
Saarland University

Faculty of Natural Sciences and Technology I
Department of Computer Science

Master’s Thesis

A Stochastic Procedural Modelling Tool for
Architectural Structures

submitted by

Himangshu Saikia

submitted on

October 29, 2012

Supervisor / Advisor

Dr.-Ing. Thorsten Thormählen

Reviewers

Dr.-Ing. Thorsten Thormählen
Prof. Dr. Hans-Peter Seidel

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

1

Acknowledgements

I would like to thank my supervisor Dr.-Ing. Thorsten Thormählen, Ph.D student
Arjun Jain and all my friends at Max Planck Institute and Saarland University who
helped and motivated me during the time of writing my thesis.

2

Contents

1 Introduction 3

2 Related Work 7

3 The Procedural Modelling System 9

3.1 Overview . 9

3.2 Rule Files . 9

3.3 The Parser . 10

3.4 The Modeller . 10

3.5 The Interface . 10

3.6 Common Definitions . 11

3.6.1 Lot . 11

3.6.2 Handle . 12

3.6.3 Leaf Nodes / Terminal Objects 12

3.6.4 Tranformation Matrix . 13

3.6.5 Attributes . 13

3.7 Rule Definitions . 13

3.7.1 Lot Rules . 13

3.7.2 Transformation Rules . 15

3.7.3 Terminal Shapes . 20

3.7.4 Stochastic Rules . 21

3

4 CONTENTS

4 Using CastleMaker : Designing a Simple Toy Castle 23

5 Stochastic Rules 29

5.1 Definition . 29

5.2 Usage . 29

5.3 Example . 30

6 Other Features 31

6.1 Auto correction of textures . 31

6.2 Rule file includes . 31

7 Results 35

7.1 Resulting Models . 35

7.2 Stochastic Tower . 35

7.3 Toy Skyscrapers . 35

7.4 Clone of the Château de Chambord 37

8 Conclusion 41

References 44

Abstract

Procedural modelling has been shown to be extremely useful in modelling natu-
rally occurring patterns as well as man-made artifacts. In this thesis, we introduce
CastleMaker - A stochastic procedural modelling tool for architectural structures,
specifically intended for castles. CastleMaker uses a procedural modelling produc-
tion rule system similar to L-systems called CastleMaker Rule Language (CRL) and
is influenced by exisiting rule systems like CGA Shape. Added to its ability to define
a tree based hierarchical structure (also known as the Model Component Tree or
MCT) which can go upto any arbitrary depth - resulting in arbitrary level of detail
- CRL also has facilities for stochastic rules, which help change the very structure
of the MCT in a non-deterministic way. This enables construction of structurally
different but semantically similar architectures with high levels of detail. The sys-
tem comes replete with features such as auto-texturing, the ability to include small
generated models into larger ones, a large set of terminal shapes and a GUI based
interface with syntax highlighting. CastleMaker is a very lightweight implementa-
tion with regards to application size and memory requirements, yet can be used to
build a variety of complex structures for fast 3D modelling, arenas for 3D games or
just to tinker around and build something for fun.

1

2 ABSTRACT

Chapter 1

Introduction

Procedural modelling is a technique by which 2D/3D patterns and/or models are
created using a set of rules or procedures. These rules can either be a set of al-
gorithms to produce self-similar structures also known as fractals, or a hierarchical
definition of production rules like in an L-system. L-systems are a kind of formal
grammar, which are the set of production rules defining the form for strings in that
grammar. Furthermore, we only deal with context-free grammars here, which says
that there should be one and only one non-terminal symbol on the left hand side of
a production rule. That is, the definition of a non terminal symbol is independent
of the definitions of other non terminal symbols. For example, let us consider the
production rule :

V → w

Here V is a non-terminal symbol and w is a string of non-terminal or terminal
symbols (Also can be empty). Context sensitive grammar on the other hand, works
on a non-terminal symbol only if it satisfies certain criteria, also given as precursors
on the left hand side of the production rule. Defining the grammar in a context free
way yields a simple understanding of a structure in terms of a hierarchy and is the
preferred standard for other L-system like grammars.

L-systems takes this idea of production rules for strings and converts these strings
to geometric patterns in 2D or 3D resulting in astoundingly similar structures as
found in nature. In [PPM96], the authors have come up with L-system generated
plant models and explained the mathematical theory underneath. Figure 1.1 shows
an example of one such fractal plant in 2D. Figure 1.2 shows examples of 3D trees
generated using this system.

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Fractal plant generated using the following rules : (X → F-
[[X]+X]+F[+FX]-X), (F → FF), X is the start symbol, Number of iterations to
achieve this model : 6 [Source : www.wikipedia.org/wiki/L-system]

In this thesis, we research and implement one such system aimed at architectural
modelling, especially castles. We take forward ideas presented before and modify
and/or add new features which logically fit in within the framework of such archi-
tectures. The idea, in simple terms, is to take in the dimensions of the building’s (or
structure’s) bounding box, and build a rough geometric shape resembling it. And
then, further breaking down this geometry into smaller and smaller segments and
modifying these in turn, and keep going on in this fashion, resulting in enormous
amount of detail (upto any arbitrary precision) in the final model. At any step,
a segment may be further broken down, or a terminal element can be inserted. A
terminal element being a small atomic part of a structure, for example a door or a
window, or in case of a castle, a pointed tower roof.

Unlike L-systems though, CastleMaker does not follow a simple fractal pattern, and
hence in principle, does not follow self similarity. Although it does have provisions
for stochastic recursive rules similar to L-systems.

Several free and commercial software exist for procedural modelling. One of them
being CityEngine which is a commercial software based on the production rule

5

Figure 1.2: L-system trees [Source : www.wikipedia.org/wiki/L-system]

system called CGA shape developed by Müller et al. [PMG06] CGA shape has
many similarities to the production rule system used in CastleMaker, viz. CRL
(CastleMaker Rule Language, as explained in Chapter 3) and also a few differences.

Although it is possible to design almost any structure using CRL and can be ex-
tended to accommodate for complex rule patterns.

CastleMaker was originally intended to be a tool to interactively generate different
variants of possibly medieval castles (hence the name) using a few clues about
dimensions, and partial strutural data. This would allow children, for example,
to marvel at how historical castles would have looked like, had they still existed
today. Apart from this, the possible uses of CastleMaker can be much more. One
being, generating large-scale models with arbitrary level of detail, using only a few
production rules. The stochastic element which is a major feature of CRL ensures
controlled randomness in parameters to functions, as well as in the entire hierarchy
of structure (defined as the MCT, or Model Component Tree in Chapter 3) resulting
in complex and varied structures, all produced from a single rule file. These large
scale models can then be used in computer games, as arenas for example. CRL also
comes with auto texturing, and a set of pre-built textured terminal shapes, especially
aimed at modelling castles, which could be used directly in the production rules.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

Procedural modelling has been used in several ways for different architectural design
purposes. In [GCZ08] the authors have used tensor fields to create virtual street
networks procedurally. Street networks as well as other aspects of large urban
modelling can thus be modelled efficiently using procedural modelling.

The most well known contributions in this area has been done by Pascal Müller with
the introduction of CGA Shape, a production rule system for procedural modelling
of buildings[PMG06]. A production process in CGA Shape starts off with a crude
volume structure which the authors refer to as the ‘mass model’, and goes deeper
into splitting that element into its façades and adding more and more detail at every
subsequent step. Just like CRL, the parameters passed to the production rules can
be tweaked to generate slightly different but structurally similar components. This
makes it possible to re-use existing design rules to come up with a large plethora of
structurally similar architectures to populate an entire city.

A rudimentary form of procedurally modelling entire cities was presented in [PM01]
wherein the authors had developed the first version of the CityEngine software. In
this work they demonstrated how a 2D surface can be subdivided into building ‘lots’
and successively extrude buildings from these lots.

Different approaches to mass modelling of entire cities and/or larger structures from
smaller ones can be observed in [Mer09] and [MM08]. These approches are different
from conventional production rule based modelling in the sense that they involve
modelling similar structures to the original model by slightly varying some struc-
tural attributes without violating the original meaning(structure) too much. The
challenge here is to figure out the ways in which these attributes can be modified.
In production rule-based modelling, on the other hand, the attributes are specified
by the user in the form of production rules and the variety to modelling differ-

7

8 CHAPTER 2. RELATED WORK

ent complicated structures is virtually endless. Added to that is the possibility of
adding very high levels of detail as we go down the hierarchical tree structure of the
production process.

Another technique to generate similar models preserving semantic attributes is done
in [MB12]. In this paper the authors present a new algebraic system of shape
representation, in which they separate the variational parameters from the main
structural attributes, and by varying these parameters can obtain similar structures.
In case of CRL, this would mean randomness in parameters but no stochasticity i.e.
structural elements left intact.

Although CGA shape and CRL are similar in some respects, CRL can be said to be
a lighter version of CGA Shape but with powerful capabilities and great efficiency.
CRL borrows from CGA Shape in the sense that the production process is similar,
with a few subtle differences. Here we take a look at the noticeable differences.

CGA Shape starts off with a crude volumetric shape and subdivides it into façades
and goes on further down adding new levels of detail at every step. CRL does almost
the same except for the fact that it does some sort of lazy evaluation. This means
that there is no 3D model or shape as such, until and unless some terminal symbols
are added. So a simple lot production rule along with a extrude does not produce a
3D building. But only when the facades are filled with some terminal symbols does
the building appear. This gives rise to a very subtle advantage. While traversing
depth first into the hierarchical tree structure (defined as the Model Component
Tree in Section 3) there is no need of passing the entire intrinsic information about
the model but just a transformation matrix which converts the local terminal shape
to its parents’ co-ordinate system. This makes it simpler and faster, besides not
having to deal with traversals to empty leaf nodes. The final geometric model is
hence built bottom-up rather than top-down.

CRL does not however take into account of structural stability or stress factors in a
structure. These factors are important to be taken into account for purposes of mod-
elling real architectures from a virtual building design. For example, in [EWD09],
the authors incorporate structural stability into their system and automatically
tweak certain parameters to achieve this.

Similar work has been done in [Mos10] which was also a starting reference for
CastleMaker. Here, the author develops his own procedural modelling system titled
‘Building Maker’ based on CGA Shape.

An interactive visual editor for procedural generation is provided in [MLW08] and
CastleMaker can be extended in future to completely replace the rule editor to
interactive drag and drop type functionalities for ease of use, and accessibily to a
larger audience.

Chapter 3

The Procedural Modelling System

3.1 Overview

CastleMaker is a production rule based procedural modelling system built entirely
from scratch. It consists of essentially three components. First, a parser, which
extracts a heirarchical tree structure, hereby referred to as the Model Component
Tree (MCT), from the given rule file. The second component, referred to as the
modeller, which does the actual construction of the 3D model defined by the rule
file. This takes in the tree structure parsed by the parser and constructs a 3D model
by doing a depth first search of the tree. And the third component, also called the
renderer or interface, which provides a openGL rendered view of the generated 3D
model.

3.2 Rule Files

Rule files are specifications provided by the designer and/or architect about the
underlying rules that conform to the 3D model. These may include building dimen-
sions, internal layout of structures and their relative positioning with respect to each
other. Rules are written in a pre-defined context free language, hereby referred to
as the CastleMaker Rule Language (CRL), and files containing rules typically
have the extension of .rule.

9

10 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

3.3 The Parser

The CastleMaker parser is written in Flex (The Fast Lexical Analyzer)- which
parses rule files into tokens, and Bison (The GNU Parser Generator) which takes
in a specification of a context free language and creates a parser which checks a
particular token stream for conformance to this language.

3.4 The Modeller

This component, being probably the most important component of the system, is
responsible for creating the 3D model defined by the given rule file. It traverses the
rule based specification tree top down and combines all child elements at any given
root. This model data structure is then either written to a 3D Wavefront Object file
(.obj) at the Command Prompt, or displayed as is, in the OpenGL viewer provided
by the Interface to the system.

At any phase of traversal down the tree, the modeller does not store any information
about the actual model, viz. the vertices, faces, texture etc. The only thing that
is passed is a transformation matrix like structure also known as a Local Transfor-
mation Node. The model is actually evaluated only when a leaf node / terminal
node is encountered. This lazy evaluation cuts down on a large chunk of memory
needed, while doing a depth first traversal. All randomizations in the arguments to
the rules are also done during every traversal of a node, making sure that visiting
the same predecessor-successor node multiple times during the depth first traversal
ensures a different value for random arguments, if any.

The modeller is written entirely in C++.

3.5 The Interface

The Interface, being the user front-end, has additional components for the user to
interact with the system. Herein, is a rule-file editor panel, with built-in syntax
highlighting enabled for CRL, and also, an OpenGL viewer window which displays
the model generated as defined by the rules specified in the editor panel. This
component is especially useful to view different variations that can be generated
with one set of stochastic rules for example. Figure 3.1 shows how the Interface
currently looks like.

3.6. COMMON DEFINITIONS 11

Figure 3.1: A screenshot of CastleMakers’ interface

3.6 Common Definitions

3.6.1 Lot

Lots are defined as the 2D surfaces upon which buildings are build upon. They are
essentially the blocks in a 2D map of a city/town/building as seen directly from
above. The first step to creating any model is to create the Lot on top of which the
model will reside. There are different kinds of Lots defined in CRL.

LOT

A normal Lot defined directly using any of the two direct lot producing rules rect
or circ.

CHILD LOT

A lot produced by any of the indirect lot producing rules, or as roof element of the
insert volume terminal rule.

12 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

CIRCULAR CORNER LOT

Typically found in corners of rectangular lots, this is a special kind of lot which
preserves equal scaling in both directions in the plane of the lot.

EDGE LOT

Produced as a result of the edges rule on a parent lot.

3.6.2 Handle

Handles are identifiers to components in the MCT. Every handle refers to a compo-
nent which has been, or can be transformed into some other component or terminal
shape. Every rule in CRL starts with only one handle on the left hand side, also
known as the Predecessor, and one or more handles on the right hand side within
curly braces, also known as the Successor(s). All components should have a unique
handle in order for the MCT to be uniquely defined. Also all handles must start
with a capital letter, and can be succeeded by any number of capital or small letters,
numerals and/or underscores.

3.6.3 Leaf Nodes / Terminal Objects

Terminal Objects or Leaf Nodes of the MCT are 3D models which are simple enough
to be inserted at the specified positions defined by the rule file. They are always
centered at the origin and contained within a unit bounding box with a body
diagonal running from (−0.5,−0.5, 0) to (0.5, 0.5, 1). This alignment is however
performed by the system before a terminal object is inserted into the final model.
There are two kinds of Terminal Objects :

• Predefined Wavefront Object files (OBJs) : These are small .obj files
which can be inserted diectly. Typically these are thin shapes like doors,
windows etc.

• Terminal Shapes : These are available in the system and can be modi-
fied accordingly with various parameters. These are defined later under Rule
definitions.

3.7. RULE DEFINITIONS 13

3.6.4 Tranformation Matrix

This matrix is responsible for transforming a Terminal Object into the desired spa-
tial co-ordinates.

3.6.5 Attributes

These are global variables which can be defined before any rule definitions and
can then be used in place of any of the parameters to the rule functions. The
attribute name is a string and can be a combination of lowercase letters, numerals
and underscores. The attribute value can be an integer or real number. Attribute
definitions are of the form :

attr attribute name = attribute value;

3.7 Rule Definitions

The following section will provide definitions for all rules that are implemented in
this system, their syntax and working principle.

3.7.1 Lot Rules

These rules have the common format of :

1. LotHandle = function(parameters); // Direct Rule

2. ParentLotHandle → function(parameters){DerivedLotHandle}; //Indi-
rect Rule

CIRC

This rule is used to create a circular lot of radius Radius units and with center
(CenterX , CenterY). Notice however that this actually does not create anything,
because of the underlying lazy evaluation. Circ is one of the two direct lot producing
rules in CRL.

Syntax : CircularLot = circ(CenterX : real, CenterY : real, Radius : real);

The transformation matrix which conforms to this rule can be written as follows :

14 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

T =

Radius 0 0 CenterX
0 Radius 0 CenterY
0 0 1 0

RECT

This rule is used to create a rectangular lot with length Length and width Width
units with the bottom left corner at (PositionX1, PositionY 1). Rect is the second
direct lot producing rules in CRL.

Syntax : RectangularLot = rect(PositionX1 : real, PositionY 1 : real, PositionX2 :
real, PositionY 2 : real);

where PositionX2 = PositionX1 + Length and PositionY 2 = PositionY 1 +Width.

The transformation matrix which conforms to this rule can be written as follows :

T =

Length 0 0 PositionX1+PositionX2

2

0 Width 0 PositionY 1+PositionY 2

2

0 0 1 0

CENTER

This function takes in two arguments (dimensions) and one successor handle, and
results in a rectangular lot of the given dimensions, centered at the parent lots’
center. Center is one of the three indirect lot producing rules in CRL.

Syntax : ParentLot → center(length : real, width : real){CenteredLot};

CORNERS

This function results in producing upto four special lots of the class CIRCU-
LAR CORNER LOT which regardless of the scaling in either direction always
maintains a circular alignment. The function takes in six parameters : a relative
x-dimension (w.r.t the parent lot), a relative y-dimension and four integers which
could be either 1 or 0 depending upon whether the particular corner should have
a lot or not. Corners are considered in order anti-clockwise. All four corner lots
can have different successor handles. This rule is typically used to insert towers
at the corners of rectangular structures and is the second of the three indirect lot
producing rules in CRL.

3.7. RULE DEFINITIONS 15

Syntax : ParentLot → corners(rel length : real, rel width : real, isCorner1 :
bool, isCorner2 : bool, isCorner3 : bool, isCorner4 : bool){CornerLot1 | . . . |
CornerLotn};

EDGES

This function takes in six arguments : relative x dimension (w.r.t the parent lot),
relative y dimension, and four integer values which denote the number of lots to be
created along the particular edge of the parent lot in order anti-clockwise. All four
edge lots can have different successor handles. But all lots lying on one particular
edge will have the same successor handle. This rule is the third and last of the three
indirect lot producing rules in CRL.

Syntax : ParentLot → edges(rel length : real, rel width : real, howManyInEdge1
: bool, howManyInEdge2 : bool, howManyInEdge3 : bool, howManyInEdge4 :
bool){EdgeLot1 | . . . | EdgeLotn};

3.7.2 Transformation Rules

These rules have the common format of :

PredecessorHandle→ function(parameters){SuccessorHandle};

and in case of terminal objects :

TerminalHandle→ function(parameters);

EXTRUDE

This rule extrudes a 2D Lot into a 3D structure by a specified Height units. This
is always the second step that has to be performed to a Lot.

Syntax : Lot→ extrude(Height : real){Building};

The corresponding transformation matrix can be written as :

T =

1 0 0 0
0 1 0 0
0 0 Height 0

16 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

COMPONENT SPLIT

This rule splits a 3D volume into its 2D components, viz. the top face and the side
faces. Since evaluation is lazy, the system requires the user to provide the number
of side faces she wants to split the volume into.

Syntax : Building → comp(NumberOfFaces : integer){TopFaceHandle
|SideFaceHandle1| . . . |SideFaceHandlen};

where the side face handles SideFaceHandle1 to SideFaceHandlen are repeatedly
assigned to the faces in order until all NumberOfFaces faces are assigned a Handle.
Thus, if only one handle is provided, all faces are assigned the same Handle.

SUBDIVIDE / VERTICAL SPLIT

This rule splits a component into a number of child components vertically. There
are three flavours to this rule.

• Normal Subdivide : Takes in N percentage values and N successor handles
and subdivides the parent into N children in the ratio of height suggested by
the corresponding percentage value in order. Note that all percentage values
must add up to 100.

Syntax : Building → subdiv(V al1 : real, . . . , V aln : real){Succ1 | . . . |
Succn};

• Uniform Subdivide : Takes in one argument NumberOfParts and uniformly
segments the parent into NumberOfParts children. There can be one (manda-
tory) or more successor handles and assignment is done in a round robin
fashion.

Syntax : Building → uniform subdiv(NumberOfParts : integer){Succ1 | . . . |
Succn};

• Repeat Subdivide : Takes in NumberOfParts + 1 arguments where the first
argument is NumberOfParts and the rest being precentage values, and Num-
berOfParts successor handles. It then divides the parent into NumberOfParts
parts and applies normal subdivision to each part according to the percentage
values and assign the corresponding successor handle in order.

Syntax : Building → repeat subdiv(NumberOfParts : integer, V al1 : real,
. . . , V aln : real){Succ1 | . . . | Succn};

3.7. RULE DEFINITIONS 17

HORIZONTAL SPLIT

This rule splits a component into a number of child components horizontally. As
with the vertical split operation, this rule also has three equivalent flavours. Note
that correct results are only obtained when this operation is performed after a
component split.

• Normal Split : Works exactly the same as normal subdivision except for in
the horizontal direction.

Syntax : Building → split(V al1 : real, . . . , V aln : real){Succ1 | . . . | Succn};

• Uniform Split : Exactly the same as the vertical counterpart. Except that
this one splits horizontally.

Syntax : Building → uniform split(NumberOfParts : integer){Succ1 | . . . |
Succn};

• Repeat Split : Again, works like the vertical repeat split but in the horizontal
direction.

Syntax : Building → repeat split(NumberOfParts : integer, V al1 : real, . . . ,
V aln : real){Succ1 | . . . | Succn};

SCALE

This rule takes in three parameters sx, sy, sz and scales a component in the X, Y
and Z axes by the amounts suggested by the parameters in order.

Syntax : Building → scale(sx : real, sy : real, sz : real){ScaledBuilding};

TRANSLATE

This rule takes in three parameters tx, ty, tz and translates a component along the
X, Y and Z axes by the amounts specified by the parameters in order.

Syntax : Building → translate(tx : real, ty : real, tz : real){TranslatedBuilding};

18 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

SIMPLE LOT SPLIT

Takes in two parameters fractionXSplit and fractionY Split in the range [0, 1] and four
successor handles to produce four rectangular lots within the parent lot splitting
it into the ratios fractionXSplit / (1 − fractionXSplit) in the X-direction and
fractionY Split / (1− fractionY Split) in the Y-direction.

Syntax : ParentLot→ lot split simple(fractionXSplit, fractionY Split){Lot1|Lot2|Lot3|Lot4};

LOT SPLIT

Takes in a flavor of parameters and splits a lot either uniformly or according to the
ratios specified. The uniform split, takes in two parameters XSplits and Y Splits
and splits the parent lot into (XSplits+ 1)∗ (Y Splits+ 1) child lots. The successor
handles are assigned in a round robin fashion.

Syntax : ParentLot → lot split(XSplits, Y Splits){Lot1| . . . |Lotn};

The non-uniform variant takes in the first two parameters viz. Divisionsx, Divisionsy
and successively Divisionsx and Divisionsy parameters specifying the ratios of the
splits (in percentages). The successor handles are assigned in a round robin fashion.

Syntax : ParentLot → lot split(Divisionsx, Divisionsy, Partx1, . . . , Partxn,
Party1, . . . , Partyn){Lot1| . . . |Lotn};

RANDOM LOT SPLIT

Takes in two parameters NumberOfSplitsX and NumberOfSplitsY and a succes-
sor handle and splits a rectangular lot into (NumberOfSplitsX+1)∗(NumberOfSplitsY +
1) lots with random lenghts and widths for each child lot, assigning the successor
handle to each lot. These lots can then be used with stochastic rules for example,
to form different structures.

Syntax : CityLot→ lot split rand(NumberOfSplitsX : integer, NumberOfSplitsY
: integer){BuildingLot};

ADD MATERIAL

Takes in four parameters, a material handle, a diffuse red coefficient, a diffuse
green coefficient and a diffuse blue coefficient and a successor handle and assigns
a diffuse material to the component having the particular successor handle. This

3.7. RULE DEFINITIONS 19

rule can only be used just before a terminal rule. Thus the effect is to assign a
material with properties as described to the terminal object following this rule.
As an example a cyan (R = 0, G = 0.5, B = 0.5) material can be assigned to a
WindowHandle handle and then a terminal operation can be called on the successor
i.e. the CyanWindowHandle handle, such as an insert, resulting in a cyan colored
window.

Syntax : WindowHandle → add material(material handle : string, Rdiffuse : real,
Gdiffuse : real, Bdiffuse : real){ColoredWindowHandle};

where the red, green and blue coeffiecients all lie in the range [0, 1].

ADD TEXTURE

This function is used to add a texture to a terminal object. Any textures or material
properties associated with the terminal object are over-ridden by this call. It takes
in four parameters : A texture handle, a valid texture filename, an x-stretch factor
and a y-stretch factor. The stretch factors are used to manually stretch the texture
in certain cases. This is made possible by an auto-scaling mechanism which makes
sure no matter how stretched structures are due to parameters specified in the rules
or due to randomness, the associated texture always auto-scales to fit the overall
look. For example a brick texture always looks the same size on small walls as well
as big walls even though both walls inherit the same terminal symbol, in this case,
a plain rectangular object. The successor handle obtained in this way can now be
used to invoke any terminal operation.

Syntax : Handle → add texture(texture handle : string, texture map : string, Sx :
real, Sy : real){TexturedHandle};

INSERT

This rule inserts built-in terminal objects into the bounding box specified by the
parent component. It takes in two mandatory arguments and two optional argu-
ments. The first mandatory argument is a valid filename for a terminal OBJ file
available in the DATA DIR for the project. The second mandatory argument is a
boolean flag which indicates whether the object is pre-textured or not. All OBJs
to be inserted into side faces must follow the following configuration – It must lie
upright in the ZX plane with the front face having normal direction (0, -1, 0).
Appropriate translation and scaling is done by the system to centralize the model
before insertion.

20 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

Syntax : TerminalHandle → insert(terminal obj filename.obj : string, is textured
: bool, keep materials local : bool (optional), not scale z : bool (optional));

The second mandatory argument isTextured is used to maintain child textures even
if the parent texture gets modified. If this option is turned on, the textures of the the
inserted model will be preserved. The first optional argument keepMaterialsLocal
is used to enable changing of textures present in objects imported from included
rule files from the parent rule file. This option is turned off by default. If turned
on, changing the same material handle from within the parent rule file also changes
the texture of the object included from a child rule file but maintaining its texture
scaling co-ordinates. The second optional argument notScaleZ is used to insert 3D
volumes in recursive stochastic rules for example, where an explicit extrude is not
required. If this option is turned on, the height of inserted shape is not scaled to
unity but kept as it is.

3.7.3 Terminal Shapes

These are common geometric shapes made available in the system which can be
tweaked using various parameters.

INSERT VOLUME

This rule is used to insert a terminal volume element, which is typically a roof
in most cases. It takes in 6 parameters : A relative X-dimension, a relative Y-
dimension, a relative Z-dimension, an X-offset, which denotes by how much is the
top face offset on both the X and -X sides, a Y-offset, which is defined similarly
for the Y-dimension and an integer term which is 1 or 0 depending upon whether
the volume element should be made visible or not. Combining all these parameters,
several different common roof structures can be obtained.

This rule can also take in a successor handle which can then be used as a lot on the
top face of the volume. Considering that it is realistic (large) enough to be used as
a lot.

Syntax : VolumeHandle→ insert volume(rel length : real, rel width : real, rel height
: real, offsetx : real, offsety : real, visibility : int){[TopFace]};

3.7. RULE DEFINITIONS 21

INSERT CYLINDER

This rule, as the name implies inserts a terminal cylindrical element, which are
typically tower structures for example. It takes in four arguments : A (relative)
bottom radius, a (relative) top radius, a (relative) height, and an integer denoting
the number of divisions of the cylinder. The larger the fourth parameter, the finer
the cylinder.

Syntax : CylinderHandle → insert cylinder(radbottom : real, radtop : real, height :
real, NumberOfDivisions : int);

INSERT CONE

This rule is used to insert a conical element, which are typically characteristic of
tower roofs for example. It takes in three arguments. A (relative) radius, a (relative)
height, and an integer denoting the number of divisions of the cone. The larger the
third parameter, the finer the cone.

Syntax : ConeHandle → insert cone(radius : real, height : real, NumberOfDivi-
sions : int);

INSERT PARABOLIC CONE

This rule is used to insert a parabolic cone element, which are typically used for
more realistic looking tower roofs. It takes in four arguments. A (relative) radius, a
(relative) height, an integer denoting the number of divisions along the circumfer-
ence, and another integer denoting the number of divisions along the height. The
larger the third and fourth parameters are, the finer the cone.

Syntax : ParabolicConeHandle → insert parabolic cone(radius : real, height : real,
NumberOfHorizontalDivisions : int, NumberOfVerticalDivisions : int);

3.7.4 Stochastic Rules

Stochastic rules are a nice feature of CastleMaker whereby the MCT can be changed
non-deterministically at any node. Currently use of guard expressions is not imple-
mented and hence the course of traversal is altered using a probability value, which
denotes the fraction of importance of that branch. All probability values for each
branch should sum up to 1.

22 CHAPTER 3. THE PROCEDURAL MODELLING SYSTEM

Syntax :

Predecessor →
[p1]func1(< arguments >){Successor11, ..., Successor1n },
[p2]func2(< arguments >){Successor21, ..., Successor2n },

. . .
[pn]funcn(< arguments >){Successorn1, ..., Successornn },

;

where p1 + p2 + . . . + pn = 1

Chapter 4

Using CastleMaker : Designing a
Simple Toy Castle

In this chapter, we will start from the basics and try building a simple toy castle from
scratch. We will only be using basic building blocks and the simplest of terminal
shapes available to us, in order to illustrate the power of the application.

To start of, as always, we initialize a lot.

ToyCastleLot = rect(−10,−30, 10, 30);

This implies that the lot is initialized and lies in the rectangular region between the
points (-10, -30), (10, -30), (10, 30) and (-10, 30) on the horizontal (XY) plane.

ToyCastleLot→ lot split(0, 2){Left|Center|Right};

The idea is to split the lot into three equal divisions along the Y-direction. Notice
that there are no splits in the X-direction. The three successor handles are assigned
in order.

Left→ extrude(20){LeftBuilding};
Right→ extrude(20){RightBuilding};
Center → extrude(50){CenterBuilding};

Now all the three lots are extruded upwards by the specified amounts. The center
lot is extruded higher than the side lots.

23

24CHAPTER 4. USING CASTLEMAKER : DESIGNING A SIMPLE TOY CASTLE

LeftBuilding → corners(0.13, 0.13, 1, 0, 0, 1){Tower};
RightBuilding → corners(0.13, 0.13, 0, 1, 1, 0){Tower};
CenterBuilding → corners(0.13, 0.13, 1, 1, 1, 1){Tower};

Castle Towers are placed in appropriate positions. Notice that the lot produced is
a circular corner lot and the radius of this lot is 13% of that of the parent lot.

LeftBuilding → comp(4){Top|SideFace1};
RightBuilding → comp(4){Top|SideFace1};

CenterBuilding → comp(4){Top|SideFace1|SideFace2};

The buildings themselves are split into their top and side face components. Several
of the split operations will be illustrated now as operations on these façades or side
faces. The center building assigns two different side faces to alternate faces. We
will see how they differ later.

Top→ add material(”blue”, rand(0, 0.5), rand(0, 0.5), rand(0.5, 1)){BlueTop};
BlueTop→ insert volume(1.1, 1.1, 0.5, 1, 1, 1);

Now we see some randomness in action. We add a material to the Top face and
assign it a high blue coefficient and a low red and green coefficient (As a reminder,
the order of the diffuse co-efficients is red, green and blue). Then we add a pyramidal
volume to this handle, resulting in a bluish pyramidal roof.

SideFace1→ insert(”simple window.obj”);
SideFace2→ subdiv(70, 30){Door|SideFace1};
Door → uniform subdiv(7){V erticalBars};

V erticalBars→ uniform split(5){SideFace1};

There are four rules that follow. Let us go through each of them one by one.
The first rule is a terminal rule which inserts a simple terminal shape (in this case
a colored bordered window object) and assigns it to the handle SideFace1. This
results in all sides of the left and right parts of our toy castle having this window
object. The second rule goes a bit further and subdivides SideFace2 in the ratio 7:3
and assigns a Door handle to the first part and a SideFace1 handle to the second
part. So the top 30% of SideFace2 will contain the window object as defined by
SideFace1 in the first rule. Notice that SideFace2 appears on the front and back
of the center building. The third rule uniformly subdives the Door element into

25

7 vertical bar elements. In the fourth rule, each of these bar elements are further
split horizontally into 5 segments. Each of these segments is assigned a SideFace1
handle, resulting in the same window object appearing in each of these positions.
Hence the door object is essentially a combination of 35 simple window elements
aligned uniformly.

Notice that the order of writing the rules did not matter and any successor defini-
tion can also appear before. As long as the MCT is consistent the order does not
matter. Although it makes it much more readable if the rules are written following
a consistent order.

It is also possible to randomize the number of vertical and horizontal splits by
writing something like this :

Door → uniform subdiv(rand(3, 7)){V erticalBars};
V erticalBars→ uniform split(rand(2, 5)){SideFace1};

This results in a random number of vertical bars (3 to 7 in this case) and a random
number of horizontal segments (2 to 5) for each of these vertical bars due to lazy
evaluation.

Tower → scale(1, 1, 1.4)ScaledTower;
ScaledTower → subdiv(80, 20){TowerBody|TowerRoof};

The Tower handle at the corners of the building lots are defined now. First, the
towers are scaled to be a bit higher than the building height. And second, the scaled
tower is subdivided into a body and a roof, in the ratio 8:2.

TowerBody →
add material(”green”, rand(0, 0.5), rand(0.5, 1), rand(0, 0.5)){GreenTowerBody};

GreenTowerBody → insert cylinder(1, 1, 1, 20);
TowerRoof →

add material(”orange”, rand(0.5, 1), rand(0, 0.5), 0){OrangeTowerRoof};
OrangeTowerRoof → insert parabolic cone(1.5, 1.5, 20, 10);

A greenish material is assigned to the tower body and a orange one to the tower
roof. The tower body is essentially a cylinder with 20 horizontal divisions along
the curved surface. The tower roof is a parabolic cone with 20 horizontal and 10
vertical divisions. Figure 4.1 shows how our Toy Castle looks at the moment.

So far so good. The randomizations in the colors can be seen very well. Let us now
explore some stochastic rules. To this end, we design a simple toy border around
our castle.

26CHAPTER 4. USING CASTLEMAKER : DESIGNING A SIMPLE TOY CASTLE

Figure 4.1: This is how our Toy Castle looks at the moment. All three models are
generated from the same set of rules described above.

BorderLot = rect(−60,−60, 60, 60);

We call this lot the BorderLot. It is a square lot encompassing the entire area of
our castle.

BorderLot→ add material(”grass”, 0, 0.4, 0){Lawn};
Lawn→ insert volume(1, 1, 1, 0, 0, 1);

Here some green color is added to the entire border lot and a thin volume is inserted.
This gives the feel of a grassy outdoor lawn surrounding the castle.

BorderLot→ edges(0.03, 0.03, 25, 25, 25, 25){BlockLot};

Now 25 new lots are created at the edges of the border lot. They occupy 3% of
the dimensions of the parent lot. These 100 new lots will be used to showcase the
stochastic modelling feature of CastleMaker.

BlockLot→ extrude(rand(3, 8)){Stone};
Stone→

add material(”walls”, rand(0, 0.5), rand(0, 0.5), rand(0, 0.5)){ColoredStone};

First the lots are extruded by a random amount between 3 and 8 height units
upwards. We assign a Stone handle to each of these volumes. These stones are all
then assigned a random dark color.

27

Figure 4.2: Final toy castle with borders. All of these models are generated from
the same set of rules above.

ColoredStone→ [0.25]insert volume(1, 1, 1, 0, 0, 1),
[0.25]insert volume(1, 1, 1, 0, 1, 1),
[0.25]insert volume(1, 1, 1, 1, 0, 1),

[0.25]insert volume(1, 1, 1, 0.4, 0.4, 1)
;

Here the stochastic rules come into play. Each colored block is assigned a one out
of four different volumes with an equal probability (25%). The first one being a
regular cuboid, the second one a gabled roof element with straight faces in the X
direction, the third, a gabled roof element with straight faces in the Y direction and
the fourth a mansard roof element with an offset of 0.4 on both sides.

Figure 4.2 shows how the final castle models look like. Here we demonstrated some
of CastleMaker’s features at a very basic level. The level of detail that can be added
in this way can be arbitrarily large, and is given by the depth of the MCT. Although
it is suggested that recursive rules (Same predecessor and successor handle) with a

28CHAPTER 4. USING CASTLEMAKER : DESIGNING A SIMPLE TOY CASTLE

Figure 4.3: A closer look at the stone border. All positions take up one out of the
four possible volume structures at random

high probability should be avoided. Recursive rules which are not stochastic should
never be used. Figure 4.3 shows the results of the stochastic rules from a closer angle.

Chapter 5

Stochastic Rules

5.1 Definition

As described in previous chapters, stochastic rules help change the very structure of
the MCT in a non-deterministic way. A drawback of the system worth mentioned
here is the absence of conditional statements to determine which path a particular
branch should take. The stochastic rules make this decision depending upon a
certain fixed probability measure which is hardwired into the rule file. Modifying
these values can result in quite different final models and almost equally distributing
the weights (values) across all branches results in the maximum stochasticity.

5.2 Usage

Stochastic rules, however, should be used with some caution. For example, having
a recursive (non-deterministic) loop in the MCT is often dangerous if the stochastic
weights assigned to the branches making the loop are high. For example consider
this self loop syntax:

A→
[0.8]insert volume(1, 1, 1, 0, 0, 1){A},

[0.2]insert volume(1, 1, 1, 1, 1, 1)
;

This might result in an incredibly large number of recursions and the MCT going
really deep. Also dangerous are high weighted rules which branch into a number

29

30 CHAPTER 5. STOCHASTIC RULES

Figure 5.1: Two models generated from the same rule file using stochastic rules

of child components, each going into a recursive loop again. In certain cases the
system may crash due to insufficient memory. Unfortunately, there is no way to
curb such situations in the present implementation of CRL and it is left to the user
to choose the branch probabilities carefully if at all the need to use recursive rules
arise.

5.3 Example

In the example below a stochastic rule written like this will generate one of the two
models with equal probability. The results can be seen in Figure 5.1.

OriginalLot→
[0.5]corners(sizeX, sizeY, 1, 1, 1, 1){RoundTower},
[0.5]corners(sizeX, sizeY, 1, 1, 1, 1){SquareTower}

;

Chapter 6

Other Features

CastleMaker has a couple of other useful features which make models look realistic
as well as provides a very handy method of reusing existing rule definitions.

6.1 Auto correction of textures

The system keeps track of texture offsets and dimensions at every split/subdivision
which it later uses to determine texture co-ordinates for polygons. A manual texture
resize option provided with the add texture function helps in manually suggesting
how the texture should scale to the object at hand. Figure 6.1 shows this feature
in action.

For terminal shapes like a volume element or a cylinder, texture continuity is main-
tained at the edge boundaries. Care should be maintained to specify manual resizing
in such a way that the texture looks realistic. for example for a 4 sided component
split, scaling in u should be 4 times that in v. And for cylinders scaling in u should
be around π times that in v. Figure 6.2 shows an example.

6.2 Rule file includes

Stochasticity is useful but is sometimes better avoided. For example in case of a
castle building with four towers at each of its corners, it is visually preferable in
most cases, that all four towers be of the same height, structure and texture. If the

31

32 CHAPTER 6. OTHER FEATURES

Figure 6.1: (a)Texture auto corrects itself at subdivision boundaries (b)With 2X
scaling on both u and v directions. Auto-scaling preserves continuity.

Figure 6.2: Auto correction of textures preserves continuity at edge boundaries.

6.2. RULE FILE INCLUDES 33

towers themselves use stochastic rules, it is impossible to guarantee this uniformity
and a lot of branches need to be evaluated and specified. This can be avoided using
rule file includes.

This feature enables a user to invoke a child rule file from a parent rule file, thereby
using models designed previously using the system to be used in another, larger,
model. In this way several useful parts like doors and windows can be modelled
once and reused at several places. This reduces too much uncontrolled randomness
resulting from stochastic rules. Figure 6.3 demonstrates an example.

34 CHAPTER 6. OTHER FEATURES

Figure 6.3: (a) The original basic model available as a terminal object (b) A rule
file using some randomness to create a window using the basic object in 6.3(a) (c)
Including rule file used to create 6.3(b) and reusing the same object at multiple
places.

Chapter 7

Results

7.1 Resulting Models

As was seen in the previous chapters, CastleMaker can be extremely powerful and
can be used to design a myriad of structures. To come up with something grandiose
though, one must write the rules carefully and with much thought. This may take
time but with increased definition for detail, really complex and realistic models
can be generated and using randomness and stochastic rules wisely, a large number
of similar stuctures can be additionally created. In this chapter we present some of
the results that were obtained using CastleMaker.

7.2 Stochastic Tower

Stochastic rules can be used in a variety of ways to create similar strctures. Figure
7.1 shows different versions of towers generated from a single rule file.

7.3 Toy Skyscrapers

A minimalistic toy skyscraper model consisting of over a million triangles, having
no external textures and defined by only nine rules is shown in Figure 7.2.

35

36 CHAPTER 7. RESULTS

Figure 7.1: Several versions of the same tower definition.

7.4. CLONE OF THE CHÂTEAU DE CHAMBORD 37

Figure 7.2: A particular instance of a random toy skyscraper definition.

7.4 Clone of the Château de Chambord

This is an attempt to define the rules for a clone of the ‘Château de Chambord’ of
France. All models shown in Figure 7.3 through 7.6 are generated using the same
rule file and showcase several different features provided by CastleMaker.

38 CHAPTER 7. RESULTS

Figure 7.3: (a)

Figure 7.4: (b)

7.4. CLONE OF THE CHÂTEAU DE CHAMBORD 39

Figure 7.5: (c)

Figure 7.6: (d)

40 CHAPTER 7. RESULTS

Chapter 8

Conclusion

We have thus seen how Procedural modelling can be used to generate different
architectural structures and models fast and efficiently. The presence of fractal
patterns have been proven to exist in a multitude of naturally occurring patterns
like mountains and ferns to tiny entities like snowflakes and mollusk shells. It is
indeed true that the seemingly random nature of the world around us is not all that
random but is governed by a set of, possibly simple, mathematical transformation
rules.

Leaving natural and biological patterns aside, man-made artifacts are also seen
to adhere to certain rules in design, and seemingly different structures also have
some basic attributes in common. This is what stochastic procedural modelling can
simulate and quickly at that. Keeping the basic attributes same, and varying the
parameters binding these basic attributes, results in complex yet beautiful geometry.

CastleMaker can be used to simulate variations of castle like structures with the
help of random attributes and stochasticity. Starting with the parent lot, the 2D
top view of the castle’s bounding box, we can iteratively add subsequent child lots
to the corners or edges, or maybe subdivide the parent lot, either by random or
specifying exact parameters, and then go on building the elements from there using
extrusions, component splits, and face subdivisions. Insertion operations can be
greatly enhanced by adding more terminal shapes to the system, or by writing
smaller rule files for frequently occurring terminal shapes and then including them
in the parent rule file. Owing to the simplicity of the hierarchical tree definition of
an architectural structure, it is possible to come up with such definitions for almost
any structure.

A modern city, for example, can be simulated using a few gaussian like measures.
Let us say, the heights of all skyscrapers follow a gaussian pattern. This pattern

41

42 CHAPTER 8. CONCLUSION

can be a random attribute. The presence or absence of a skyscraper at a particular
position can also be a random attribute. The ground dimensions of a building
can be yet another. Taking all of these attributes into consideration and applying
randomness to them, we can come up with a realistic looking city design with just
nine rules using CastleMaker (refer to section 7.3).

CastleMaker can hence be used as a tool not only to build castles but varying
other architectural structures. Although several workarounds need to be applied in
some cases for designing structures with random elements. For exact specifications
though, CastleMaker can exactly simulate the structure.

An inherent feature of CRL (CastleMaker Rule Language) is that all distances
(lengths) are relative. Except for the lots which are the 2D surfaces on which the
structure is based, all other parameters are specified as percentages or ratios of
the parent’s dimensions. Though this works well mostly, the issue with absolute
lengths arises in certain cases. Like the case of randomly varying the height of
a building depending upon the absolute dimensions of a single floor, for example,
is impossible to simulate, owing to the absence of absolute lengths. But there is a
clever workaround to achieve this, using recursive stochastic rules. Although a given
number of floors is still impossible to simulate exactly, this workaround results in
even floors of the desired height.

Another feature which can be said to be missing in the current system is the avail-
ability of non-axis aligned lots. In the current implementation rotations which are
not multiples of a right angle are unavailable. But the idea can be easily extended
into the language. Terminal shapes which are not axis aligned, however, are per-
fectly allowed to be imported into a model.

Another feature which also could be easily extended is the presence of guard condi-
tions using mathematical relations on attributes. All randomness in the production
system is availed via a range of random numbers between two given boundaries,
and/or using fixed probality measures in stochastic rules. Although this is quite
powerful, it is not as flexible as guard conditional expressions. For example, let
us say we want to subdivide a façade into a number of floors depending upon the
height of the façade. This can just be guessed and tweaked manually, or a random
attribute to the split function can be passed, which is somewhat guaranteed to lie
between the acceptable range for the number of divisions. Apart from this approx-
imation, there is no real solution for this problem. More complicated cases may
be, presence or absence of a particular structure component depending upon what
other components are present and/or having certain dimensions. This somewhat
takes us into the realm of context sensitive grammars.

As demonstrated in examples from the previous chapter, CastleMaker can be used

43

to design extremely complicated and detailed structures. Although CRL does not
have conditional expressions at present, hard wired weights to drive stochastic rules
work pretty well if tuned correctly. Also the availability of rule file includes help
to maintain composition and at the same time make use of stochasticity. Manual
texture scaling can be used to fine tune the appearance of different neighbouring
structures making up a composite model. The interface can be extended to pro-
vide for a more intuitive GUI based drag-and-drop kind of behavior in the future.
Moreover, there is room for improvement in optimizing the mesh structure before
export, and taking care of issues like duplicate vertices etc. Also the system will be
extremely powerful with arithmetic and logical operations built in for attributes, pa-
rameters as well as conditional expressions. Introduction of absolute lengths would
violate some of the principles on which CRL is based on, but can be implemented
with some effort. The eventual results seem quite appealing, and the possibilities
to come up with absolutely grandiose models is restricted only to the designer’s
creativity. Although getting a particular design to work can have a complicated
series of operations and more than one correct way may be possible to achieve it.
With practice, CRL is easy to comprehend and the series of operations follow a
consistent logical approach.

44 CHAPTER 8. CONCLUSION

Bibliography

[EWD09] John Ochsendorf Emily Whiting and Fredo Durand. Procedural modeling
of structurally-sound masonry buildings. In SIGGRAPH Asia, 2009.

[GCZ08] Peter Wonka Pascal Müller Guoning Chen, Gregory Esch and Eugene
Zhang. Interactive procedural street modelling. In ACM SIGGRAPH,
2008.

[MB12] Hans-Peter Seidel Vladlen Koltun Martin Bokeloh, Michael Wand. An
algebraic model for parameterized shape editing. In ACM SIGGRAPH,
2012.

[Mer09] Paul Merrell. Example-based model synthesis. In Ph.D. Dissertation,
University of North Carolina at Chapel Hill, 2009.

[MLW08] Peter Wonka Markus Lipp and Michael Wimmer. Interactive visual edit-
ing of grammars for procedural architecture. In ACM Transactions on
Graphics, Vol. 27, No. 3, Article 102, 2008.

[MM08] P. Merrell and D. Manocha. Continuous model synthesis. In ACM Trans-
actions on Graphics, 2008.

[Mos10] Oussama Moslah. Procedural modelling. In Ph. D. Dissertation, Towards
Large-Scale Urban Environments Modeling from Images, University of
Cergy - Pontoise, 2010.

[PM01] Yoav I H Parish and Pascal Müller. Procedural modeling of cities. In
ACM SIGGRAPH, 2001.

[PMG06] Simon Haegler Andreas Ulmer Pascal Müller, Peter Wonka and Luc Van
Gool. Procedural modeling of buildings. In SIGGRAPH, 2006.

45

46 BIBLIOGRAPHY

[PPM96] Jim Hanan Przemyslaw Prusinkiewicz, Mark Hammel and Radomı́r
Měch. L-systems: from the theory to visual models of plants. In Pro-
ceedings of the 2nd CSIRO Symposium on Computational Challanges in
LifeSciences, CSIRO Publishing, 1996.

