3], [4]. Also, there have
been a number of related contributions in the economics
literature in addition to the seminal work by Crawford and
Sobel, which are reviewed in [5]. [6] considers a Gaussian
cheap talk game with quadratic cost functions where the
analysis considers perfect Bayesian (Stackelberg) equilib-
ria, for a class of single- and multi-terminal setups and

This research was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, The Scientific
and Technological Research Council of Turkey (TÜBİTAK) and the
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(TÜBA-GEBİP 2013).

where affine equilibria are studied. In [7], it is shown
that the Stackelberg equilibrium strategies are affine in the
quadratic Gaussian cheap talk.

In our previous work [5], we consider both (simultane-
ous) Nash equilibria and (sequential) Stackelberg equilib-
ria for the setup of Crawford and Sobel under quadratic
cost criteria where the encoder has an additive bias term
in his cost function, and its multi-dimensional and noisy
extensions. We show that for arbitrary scalar sources, the
quantized nature of all equilibrium policies holds under
Nash equilibria, whereas all Stackelberg equilibria policies
are fully informative. For multi-dimensional setups, unlike
the scalar case, Nash equilibrium policies may be of non-
quantized nature, and even linear. In the noisy setup,
we present conditions for the existence of affine Nash
equilibria as well as general informative equilibria and
show that the only Stackelberg equilibrium is the linear
equilibrium when the variables are scalar.

The dynamic (multi-stage) extension of the setup of
Crawford and Sobel has been analyzed under various
setups in the economics literature. In [8] and [9], the
dynamic cheap talk is studied where the former one as-
sumes that the source is a fixed random variable distributed
according to some density on [0, 1], and the latter one
assumes that the sequence of states follows an irreducible
Markov chain, and the set of states, messages and actions
are finite.

A. Contributions in this Study

This study focuses on the multi-stage setup of a cheap
talk problem introduced by Crawford and Sobel [1]. We
extend the static cheap talk and signaling game studied
in our previous work [5] to a dynamic setup. We prove
that, in a repeated cheap talk game, under Nash equilibria,
the last stage equilibria are quantized for any source with
arbitrary distribution and fully revealing equilibria cannot
exist for a class of models (see Remark 3.1), whereas
the equilibrium must be fully revealing in the dynamic
Stackelberg cheap talk game. The dynamic signaling game
is a noisy version of the dynamic cheap talk game; i.e., for
each stage, a scalar Gaussian source is to be transmitted
over an additive Gaussian channel and the goals of the
encoder and the decoder are misaligned by a bias term
and encoder’s cost also includes a penalty term for the
transmitted signal. Under Nash equilibria, it is shown that
the encoder (decoder) must be affine for an affine decoder



(encoder); whereas, the only equilibrium in the dynamic
Stackelberg signaling game is the linear equilibrium.

II. PRELIMINARIES

Let there be an encoder who wishes to encode the M-
valued random variable M and transmits X-valued random
variable X to a decoder. The decoder, upon receiving X ,
generates its optimal decision U which is also taken to be
M-valued. We consider here only deterministic encoder
and decoder policies; i.e., x = γe(m) and u = γd(x) =
γd(γe(m)).

The encoder aims to find an optimal γe that minimizes

Je(γe, γd) =

∫
ce(m,u)P (dm),

whereas the decoder aims to find an optimal γd that
minimizes

Jd(γe, γd) =

∫
cd(m,u)P (dm).

Such a problem is known in the economics literature as
cheap talk (since the transmitted signal does not affect
the cost). A more general formulation would be the case
when the transmitted signal is also an explicit part of the
cost function ce or cd; in that case, the setup is called a
signaling game.

Since the goals are not aligned, such a problem is stud-
ied under the tools and concepts provided by game theory.
A pair of policies γ∗,e, γ∗,d is said to be a (simultaneous)
Nash equilibrium if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) ∀γe ∈ Γe

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) ∀γd ∈ Γd
(1)

where Γe and Γd are the set of all deterministic functions
from M to X and from X to M, respectively.

In the discussion so far, a simultaneous game-play is
assumed and thus equilibrium refers to a Nash equilibrium.
Besides the simultaneous game-play, one can also consider
a sequential game-play; i.e. first the encoder sends the
message and announces his/her policy, then the decoder
receives them and takes an action sequentially, which leads
to Stackelberg equilibria. In the Stackelberg game, the
encoder announces his/her coding strategy and since the
decoder takes an action after receiving the message, the
encoder knows the optimal action which will be taken by
the decoder and chooses the message to be transmitted
accordingly. A pair of policies γ∗,e, γ∗,d is said to be a
Stackelberg equilibrium if

Je(γ∗,e, γ∗,d(γ∗,e)) ≤ Je(γe, γ∗,d(γe)) ∀γe ∈ Γe

where γ∗,d(γe) satisfies

Jd(γe, γ∗,d(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd .

(2)

All the game setups described above are static (one-
stage) game. If a game is played over a number of time
periods, the game is called a dynamic game. In each
stage of the game, say stage-k, the encoder wishes to
encode the M-valued random variable Mk to the de-
coder by knowing the values of Iek = {m[0,k], x[0,k−1]}
with Ie0 = {m0} where m[0,k] = {m0,m1, · · · ,mk}
and x[0,k−1] = {x0, x1, · · · , xk−1}. Let Xk denote the
X-valued random variable which is transmitted to the

(a) 2-stage cheap talk. (b) 2-stage signaling
game.

Fig. 1: General system model

decoder. The decoder, upon receiving Xk, generates its
optimal decision Uk which is also M-valued by knowing
the values of Idk = {x[0,k]}. Thus, under the policies
considered, xk = γek(Iek) and uk = γdk(Idk).

The goal of the encoder is to find a policy sequence
γe = {γe0 , γe1 , · · · , γeN−1} that minimizes

Je(γe, γd) =

N−1∑
k=0

∫
cek(mk, uk)P (dmk) , (3)

whereas the goal of the decoder is to find a policy sequence
γd = {γd0 , γd1 , · · · , γdN−1} that minimizes

Jd(γe, γd) =

N−1∑
k=0

∫
cdk(mk, uk)P (dmk) . (4)

Using the encoder cost in (3) and the decoder cost in
(4), the Nash equilibrium and the Stackelberg equilibrium
for dynamic games can be defined in the same way as in
(1) and (2), respectively.

Under both equilibria concepts, we consider the setups
where the decision makers act optimally for each history
path of the game (available to each decision maker) and the
updates are Bayesian, and thus the equilibria form Perfect
Bayesian Equilibria.

In this study, the quadratic cost functions are assumed;
i.e., cek(mk, uk) = (mk − uk − b)2 and cdk(mk, uk) =
(mk − uk)2 where b is the bias term as in [1] and [5].

III. DYNAMIC CHEAP TALK

For the purpose of illustration, the system model of the
2-stage dynamic cheap talk is shown in Fig. 1-a.

A. Repeated Static Games: Nash Equilibria

In this part, the dynamic cheap talk game with an i.i.d.
source will be analyzed. Since the source is assumed to
be i.i.d., the game is a repeated game. First, the results on
the 2-stage repeated games will be presented, then these
results will be extended to the N -stage repeated games.

Theorem 3.1: Assuming the deterministic equilibrium
for the 2-stage repeated cheap talk game, the equilibrium
policies for the second stage must be quantized almost
surely for any collection of policies (γe0 , γ

d
0 ) and for

any real-valued source model with arbitrary probability
measure.

Proof: Given the second stage encoder and decoder
policies γe1(m0,m1, x0) and γd1 (x0, x1), it is possible to
define policies which are parametrized by the common
information x0 almost surely so that γ̂ex0

(m0,m1) =
γe1(m0,m1, x0) and γ̂dx0

(x1) = γd1 (x0, x1).



Now fix the first stage policies γe0 and γd0 . Suppose that
the second stage encoder does not use m0; i.e., γ̂e′x0

(m1)
is the policy of the second stage encoder. For the policies
γ̂e′x0

(m1) and γ̂dx0
(x1), by using the second stage encoder

cost function Fx0
(m1, u1) , E[(m1−u1−b)2|x0] and the

bin arguments from [5, Theorem 3.2], it can be deduced
that the equilibrium policies for the second stage must
be quantized, for any collection of policies (γe0 , γ

d
0 ) and

for any given x0 due to the continuity of Fx0
(m1, u1)

in m1. Now let the second stage encoder use m0; i.e.,
γ̂ex0

(m0,m1) is the policy of the second stage encoder.
Here, even if γ̂ex0

(m0,m1) is a deterministic policy, it can
be seen as an equivalent randomized encoder policy (as
a stochastic kernel from M1 to X1) where m0 is a real
valued random variable independent of m1. In [5], we
considered randomized encoders as well and thus from
[5, Theorem 3.3], the equilibrium is achievable with an
encoder policy which uses only m1; i.e., γ̂e∗x0

(m1) is an
encoder policy at the equilibrium and thus the equilibria
are quantized.

Theorem 3.2: For the 2-stage repeated cheap talk game,
if the sources m0 and m1 are uniform on [0, 1], then
the first stage equilibrium cannot be a fully revealing
equilibrium.

Proof: Let two bins of the first stage equilibrium be
Bα0 and Bβ0 , and their encoding values be xα0 and xβ0 ,
respectively. Also let mα

0 indicate any point in Bα0 ; i.e.,
mα

0 ∈ Bα0 . Similarly, let mβ
0 represent any point in Bβ0 ; i.e.,

mβ
0 ∈ B

β
0 . The decoder chooses action uα0 = γd0 (xα0 ) when

the encoder sends xα0 = γe0(mα
0 ) and action uβ0 = γd0 (xβ0 )

when the encoder sends xβ0 = γe0(mβ
0 ) in order to

minimize its total cost.
Let F (m0, x0) be a cost function for the first

stage encoder if it encodes message m0 as x0. Since
the second stage equilibrium cost does not depend
on m0 by Theorem 3.1, F (m0, x0) can be written
as F (m0, x0) =

(
m0 − γd0 (x0)− b

)2
+ G(x0) where

G(x0) = Em1

[(
m1 − γ∗,d1 (x0, γ

∗,e
1 (m1, x0))− b

)2 ∣∣∣x0

]
is the expected cost of the second stage encoder, and
γ∗,e1 and γ∗,d1 are the second stage encoder and decoder
policies at the equilibrium, respectively. Since under any
equilibrium, the maximum number of bins is finite when
the source is uniform on [0, 1], there are finitely many
equilibria at the second stage which implies that the second
stage encoder cost can take finitely many different values;
i.e., G(x0) can take finitely many values.

Due to the equilibrium definitions from the view of
the encoder, F (mα

0 , x
α
0 ) < F (mα

0 , x
β
0 ) and F (mβ

0 , x
β
0 ) <

F (mβ
0 , x

α
0 ). These inequalities imply that

(mα
0 − uα0 − b)2 +G(xα0 ) < (mα

0 − u
β
0 − b)2 +G(xβ0 )

(mβ
0 − u

β
0 − b)2 +G(xβ0 ) < (mβ

0 − uα0 − b)2 +G(xα0 ) .
(5)

In a fully revealing equilibrium, the encoder and the
decoder policies are injective, thus these policies can be
taken as identity functions; i.e., x0 = γe0(m0) = m0 and
u0 = γd0 (x0) = x0 = m0. If we let mα

0 → mβ
0 , then (5)

becomes

G(mα
0 )−G(mβ

0 ) < (mα
0 −m

β
0 − b)2 − b2 → 0

G(mβ
0 )−G(mα

0 ) < (mβ
0 −mα

0 − b)2 − b2 → 0 .
(6)

Thus if mα
0 → mβ

0 we must have G(mα
0 ) → G(mβ

0 )
which implies that G(x0) is continuous at x0 = mβ

0 .
Since this is valid for any mβ

0 and G(x0) can take finitely
many values, G(x0) cannot have any jumps. Thus, it can
be deduced that G(x0) is a constant function which is
equivalent to say that if the first stage equilibrium is fully
revealing, then the second stage equilibrium is constructed
independently from the first stage equilibrium. Then (6)
reduces to b2 < (mα

0−m
β
0−b)2 and b2 < (mβ

0−mα
0−b)2.

After simplifications, it can be found that these inequalities
are satisfied simultaneously if |mα

0 −m
β
0 | > 2|b|; however,

this contradicts with the mα
0 → mβ

0 assumption. Hence,
the equilibrium cannot be fully informative at the first
stage.
Now we can extend the 2-stage repeated game results to
the N -stage repeated games as follows:

Corollary 3.1: Assuming the deterministic equi-
librium for the N -stage repeated cheap talk game,
the equilibrium policies for the final stage must be
quantized almost surely for any collection of policies
(γe0 , γ

e
1 , · · · , γeN−2), (γd0 , γ

d
1 , · · · , γdN−2). If the sources

m0,m1, · · · ,mN−1 are uniform on [0, 1], all stages except
the final one cannot have fully revealing equilibria.
We note now two extensions of the results stated above,
these will be reported in an extended paper.

Remark 3.1:
i) The uniform source assumption can be relaxed for

Theorem 3.2. Namely, any type of source that results
in finitely many quantization bins in an equilibrium
satisfies the statement; e.g., when the source admits
an exponentially distributed real random variable
(see [10]).

ii) The results here are also applicable when the source
is Markovian using similar arguments together with
stochastic realization results for Markov sources.

B. Dynamic Cheap Talk under Stackelberg Equilibria

In this part, the cheap talk game is analyzed under the
Stackelberg assumption; i.e., the encoder knows the policy
of the decoder. In this case, admittedly the problem is less
interesting.

Theorem 3.3: An equilibrium has to be fully revealing
in the dynamic Stackelberg cheap talk game regardless of
the source model.

Proof: We will use the properties of iterated ex-
pectations in the analysis. Recall that the total decoder

cost is Jd(γe, γd) = E

[
N−1∑
k=0

(mk − uk)2

]
. Considering

the last stage, the goal of the decoder is to minimize
JdN−1(γeN−1, γ

d
N−1) = E[(mN−1 − uN−1)2|IdN−1] by

choosing the optimal action u∗N−1 = γ∗,dN−1(IdN−1) =
E[mN−1|IdN−1]. For the previous stage, the goal of the de-
coder is to minimize JdN−2(γ∗,eN−1, γ

e
N−2, γ

∗,d
N−1, γ

d
N−2) =

E[(mN−2 − uN−2)2 + J∗,dN−1(γeN−1, γ
d
N−1)|IdN−2] by

choosing the optimal action u∗N−2 = γ∗,dN−2(IdN−2). Since
J∗,dN−1(γeN−1, γ

d
N−1) is not affected by the choice of γdN−2,



the goal of the decoder is equivalent to the minimization of
E[(mN−2−uN−2)2|IdN−2] at this stage. Thus, the optimal
policy is u∗N−2 = γ∗,dN−2(IdN−2) = E[mN−2|IdN−2]. Sim-
ilarly, since the actions taken by the decoder do not affect
the future states and encoder policies, the optimal decoder
actions can be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] =
E[mk|x[0,k]] for k = 0, 1, · · · , N − 1.

Due to the Stackelberg assumption, the encoder knows
that the decoder will use u∗k = γ∗,dk (Idk) = E[mk|Idk ]
for each stage k = 0, 1, · · · , N − 1. By using this
assumption and the smoothing property of the expectation,
the total encoder cost can be written as Je(γe, γd) =

E

[
N−1∑
k=0

(mk − uk − b)2

]
= E

[
N−1∑
k=0

(mk − uk)2

]
+ Nb2.

Thus, as in the one-stage game setup [5, Theorem 3.4], the
goals of the encoder and the decoder become essentially
the same in the Stackelberg game setup, which effectively
reduces the game setup to a team setup, resulting in fully
informative equilibria; i.e. the encoder reveals all of its
information.

IV. DYNAMIC QUADRATIC GAUSSIAN SIGNALING
GAMES

The dynamic signaling game setup is similar to the
dynamic cheap talk setup except that there exists an
additive Gaussian noise channel between the encoder and
decoder at each stage, and the encoder has a soft power
constraint.

Here, the source is assumed to be a Markovian source
with initial Gaussian distribution; i.e. M0 ∼ N (0, σ2

M0
)

and Mk+1 = aMk+Vk where a ∈ R and Vk ∼ N (0, σ2
Vk

)
is an i.i.d. Gaussian noise sequence for k = 0, 1, · · · , N−
2. The channels between the encoder and the decoder
are assumed to be i.i.d. additive Gaussian channels; i.e.
Wk ∼ N (0, σ2

Wk
), and Wk and Vl are independent for

k = 0, 1, · · · , N − 1 and l = 0, 1, · · · , N − 2.
In each stage of the game, say stage-k, the encoder

aims to encode the R-valued random variable Mk to the
decoder by knowing the values of Iek = {m[0,k], y[0,k−1]}
with Ie0 = {m0}. Let Xk denote the R-valued random
variable which is transmitted to the decoder. During
the transmission, the zero mean Gaussian noise with a
variance of σ2

Wk
is added to Xk; hence, the decoder

receives Yk = Xk + Wk. The decoder, upon receiving
Yk, generates its optimal decision Uk which is also R-
valued by knowing the values of Idk = {y[0,k]}. We only
consider the deterministic policies; i.e., xk = γek(Iek) and
uk = γdk(Idk).

The goal of the encoder is to find the optimal policy
sequence γe = {γe0 , γe1 , · · · , γeN−1} that minimizes

Je(γe, γd) =

N−1∑
k=0

∫
cek(mk, uk)P (dyk|xk)P (dmk)

whereas the goal of the decoder is to find the optimal
policy sequence γd = {γd0 , γd1 , · · · , γdN−1} that minimizes

Jd(γe, γd) =

N−1∑
k=0

∫
cdk(mk, uk)P (dyk|xk)P (dmk) .

The cost functions are modified as cek (mk, xk, uk) =
(mk − uk − b)2

+ λx2
k and cdk (mk, uk) = (mk − uk)

2.

Note that a power constraint with an associated multiplier
is appended to the cost function of the encoder, which cor-
responds to power limitation for transmitters in practice.
If λ = 0, this corresponds to the setup with no power
constraint at the encoder. For the purpose of illustration,
the system model of the 2-stage dynamic signaling game
is shown in Fig. 1-b.

A. Dynamic Signaling Game under Stackelberg Equilibria

In this part, the signaling game is analyzed under the
Stackelberg assumption; i.e., the encoder knows the policy
of the decoder.

Theorem 4.1: An equilibrium has to be always linear
in the dynamic Stackelberg signaling game.

Proof: Similar to the dynamic Stackelberg cheap talk
analysis in Theorem 3.3, the optimal decoder actions can
be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] = E[mk|y[0,k]]
for k = 0, 1, · · · , N − 1.

Due to the Stackelberg assumption, the encoder
knows that the decoder will use u∗k = γ∗,dk (Idk) =
E[mk|Idk ] for each stage k = 0, 1, · · · , N − 1.
Based on this assumption and the smoothing prop-
erty of the expectation, the total encoder cost can be

written as Je(γe, γd) = E[
N−1∑
k=0

(mk − uk − b)2 +

λx2
k] = E

[
N−1∑
k=0

E[(mk − E[mk|Idk ])2 + b2 + λx2
k|Idk ]

]
.

This problem is an instance of studied problems in [11,
Chp.11] and [12], and can be reduced to a team problem
where both the encoder and the decoder are minimizing
the same expression.

From [12], the lower bound of
N−1∑
k=0

λkP
2
k +

infγe; γd;E[x2
k]=P 2

k ,∀ k E

[
N−1∑
k=0

(a
′

k(uk − b
′

kmk)2)

]
is

achieved when u∗k = γ∗,dk = b
′

kE[mk|y[0,k]] for
k = 0, 1, · · · , N − 1, and x0 = γ∗,e0 (m0) = η0m0 and
xk = γ∗,ek (m[0,k], y[0,k−1]) = ηk(mk − E[mk|y[0,k]])
for k = 1, 2, · · · , N − 1. Here, ηk’s satisfy the
recursion (for k = 1, 2, · · · , N − 1) η2

k =
P 2

k

a2∆k−1+σ2
V

with the initial condition η2
0 =

P 2
0

σ2
M0

and ∆k’s
satisfy the recursion (for k = 1, 2, · · · , N − 1)
∆k =

σ2
W

P 2
k+σ2

W
(a2∆i−1 + σ2

V ) with the initial condition

∆0 =
σ2
M0

σ2
W

P 2
0 +σ2

W
. Thus, the lower bound of

N−1∑
k=0

λkP
2
k +

infγe;E[x2
k]=P 2

k ,∀ k E

[
N−1∑
k=0

(a
′

kb
′2
k (mk − E[mk|y[0,k]])

2)

]
is achieved when x0 = γ∗,e0 (m0) = η0m0 and
xk = γ∗,ek (m[0,k], y[0,k−1]) = ηk(mk − E[mk|y[0,k]])
for k = 1, 2, · · · , N − 1 which implies that the encoder
also uses linear policies at each stage. Hence, the only
equilibrium in the noisy dynamic Stackelberg setup of
the signaling game is the linear equilibrium.

B. Nash Equilibria Analysis of N -stage Dynamic Signal-
ing Games

In this section, for the N -stage dynamic signaling game,
the optimality of an affine encoder is proved for an affine
decoder, and the optimality of an affine decoder is shown
for an affine encoder.



Theorem 4.2:
i) If the decoder uses affine policies at all stages, then

the encoder will also be affine at all stages.
ii) If the encoder uses affine policies at all stages, then

the decoder will also be affine at all stages.
Proof: Here, the proofs are presented for the 2-stage

case. The approach here can be extended to the N -stage
case.

i) Let the decoder policies be u0 = γd0 (y0) = Ky0 +L
and u1 = γd1 (y0, y1) = M0y0 + M1y1 + N where
K,L,M0,M1 and N are scalars. With y1 = x1+w1,
it follows that u1 = M0y0 + M1x1 + M1w1 + N .
Then, by completing the squares, the second stage
encoder cost can be written as

J∗,e1 = min
x1=γe

1(m1,y0)
E
[
(m1 − u1 − b)2 + λx2

1

]
= min
γe
1(m1,y0)

E

[
λ

M2
1 + λ

(m1 −M0y0 −N − b)2

]
+M2

1σ
2
W1

+ (M2
1 + λ)

E

[(
x1 −

M1(m1 −M0y0 −N − b)
M2

1 + λ

)2
]
.

Hence, the optimal γe1(m1, y0) can be chosen as

γ∗,e1 (m1, y0) =
M1

M2
1 + λ

(m1 −M0y0 −N − b) .

Then the total cost of the encoder is the following:

J∗,e0 = min
x0=γe

0(m0)
E
[
(m0 − u0 − b)2 + λx2

0 + J∗,e1

]
.

After the simplifications and completing the squares,
the optimal first stage encoder policy can be found
as

γ∗,e0 (m0) =
KM2

1 + λK + λaM0

(λ+K2)(λ+M2
1 ) + λM2

0

m0

− K(M2
1 + λ)(L+ b) + λM0(N + b)

(λ+K2)(λ+M2
1 ) + λM2

0

.

ii) Since this result is immediate through MMSE prop-
erties for Gaussian variables, we have omitted the
proof.

V. CONCLUDING REMARKS

In this study, dynamic and repeated quadratic cheap
talk and signaling game problems are analyzed. For the
cheap talk problem under Nash equilibria, we show that
the last stage equilibria are quantized for any source with
arbitrary distribution, and fully revealing equilibria cannot
exist for some source models (see Remark 3.1); whereas,
for the dynamic Stackelberg cheap talk, the equilibria
must be fully revealing regardless of the source model.
In the dynamic signaling game where the transmission of
a Gaussian source over a Gaussian channel is considered,
for scalar sources under Stackelberg equilibria, the only
equilibrium is the linear equilibrium; while, for the Nash
equilibria, affine policies constitute an invariant subspace
under best response maps.
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