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Serkan Sarıtaş1, Serdar Yüksel2, and Sinan Gezici1

Abstract— Simultaneous (Nash) and sequential (Stackelberg)
equilibria of two-player dynamic quadratic cheap talk and
signaling game problems are investigated under a perfect
Bayesian formulation. For the dynamic scalar and multi-
dimensional cheap talk, the Nash equilibrium cannot be fully
revealing whereas the Stackelberg equilibrium is always fully
revealing. Further, the final state Nash equilibria have to be
essentially quantized when the source is scalar and has a
density, and non-revealing for the multi-dimensional case. In
the dynamic signaling game where the transmission of a Gauss-
Markov source over a memoryless Gaussian channel is conside-
red, affine policies constitute an invariant subspace under best
response maps for both scalar and multi-dimensional sources
under Nash equilibria; however, the Stackelberg equilibrium
policies are always linear for scalar sources but may be
non-linear for multi-dimensional sources. Further, under the
Stackelberg setup, the conditions under which the equilibrium
is non-informative are derived for scalar sources.

I. INTRODUCTION

Signaling games and cheap talk are concerned with a
class of Bayesian games where an informed player (encoder
or sender) transmits information to another player (decoder
or receiver). In these problems, the objective functions of
the players are not aligned unlike the ones in the clas-
sical communication problems. The cheap talk problem
was studied by Crawford and Sobel [1], who obtained the
surprising result that under some technical conditions on
the cost functions, the cheap talk problem only admits
equilibria that involve quantized encoding policies. This is
in contrast with the case where the goals are aligned in
classical communication and information theory.

A. Literature Review

The cheap talk and signaling game problems are appli-
cable in networked control systems when a communication
channel exists among competitive and non-cooperative de-
cision makers [2], [3]. The reader is referred to [4] for a
detailed discussion and references.

There have been extensive contributions to cheap talk and
signaling games in the economics literature (see [4] and [5]
for a detailed review). [6] considers the dynamic setting
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where the source is a fixed random variable distributed
according to some density on [0, 1] (see Remark 2.2 for
a detailed discussion).

Relevant papers in the control community involve [7],
[8], [9], which consider Stackelberg equilibria under various
setups.

This paper builds on and generalizes our earlier work
in [4] and [10]. In [4], we considered static Nash and
Stackelberg equilibria for more general sources than what
was studied in Crawford and Sobel [1]. In [10], we inves-
tigated repeated games where the source process was an
independent and identically distributed (i.i.d.) process.

B. Preliminaries

A static cheap talk problem can be formulated as follows:
An informed player (encoder) knows the value of the M-
valued random variable M and transmits the X-valued
random variable X to another player (decoder), who genera-
tes his/her M-valued optimal decision U upon receiving X .
The policies of the encoder and decoder are assumed to be
deterministic; i.e., x = γe(m) and u = γd(x) = γd(γe(m)).
The encoder’s goal is to minimize

Je(γe, γd) = E [ce(m,u)] ,

whereas, the decoder’s goal is to minimize

Jd(γe, γd) = E
[
cd(m,u)

]
by finding optimal policies γe and γd, respectively. If the
transmitted signal x is also an explicit part of the cost
function ce or cd, then the communication between the
players is not costless and the formulation turns into a
signaling game problem. Such problems are studied under
the tools and concepts provided by game theory since the
goals are not aligned. In the simultaneous game-play; i.e.,
the encoder and decoder announce their policies at the
same time, a pair of policies (γ∗,e, γ∗,d) is said to be a
(simultaneous) Nash equilibrium if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) ∀γe ∈ Γe

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) ∀γd ∈ Γd
(1)

where Γe and Γd are the sets of all deterministic functions
from M to X and from X to M, respectively. Similarly, in
the sequential game-play; i.e., first the encoder announces
his/her policy, then the decoder (accordingly) announces



his/her policy, a pair of policies (γ∗,e, γ∗,d) is said to be
a Stackelberg equilibrium if

Je(γ∗,e, γ∗,d(γ∗,e)) ≤ Je(γe, γ∗,d(γe)) ∀γe ∈ Γe

where γ∗,d(γe) satisfies

Jd(γe, γ∗,d(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd .

(2)

If an equilibrium is achieved when γ∗,e is non-informative
(e.g., the transmitted message and the source are inde-
pendent) and γ∗,d uses only the prior information (since
the received message is useless), then we call such an
equilibrium a non-informative (babbling) equilibrium. The
following is a useful observation, which follows from [1]:

Proposition 1.1: A non-informative (babbling) equili-
brium always exists for the cheap talk game.

Heretofore, only static (one-stage) games are conside-
red. If a game is played over a number of time periods,
the game is called a dynamic game. Let m[0,N−1] =
{m0,m1, · · · ,mN−1} be a collection of random variables
to be encoded sequentially (causally) to a decoder. In the
k-th stage of an N -stage game, the encoder transmits
xk = γek(Iek) to the decoder who generates his/her optimal
decision uk = γdk(Idk) where Iek = {m[0,k], x[0,k−1]} and
Idk = {x[0,k]} with Ie0 = {m0}. The encoder’s goal is to
minimize

Je(γe, γd) = E

[
N−1∑
k=0

cek(mk, uk)

]
,

whereas, the decoder’s goal is to minimize

Jd(γe, γd) = E

[
N−1∑
k=0

cdk(mk, uk)

]
by finding the optimal policy sequences γe[0,N−1] =

{γe0 , γe1 , · · · , γeN−1} and γd[0,N−1] = {γd0 , γd1 , · · · , γdN−1},
respectively. In this study, the quadratic cost functions
are assumed; i.e., cek(mk, uk) = (mk − uk − b)2 and
cdk(mk, uk) = (mk−uk)2 where b is the bias term as in [1]
and [4].

Under both equilibria concepts, we consider the setups
where the decision makers act optimally for each history
path of the game (available to each decision maker) and
the updates are Bayesian, and thus the equilibria are to
be interpreted under a perfect Bayesian equilibria concept.
Since we assume such a (perfect Bayesian) framework, the
equilibria lead to sub-game perfection and each decision
maker makes optimal Bayesian decisions for every realized
play path.

C. Contributions

This study focuses on the multi-stage setup of a cheap
talk problem introduced by Crawford and Sobel [1]. We
extend the static cheap talk and signaling game studied in
our previous work [4] to a dynamic setup, and extend the
analysis in [10] from i.i.d. and scalar sources to Markov
and multi-dimensional sources. The main contributions of
this paper can be summarized as follows:

(a) 2-stage cheap talk. (b) 2-stage signaling game.

Fig. 1: General system model

• We prove that, in the dynamic cheap talk game, under
Nash equilibria, the last stage equilibria are quantized
for a Markov source with arbitrary conditional pro-
bability measure with a density, and fully revealing
equilibria cannot exist in general (see Remark 2.1).

• We show that the equilibria are fully revealing in the
dynamic multi-dimensional cheap talk under Stackel-
berg equilibria whereas the equilibrium cannot be fully
revealing under Nash equilibria.

• We show that affine policies constitute an invariant sub-
space under best response maps under Nash equilibria
for the dynamic multi-dimensional signaling game.

• Dynamic Stackelberg signaling equilibria for scalar
Gauss-Markov sources and scalar Gaussian channels
are always linear, which is not necessarily the case
for multi-dimensional setups. Further, the conditions
for the existence of informative equilibria are provi-
ded for scalar sources by using information theoretic
arguments.

II. DYNAMIC CHEAP TALK FOR MARKOV SOURCES

For the purpose of illustration, the system model of the
2-stage dynamic cheap talk is depicted in Fig. 1-(a).

A. A Supporting Result : A Static Scalar Cheap Talk with
Randomized Policies

To facilitate our analysis to handle certain intricacies that
arise due to the dynamic setup in the paper, and also to
present an independently interesting result in itself, in the
following we state that the result in [4, Theorem 3.2] also
holds when the encoder is allowed to adapt randomized
encoding policies by extending [1, Lemma 1] as follows:

Theorem 2.1: The conclusion of [4, Theorem 3.2], i.e.,
that an equilibrium policy is equivalent to a quantized policy,
also holds if the policy space of the encoder is extended to
the set of all stochastic kernels from M to X for any arbitrary
source that admits a density. That is, even when the encoder
is allowed to use private randomization, all equilibria are
equivalent to those that are attained by quantized equilibria.

Proof: [1, Lemma 1] proves that all equilibria have
finitely many partitions when the source has a bounded
support. [4, Theorem 3.2] extends this result to a countable
number of partitions for deterministic equilibria for any
source with an arbitrary probability measure. The result



follows by utilizing [4, Theorem 3.2] and [1, Lemma 1].

Theorem 2.1 will be used crucially in the following
analysis; since in a dynamic game, at a given time stage, the
source variables from the earlier stages can serve as private
randomness for the encoder.

B. Repeated i.i.d. Scalar Games: Nash Equilibria

We first review our previous results on dynamic signaling
games [10] where the source was assumed to be i.i.d.

Theorem 2.2: [10] In the N -stage repeated cheap talk
game, the equilibrium policies for the final stage must
be quantized almost surely for any collection of policies(
γe[0,N−2], γ

d
[0,N−2]

)
and for any real-valued source model

with arbitrary probability measure P (dmN−1) which admits
a density. If the source mN−1 has a bounded support, the
first N − 1 stages cannot have fully revealing equilibria
concurrently.

Remark 2.1: [10] The boundedness assumption for the
support of the measure P (dmN−1) can be relaxed for The-
orem 2.2. In particular, a source with a probability measure
P (dmN−1) that results in finitely many quantization bins in
a static Nash equilibrium satisfies the statements; e.g., when
the source admits an exponentially distributed real random
variable (see [11]).

C. Dynamic Game with a Markov Source: Nash Equilibria

In this part, the source Mk is assumed to be real valued
Markovian for k = 0, 1, . . . , N − 1. The following result
generalizes Theorem 2.2, which only considered i.i.d. sour-
ces.

Theorem 2.3: In the N -stage dynamic cheap talk game
with a Markov source, the equilibrium policies for the final
stage must be quantized almost surely for any collection
of policies

(
γe[0,N−2], γ

d
[0,N−2]

)
and for any real-valued

source model with arbitrary conditional probability measure
P (dmN−1|mN−2) which admits a density almost surely.

Proof: Here, we prove the results for the 2-stage games,
the extension is merely technical. The expected cost of the
second stage encoder Je1 can be written as

Je1 =

∫
p(dm0,dm1,dx0,dx1) ce1(m1, u1)

=

∫
p(dx0)

∫
p(dm1|x0) p(dm0|m1, x0)

× ce1(m1, γ
d
1 (x0, γ

e
1(m0,m1, x0)))

(3)

The inner integral of (3) can be considered as an expression
for a given x0. Thus, given the second stage encoder and
decoder policies γe1(m0,m1, x0) and γd1 (x0, x1), it is pos-
sible to define policies which are parametrized by the com-
mon information x0 almost surely so that γ̂ex0

(m0,m1) =
γe1(m0,m1, x0) and γ̂dx0

(x1) = γd1 (x0, x1). After following
similar arguments to those in the proof of Theorem 2.2,
the second stage encoder policy becomes γ̂ex0

(m0,m1)
(a)
=

γ̂ex0
(g(m1, r),m1) = γ̃ex0

(m1, r) where (a) holds since any
stochastic kernel from a complete, separable and metric

space to another one, P (dm0|m1), can be realized by some
measurable function m0 = f(m1, r) where r is a [0, 1]-
valued independent random variable (see Lemma 1.2 in [12],
or Lemma 3.1 in [13]). Hence, the equilibria are quantized
almost surely by Theorem 2.2.

Remark 2.2: A related setup has been studied in [6]
where it has been shown that there can indeed be a fully
revealing equilibrium if an individual source is transmitted
repeatedly (thus the Markov source is a constant source).
We note that there is no contradiction since for such a
source, equilibria can be carefully constructed so that even
a quantized final stage equilibrium can be made to be fully
revealing.

D. Dynamic Cheap Talk under Stackelberg Equilibria

The equilibrium drastically changes under a Stackelberg
formulation.

Theorem 2.4: [10, Theorem 3.3] An equilibrium has to
be fully revealing in the dynamic Stackelberg cheap talk
game regardless of the source model.

Proof: Since the decoder is myopic, the optimal deco-
der actions are u∗k = E[mk|x[0,k]] for k = 0, 1, . . . , N −
1. Then the total encoder cost becomes Je(γe, γd) =

E
[
N−1∑
k=0

(mk − uk)2
]

+ Nb2, which effectively reduces the

game setup to a team setup, resulting in fully informative
equilibria.

E. Dynamic Multi-Dimensional Cheap Talk

In this part, Nash and Stackelberg equilibria of the dyna-
mic multi-dimensional cheap talk are analyzed in sequence.

Since there may be discrete, non-discrete or even linear
Nash equilibria in the static (one-stage) multi-dimensional
cheap talk by [4, Theorem 3.4], the equilibrium policies are
hard to characterize; however, we still have the following:

Theorem 2.5: The Nash equilibrium cannot be fully
revealing in the static (one-stage) multi-dimensional cheap
talk when the source has positive measure for every non-
empty open set almost surely.

Proof: Let there be an equilibrium, and define two
actions of the decoder as ~uα and ~uβ . By following the
similar approach to that in the proof of [4, Theorem 3.2], it
can be deduced that the length of ~b along the ~d , ~uβ − ~uα
direction should not exceed half of the distance between ~uα

and ~uβ ; i.e., ‖~b~d‖ ≤ ‖~d‖/2, where ~b~d is the projection of
~b along the direction of ~d. Since ~d can be any vector at a
fully revealing equilibrium by the assumption on the source,
‖~b~d‖ ≤ ‖~d‖/2 cannot be satisfied unless ~b = ~0. Thus, there
cannot be a fully revealing equilibrium in the static multi-
dimensional cheap talk.

We can extend this result to the dynamic multi-
dimensional cheap talk as follows:

Theorem 2.6: The final stage Nash equilibria cannot be
fully revealing in the dynamic multi-dimensional cheap talk
for i.i.d. sources and Markov sources when the conditional
distribution P (d~mN−1|~mN−2) has positive measure for
every non-empty open set almost surely.



Unlike the different characteristics between Nash equili-
bria of the dynamic scalar and multi-dimensional cheap talk,
fully revealing characteristics of the Stackelberg equilibrium
still hold for the dynamic multi-dimensional cheap talk, as
for the scalar case:

Theorem 2.7: The Stackelberg equilibria in the dynamic
multi-dimensional cheap talk can be obtained by extending
its scalar case; i.e., it is unique and corresponds to a fully
revealing encoder policy as in the scalar case.

Proof: Similar to the scalar case in Theorem 2.4,
the optimal decoder actions are ~u∗k = E[~mk|~x[0,k]] for
k = 0, 1, . . . , N − 1. Then the total encoder cost becomes

Je(γe, γd) = E
[
N−1∑
k=0

‖~mk − ~uk‖2
]

+N‖~b‖2, which effecti-

vely reduces the game setup to a team setup, resulting in
fully informative equilibria.

III. DYNAMIC QUADRATIC GAUSSIAN SIGNALING
GAMES FOR SCALAR GAUSS-MARKOV SOURCES

The dynamic signaling game setup is similar to the
dynamic cheap talk setup except that there exists an additive
Gaussian noise channel between the encoder and decoder at
each stage, and the encoder has a soft power constraint. For
the purpose of illustration, the system model of the 2-stage
dynamic signaling game is depicted in Fig. 1-(b).

Here, the source is assumed to be a Markov source with
initial Gaussian distribution; i.e. M0 ∼ N (0, σ2

M0
) and

Mk+1 = gMk + Vk where g ∈ R and Vk ∼ N (0, σ2
Vk

)
is an i.i.d. Gaussian noise sequence for k = 0, 1, . . . , N −
2. The channels between the encoder and the decoder
are assumed to be i.i.d. additive Gaussian channels; i.e.
Wk ∼ N (0, σ2

Wk
), and Wk and Vl are independent for

k = 0, 1, . . . , N − 1 and l = 0, 1, . . . , N − 2. In the k-
th stage of the N -stage game, the information available at
the encoder and the decoder is Iek = {m[0,k], y[0,k−1]} (a
noiseless feedback channel is assumed) and Idk = {y[0,k]}
with yk = xk + wk, respectively. The encoder’s goal is to
minimize

Je(γe, γd) = E

[
N−1∑
k=0

cek(mk, xk, uk)

]
,

whereas, the decoder’s goal is to minimize

Jd(γe, γd) = E

[
N−1∑
k=0

cdk(mk, uk)

]
.

by finding the optimal policy sequences γe[0,N−1] and
γd[0,N−1], respectively. The cost functions are modified as
cek (mk, xk, uk) = (mk − uk − b)2+λx2k and cdk (mk, uk) =
(mk − uk)

2. Note that a power constraint with an associated
multiplier is appended to the cost function of the encoder,
which corresponds to power limitation for transmitters in
practice.

A. Dynamic Nash Equilibria for Scalar Gauss-Markov
Sources

In dynamic signaling games, affine policies constitute
an invariant subspace under best response maps for Nash
equilibria, as stated in [10, Theorem 4.2]:

Theorem 3.1: [10, Theorem 4.2]

i) If the encoder uses affine policies at all stages, then
the decoder will also be affine at all stages.

ii) If the decoder uses affine policies at all stages, then
the encoder will also be affine at all stages.

B. Dynamic Stackelberg Equilibria for Scalar Gauss-
Markov Sources

The equilibrium drastically changes under the Stackelberg
assumption.

Theorem 3.2: An equilibrium has to be always li-
near in the dynamic Stackelberg signaling game. Furt-
hermore, there does not exist an informative (affine
or non-linear) equilibrium in the N -stage dynamic sca-
lar signaling game under the Stackelberg assumption;
i.e., the only equilibrium is the non-informative one, if

λ ≥ maxk=0,1,...,N−1
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i.

Proof Sketch: First part is due to [10, Theorem
4.1]. For the second part, the lower bound for the
encoder cost will be obtained. From the chain rule,
I(mk; y[0,k]) = I(mk; y[0,k−1]) + I(mk; yk|y[0,k−1]). By
following similar arguments to those [14], [15, Theorem

11.3.1], I(mk; yk|y[0,k−1]) ≤ 1
2 log2

(
1 + Pk

σ2
Wk

)
, Ĉk

where Pk = E[x2k]. By using the orthogonality between
mk − E[mk|mk−1] and

(
mk−1, y[0,k−1]

)
, it follows that

E[(mk − E[mk|y[0,k−1]])
2] = E[(mk − E[mk|mk−1])2]

+ E[(E[mk|mk−1]− E[mk|y[0,k−1]])
2]

(a)
= σ2

Vk−1
+ g2E[(mk−1 − E[mk−1|y[0,k−1]])

2]

(b)

≥ σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1 , σ2
Mk

2−2C̃k . (4)

Here, (a) is obtained by the iterated expectation
rule, the Markov chain property, and E[mk|mk−1] =
E[gmk−1 + vk−1|mk−1] = gmk−1, and (b) holds due
to [15, Lemma 11.3.1]. From [15, Lemma 11.3.2],
I(mk; y[0,k−1]) is maximized with linear policies,
and the lower bound of (4) is achievable through
linear policies where sup I(mk; y[0,k−1]) , C̃k =

1
2 log2

(
σ2
Mk

σ2
Vk−1

+g2σ2
Mk−1

2−2Ck−1

)
. Thus, we have the

following recursion on upper bounds on mutual information
for the N -stage dynamic signaling game:

Ck , sup I(mk; y[0,k]) = Ĉk + C̃k =
1

2
log2

(
1 +

Pk
σ2
Wk

)

+
1

2
log2

(
σ2
Mk

σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1

)



for k = 1, 2, . . . , N − 1 with C0 = 1
2 log2

(
1 + P0

σ2
W0

)
.

Let the lower bound of E
[(
mk − E[mk|y[0,k]]

)2]
be ∆k;

i.e., E
[(
mk − E[mk|y[0,k]]

)2] ≥ σ2
Mk

2−2Ck , ∆k. Then
the following recursion can be obtained for the N -stage
dynamic signaling game:

∆k =
σ2
Vk−1

+ g2∆k−1

1 + Pk
σ2
Wk

for k = 1, 2, . . . , N − 1

with ∆0 =
σ2
M0

1+
P0
σ2
W0

. In an equilibrium, since the decoder

always chooses uk = E[mk|y[0,k]] for k = 0, 1, . . . , N − 1,
the total encoder cost for the first stage can be lower boun-
ded by Je,lower0 =

∑N−1
i=0

(
∆i + λPi + b2

)
. Now observe

the following:

∂∆l

∂Pk
=



0 if l < k

g2

(
1 +

Pl
σ2
Wl

)−1
∂∆l−1

∂Pk
− 1

σ2
Wl

∂Pl
∂Pk

×
(
σ2
Vl−1

+ g2∆l−1

)(
1 +

Pl
σ2
Wl

)−2 if l ≥ k

where ∂Pl
∂Pk

= 0 for l < k due to the information structure

of the encoder. Then we obtain ∂Je,lower0

∂PN−1
≥ λ−

σ2
MN−1

σ2
WN−1

(see

[5] for the derivation). If λ >
σ2
MN−1

σ2
WN−1

, then ∂Je,lower0

∂PN−1
>

0, which implies that Je,lower0 is an increasing function
of PN−1. For this case, in order to minimize Je,lower0 ,
PN−1 must be chosen as 0; i.e., P ∗

N−1 = 0. Then, after
applying the similar approach and the backward induction
(see [5] for a detailed proof), it can be deduced that if

λ > maxk=0,1,...,N−1
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, then the lower

bound Je,lower0 of the encoder costs Je0 is minimized by
choosing P ∗

0 = P ∗
1 = · · · = P ∗

N−1 = 0; that is, the encoder
does not signal any output. Hence, the encoder engages in
a non-informative equilibrium.

IV. DYNAMIC QUADRATIC SIGNALING GAMES FOR
MULTI-DIMENSIONAL GAUSS-MARKOV SOURCES

In this section, the scalar setup is extended to the n-
dimensional setup. Namely, n × n matrix G is defined as
the equivalent of the scalar g in Section III, and the cost
functions are ce (~mk, ~xk, ~uk) = ‖~mk − ~uk −~b‖2 + λ‖~xk‖2
and cd (~mk, ~uk) = ‖~mk − ~uk‖2 where the lengths of the
vectors are defined in L2 norm and ~b is the bias vector.

A. Dynamic Nash Equilibria for Vector Gauss-Markov
Sources

Similar to the scalar source case, affine policies constitute
an invariant subspace under the best response maps for
Nash equilibria when the source is multi-dimensional in the
dynamic signaling games as shown below:

Theorem 4.1: i) If the encoder uses affine policies at
all stages, then the decoder will be affine at all stages.

ii) If the decoder uses affine policies at all stages, then the
encoder will be affine at all stages.
Proof:

i) The result is immediate through the MMSE properties
for Gaussian variables.

ii) Here, the proof is presented for the 2-stage game
which can be extended to the N -stage game. Let the
decoder policies be ~u0 = γd0 (~y0) = K ~y0 + ~L and
~u1 = γd1 (~y0, ~y1) = M0 ~y0 + M1 ~y1 + ~N where K,M0

and M1 are n × n matrices and ~L and ~N are n × 1
vectors. Then, by a dynamic programming approach,
the second stage encoder cost can be written as

J∗,e
1 = min

~x1=γe1( ~m0, ~m1, ~y0)
E
[
‖ ~m1 − ~u1 −~b‖2 + λ‖ ~x1‖2

]
= min

~x1

E
[ (

Λ ~x1 −MT
1 Ξ
)T

Λ−1
(
Λ ~x1 −MT

1 Ξ
)

+ ΞT (I −M1Λ−1MT
1 )Ξ + ~w1

TMT
1 M1 ~w1

]
where Λ ,MT

1 M1 +λI and Ξ , ~m1−M0 ~y0− ~N−~b.
Hence, the optimal γe1( ~m0, ~m1, ~y0) can be chosen as

γ∗,e1 ( ~m0, ~m1, ~y0) = Λ−1MT
1 ( ~m1 −M0 ~y0 − ~N −~b) ,

and the minimum second stage encoder cost becomes

J∗,e
1 = E

[
ΞT (I −M1Λ−1MT

1 )Ξ + ~w1
TMT

1 M1 ~w1

]
.

Then, by a dynamic programming approach and com-
pleting the square, the total cost of the encoder can be
written as

J∗,e
0 = min

~x0=γe0( ~m0)
E
[
‖ ~m0 − ~u0 −~b‖2 + λ‖ ~x0‖2 + J∗,e

1

]
= min

~x0

E
[ (

Υ ~x0 −MT
0 ΩΨ−KT ζ

)T
Υ−1

×
(
Υx0 −MT

0 ΩΨ−KT ζ
)

+ ζT ζ + ΨTΩΨ

−
(
MT

0 ΩΨ +KT ζ
)T

Υ−1
(
MT

0 ΩΨ +KT ζ
)

+ ~w0
TKTK ~w0 + ~v0

TΩ~v0 + ~w0
TMT

0 ΩM0 ~w0

+ ~w1
TMT

1 M1 ~w1

]
where Υ , KTK + λI + MT

0 ΩM0, Ω , (I −
M1(MT

1 M1 + λI)−1MT
1 ), Ψ , A ~m0 − ~N − ~b, and

ζ , ~m0 − ~L−~b. Hence, the optimal γe0( ~m0) is

γ∗,e0 ( ~m0) = Υ−1
(

(MT
0 ΩA+K) ~m0

−MT
0 Ω( ~N +~b)−KT (~L+~b)

)
.

B. Dynamic Stackelberg Equilibria for Vector Gauss-
Markov Sources

Even when the encoder and the decoder have identical
(non-biased) quadratic cost functions, when the source and
the channel are multi-dimensional, linear policies may not
be optimal; see [15, Chapter 11] for a detailed discussion.



In particular, except for settings where matching between
the source and the channel exists (building on [16], [17]),
the optimality of linear policies is quite rare [18]. Mat-
ching essentially requires that the capacity achieving source
probabilities and the rate-distortion achieving channel pro-
babilistic characteristics are simultaneously realized for a
given system; this is precisely the case for a scalar Gaussian
source transmitted over a scalar additive Gaussian channel.
One special case where such a matching holds is the case
when the noise and signal power levels are identical in
every channel and the distortion criterion is identical for all
scalar components [19]. For further discussions on multi-
dimensional Gaussian source and channel pairs, we refer
the reader to [17]–[24].

It is evident from Theorem 4.1 that when the encoder is
linear, the optimal decoder is linear. In this case, a relevant
problem is to find the optimal Stackelberg policy among
the linear or affine class. We refer the reader to [24]–
[27] for a study of such problems. In particular, a dynamic
programming approach can be adapted to find Stackelberg
equilibria as in [28, Theorem 3] (see also [29]) when the
encoder is restricted to be linear and memoryless.

V. CONCLUDING REMARKS

In this paper, Nash and Stackelberg equilibria for dyn-
amic quadratic cheap talk and signaling games have been
analyzed. For the dynamic cheap talk problem, we have
shown that the last stage Nash equilibria are quantized for
any scalar source with an arbitrary distribution which admits
a density, and fully revealing Nash equilibria cannot exist in
general (see Remark 2.1); whereas, the Stackelberg equili-
bria must be fully revealing regardless of the source model.
We have also proved that the equilibria are fully revealing in
the dynamic multi-dimensional cheap talk under Stackelberg
equilibria; whereas, the equilibria cannot be fully revealing
under a Nash concept. In the dynamic signaling game, affine
policies constitute an invariant subspace under best response
maps under Nash equilibria. We have provided conditions
under which the Stackelberg equilibrium is non-informative
through information theoretic arguments. Finally, for dyn-
amic Stackelberg signaling games involving Gauss-Markov
sources and memoryless Gaussian channels, we have proved
that for scalar setups linear policies are optimal, whereas this
is not the case for general multi-dimensional setups.
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[4] S. Sarıtaş, S. Yüksel, and S. Gezici, “Quadratic multi-dimensional
signaling games and affine equilibria,” IEEE Transactions on Auto-
matic Control, vol. 62, no. 2, pp. 605–619, Feb. 2017.
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