
Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski, and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Global Feature Tracking and Similarity Estimation
in Time-Dependent Scalar Fields

H. Saikia and T. Weinkauf

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract
We present an algorithm for tracking regions in time-dependent scalar fields that uses global knowledge from all time steps for
determining the tracks. The regions are defined using merge trees, thereby representing a hierarchical segmentation of the data in
each time step. The similarity of regions of two consecutive time steps is measured using their volumetric overlap and a histogram
difference. The main ingredient of our method is a directed acyclic graph that records all relevant similarity information as
follows: the regions of all time steps are the nodes of the graph, the edges represent possible short feature tracks between
consecutive time steps, and the edge weights are given by the similarity of the connected regions. We compute a feature track as
the global solution of a shortest path problem in the graph. We use these results to steer the – to the best of our knowledge – first
algorithm for spatio-temporal feature similarity estimation. Our algorithm works for 2D and 3D time-dependent scalar fields.
We compare our results to previous work, showcase its robustness to noise, and exemplify its utility using several real-world data
sets.

1. Introduction
Natural and technical phenomena often require a time-dependent
description, since some of their major properties are only conceiv-
able with a temporal dimension. Examples are the annual climate
patterns, the heart beat of a human, or periodic vortex shedding in
flows. Without the temporal dimension, significant aspects of these
processes cannot be accounted for.

In this paper, we track and compare the temporal development of
compact spatial regions in time-dependent scalar fields. Based on a
robust tracking, we compare their tracks on a spatio-temporal level.
This means that we take their development into account, such as their
growing or shrinking in size and intensity, and distinguish features
with different developments. For example, this allows us to reveal
different types of vortices created due to periodic vortex shedding
in flows. Most importantly, our work automates the cumbersome
process of finding and tagging similarities in large, time-dependent
data sets.

Our work combines two previously separate aspects of feature-
based visualization, namely pattern matching and feature tracking,
and provides contributions for both. The field of pattern matching
recently gained some attention in the community. The basic premise
is to find regions or features that are similar to a designed pattern
or a selected region/feature. Existing methods address single time
steps only, and do not find spatio-temporal similarities. Many ex-
isting tracking methods rely on local tracking decisions between
two consecutive time steps and suffer from noise in the data, which
leads to an overwhelming number of features and broken tracks. See
Section 2 for an overview of previous work.

In this paper, we combine pattern matching and feature tracking

to present – to the best of our knowledge – the first method for
finding structural similarities of spatio-temporal structures in time-
dependent scalar fields. This requires robust feature tracking and
we contribute in this area with a novel approach that incorporates
global information over all time steps to decide on particular feature
tracks.

We consider structures defined by the sub/super level sets in a
scalar field as given by merge trees and simplified using topological
simplification to effectively deal with noisy data sets (Section 3).
Essentially, these are compact spatial regions. We measure the pair-
wise spatial similarity of such regions using histograms similar
to [SSW15]. We track the regions by solving a global shortest path
problem on a graph data structure spanning all time steps and record-
ing pairwise similarity between consecutive time steps (Section 4).
This provides robust tracks. Given a selected track, we enumerate
all structures with a similar spatial appearance and similar temporal
development in the entire time-dependent scalar field (Section 5).
We thoroughly evaluate our approach and compare it to the most
related methods of Oesterling et al. [OHW∗15] and Reininghaus et
al. [RKWH12] (Section 6). We show results on several real-world
data sets (Section 7) and conclude with a discussion (Section 8).

2. Related Work

The basic premise of pattern matching is to find regions or fea-
tures that are similar to a designed pattern or a selected re-
gion/feature. Such methods exist for a large variety of data types
such as images [Low04], geometry [MPWC13], scalar fields
[KWKS11, SSW14, SSW15, TN11, TN13, TN14], vector fields
[ES03, HEWK03, BHSH14], and multi-fields [WSW16]. All of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

these methods address single time steps only, and are not adequate
for finding spatio-temporal similarities: given a pattern, one may
find similar features in a number of time steps, but this neglects any
temporal evolution, since a progressively changing feature matches
a pattern only for a certain amount of time. Furthermore, even if
features remain similar to the initial pattern for their entire lifetime,
these features may evolve differently and none of the above time-
unaware methods can address these differences. In Section 7 we
show how two different types of vortices cannot be differentiated by
purely spatial measures, but our spatio-temporal approach is able to
distinguish between them.

Many methods exist to track features in time-dependent data
sets. Examples include the tracking of critical points in vec-
tor [TWSH02, GTS04, TS03, WTGP11] and scalar fields [EH04,
RKWH12], tracking reeb graphs [EHM∗08, WBD∗11], contours
[SB06] and merge trees [OHW∗15], or the tracking of vortex struc-
tures [RSVP02, BP02, TSW∗05, WSTH07].

Region-based tracking methods [SSZC94, SW97, JS06, MM09,
DS16] often refrain from a particular feature definition and track
regions by means of their similarity in consecutive time steps. Sam-
taney et al. [SSZC94] provide one of the first region-based tracking
methods, later refined by Silver and Wang [SW97]. They track
the connected components of superlevel/sublevel sets defined by a
threshold, i.e., without referring to merge trees and topology, and
solve the correspondence problem solely based on the information
between two time steps. In contrast, we track more and hierarchi-
cally nested regions (defined by the subtrees of a merge tree) and
solve the correspondence problem globally.

Most of the above tracking methods suffer from noise in the data,
which leads to an overwhelming number of features and broken
tracks. First attempts at rectifying this involve topological simplifi-
cation [SN11, RKWH12, BWN∗15], but have only been applied to
2D data sets.

Similar to our method, Widanagamaachchi et al. [WCBP12] track
regions defined by merge trees and compute a meta-graph that
connects a region to all overlapping regions in the next time step.
The meta-graph captures the hierarchy of the merge trees, which
serves to quickly obtain a tracking graph by filtering out nodes not
overlapping at a given isolevel. The resulting tracking graph then
contains features with similar intensity levels. In contrast, we track a
selected merge tree region which may very well change its intensity
level over time. Most importantly, we obtain a feature track by
means of a global analysis, i.e., by solving the shortest path problem
on the entire graph. In a follow-up article, Widanagamaachchi et al.
[WCK∗15] locally adapt the threshold to produce more temporally
cohesive feature tracks.

Wang et al. [WRS∗13] and Skraba and Wang [SW14] exploit ro-
bustness to solve the correspondence problem when tracking critical
points in 2D time-dependent vector fields, i.e., a correspondence is
established if two critical points are close to each other and have
a similar robustness. This approach is able to deal with noisy data
sets.

Related to our approach is the method of Oesterling et al.
[OHW∗15] for tracking merge trees in time-dependent scalar fields.
While their method provides an exact history of changes to a merge
tree, it is limited to small data sets as its running time is O(n3)

with n being the number of voxels. In contrast, our method uses
simplified merge trees only to define spatially compact regions, and
tracks them based on their similarity, which provides a significant
speed-up. However, both methods are based on merge trees and it
is therefore interesting to make a more detailed comparison, see
Section 6.4.

Feature Flow Fields [TS03, WTGP11] are a classic continuous
tracking method often applied to tracking critical points. Reining-
haus et al. [RKWH12] provide a combinatorial equivalent, which is
among the few topology-based method that can robustly deal with
noisy data sets. We provide a comparison to both approaches in
Section 6.3.

Ozer et al. [OSBM14] detect spatio-temporal patterns in tracking
graphs using petri-nets. This work is focused on describing and
detecting events and transitions in tracking graphs based on a user-
supplied, abstract description. In contrast, our work finds similar
tracks to a selected one.

3. Background and Notation

We consider a time-dependent scalar field s(x, t) : IRn+1→ IR with n
being the number of spatial dimensions. We restrict ourselves to 2D
and 3D time-dependent scalar fields in this paper (n = 2,3), but note
that our concepts should readily generalize to higher dimensions.

3.1. Merge Trees

We use the topological concept of Merge Trees to segment a scalar
field into different regions. A merge tree provides a hierarchical seg-
mentation, meaning that its leafs represent the finest segmentation
based on all local maxima (or minima) of the scalar field, and higher
levels combine these regions into larger ones thereby revealing the
most dominant structures. In this paper, we track the regions defined
by merge trees over time.

A more formal definition follows, see also Figure 1. Given is a
single time step as a Morse function f : IRn→ IR. We consider the
parts of the domain where f attains a value larger than a value c∈ IR
and define these as the superlevel sets L+

c = {x| f (x) ≥ c}. Super-
level sets contain one or more connected components. Considering
a decreasing value c, a component is born at every local maximum,
and two or more components merge at saddle points (join saddles).
Once all components have merged into one, this final component
dies at the global minimum. A merge tree records this behavior by
having the local maxima as its leaves, the saddles as its inner nodes,
and the global minimum as its root. We call it also a join tree when
it pertains to superlevel sets.

Similarly, we define the sublevel sets L−c = {x| f (x)≤ c}. They
are born at minima, merge at split saddles, and unite at the global
maximum. The merge tree, in this case, is called a split tree. For
the sake of simplicity, we will refer only to superlevel sets and join
trees from now on. The descriptions for sublevel sets are made in a
similar way.

Our segmentation of the scalar field is given by the superlevel
sets. Their count is equal to the number of edges in the merge tree
[SSW14]. Note that this segmentation provides mutually exclusive
regions only for a specific value of c, but we consider the merge tree
in its entirety consisting of a hierarchical arrangement of regions

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

join tree scalar field split tree

Figure 1: Superlevel and sublevel sets of a scalar field may appear,
join, split, and disappear with changing isovalues. The join and
split tree represent that behavior. They are collectively referred to
as merge trees.

that are not mutually exclusive. Henceforth, we will refer to them as
subtree regions or simply regions.

3.2. Simplification

Noise may affect the leafs and lower levels of the merge tree, but
higher levels are increasingly robust against noise. To avoid unnec-
essary computations in later stages of our pipeline, it is beneficial
to simplify the merge trees. The general idea is to repeatedly prune
leafs off the tree, which conforms to a saddle-extremum cancellation.
The order of cancellations can be determined in different manners.
Persistence [ELZ02] is often used in this context, height differ-
ence [GRP∗12] removes the currently smallest intensity fluctuation,
or the volume of a region combines its area with its intensity [Car04].
We choose the latter for our experiments and refer the reader to a
detailed discussion in [Car04].

4. Global Tracking of Subtree Regions

This section explains how we track subtree regions, while the next
section uses these tracks to identify spatio-temporally similar fea-
tures.

We process the given time-dependent scalar field in a streaming
fashion, i.e., we keep only two time steps in main memory, compute
their merge trees, compare their subtrees (Section 4.1), and record
possible tracking connections in a graph data structure (Section 4.2).
The graph is constructed from all time steps and serves us to identify
the feature tracks by solving a global shortest path problem (Section
4.3). To the best of our knowledge, this is the first feature tracking
approach that incorporates global information.

For brevity, we refrain from describing the computation of merge
trees here and refer the interested reader to [Car04].

4.1. Comparison of Subtree Regions

Consider two subtree regions Sa and Sb from two consecutive time
steps ta and tb. We want to measure their similarity to assess the
likelihood that Sa tracks to Sb. We combine two distance measures
to serve this purpose: the volume overlap between the regions, and
the similarity of their data.

The volume overlap do between two non-empty regions Sa and

Sb is determined from the number of voxels they have in common
and the total number of voxels covered by both regions:

do(Sa,Sb) =
|Sa∩Sb|
|Sa∪Sb|

. (1)

As can be seen, do ∈ [0,1]. It becomes 0 when there is no overlap,
and 1 when Sa = Sb. Here, we determine the volume overlap on a
voxel basis, assuming all voxels have the same volume. It is straight-
forward to extend this to other grids with varying voxel sizes. Please
refer to the supplemental material for a detailed explanation on
how this overlap is computed for all subtree pairs in two successive
timesteps.

To compare the data of two regions we require a signature with
enough discriminative power and being invariant against translation
and rotation. Saikia et al. [SSW15] used the histogram of voxel in-
tensities for this purpose. Birchfield and Rangarajan [BR05] propose
spatiograms as a generalization of histograms including higher order
moments and apply them in the context of computer vision. Thomas
et al. [TN11] cluster similar regions together by grouping subtrees of
the contour tree. We observe in our experiments that the histogram
of voxel intensities works well and will use this signature in the
following. Note that histograms are independent of translation and
rotation, since just the data values are used and not their position.

We compute the distance between the histograms of two re-
gions ha and hb using the Chi-Squared histogram distance (see
e.g. [PW10])

χ
2(ha,hb) =

1
2 ∑

i

(ha,i−hb,i)
2

ha,i +hb,i
, (2)

where ha,i and hb,i denote the bins of the histograms ha and hb,
respectively. The χ

2 distance can be computed as quickly as the L2
norm, and additionally it provides a normalization that reduces the
influence of large bins – a property that proves useful for increased
discrimination of regions. However, we note that other distances
could be used as well. We experimented with the the Earth Mover’s
Distance ÊMD [PW09], but found it to be significantly slower and
not providing more discriminative power in our experiments than
the χ

2 distance.

The maximum value of the χ
2 distance is half the number of

voxels in the data set, namely when one histogram is empty. We
normalize the χ

2 values accordingly to the interval [0,1] and refer
to it henceforth as the signature distance ds.

Both the volume overlap do and the signature distance ds bear
importance for tracking regions. If two regions Sa and Sb have high
values for overlap and low values for the signature distance, then it
is likely that Sa tracks to Sb. We express this in a combined measure
de using a linear combination

de(Sa,Sb) = λ · (1−do)+(1−λ) ·ds (3)

with the weighting factor λ ∈ [0,1]. Note that de ∈ [0,1] and low
values indicate a high likelihood for a track between Sa and Sb.

4.2. Recording Tracking Information in a Graph

Typical region-based tracking methods base their tracking decisions
solely on a comparison of the regions between two consecutive time

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

Figure 2: Tracking regions solely based on local decisions leads to broken tracks. In this simple example, a small fluctuation between time
steps t3 and t5 causes the creation of a region C that has significant overlap and similarity with region A. Assigning the locally best match
neglects that there can be more than one suitable track between two time steps (e.g., between t5 and t6), and causes tracks to break. See Figure
3 for our graph structure solving this issue.

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1
0.3
0.3

0.3
0.3

0.1 0.1

Figure 3: We record suitable tracking information in a directed acyclic graph. The edges connect overlapping regions between consecutive
time steps and are weighted with our combined region distance de. This minimal memory overhead allows us to track the regions without
breaks, since we can solve ambiguities on a global level. See Figure 5 for region tracks that have been computed from this graph.

steps, i.e., they try to find the best match between the regions. In
certain situations, this leads to broken tracks.

Figure 2 exemplifies this: a region A can easily be tracked over
several time steps, but then a small fluctuation creates another branch
B in the merge tree. One can think of this as A being a large mountain
and B being a small mountain right next to it. The saddle between A
and B gives rise to a third region C encompassing both A and B. In
topological terms, C is the parent of A and B in the merge tree. This
new region C is very similar to A and they have significant overlap,
since B is rather small. The tracks for A and C will run parallel as
long as B exists, but the appearance/disappearance of B can lead to
broken tracks. For example between t5 and t6: both A5 and C5 are
very similar to A6. In fact, if A is a growing region, then the distance
between A5 and A6 could be larger than the distance between C5
and A6. If we only make a local decision based on the information
between these two consecutive time steps, then we will assign C5 to
A6. This leads to a broken track for the region A.

This issue cannot be fixed locally. Note in Figure 2 how the ending
track for A overlaps for several time steps with the continuing track
for C. One needs to understand this pattern globally (over several
time steps) to address it.

Our approach fixes this issue by incorporating global information
into the tracking decision. We build a graph data structure over
all time steps as shown in Figure 3. The nodes are the subtree

regions in each time step. The edges of the graph connect regions
in consecutive time steps. Note that a region in ti can be connected
to more than one region in ti+1, and vice versa. The edge weights
are given by our combined region distance de. Since we assume
unidirectional edges pointing from ti to ti+1, our graph is a directed
acyclic graph (DAG).

Recording this information allows us to do tracking decisions
based on a global view. We will detail in the next section how we
solve a shortest path problem on the DAG to obtain robust tracking
results with low computational effort. For the rest of this section, we
will focus on the size of the graph.

Consider the nodes of two consecutive time steps ti and ti+1 in
the DAG. Let us assume there are n nodes for ti and m nodes for
ti+1. If we were to create edges from all nodes in ti to all nodes in
ti+1, then this would give us n×m edges. This becomes quickly a
memory issue, and is therefore not a viable option.

The overlap between regions and the edge weights are the key to
the sparsity of the DAG:

• We establish an edge between two regions only if they have some
overlap, i.e., do > 0.

• Furthermore, the edge weight needs to be below a certain thresh-
old, i.e., de < τ.

These two rules reduce the amount of edges drastically. In particular,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1
0.3

0.3

0.3

0.3

0.1 0.1

Figure 5: Starting from a given region, we use the Dijkstra algorithm to find the shortest path through the DAG, which represents the track of
this region. In this example, the shortest path was computed starting from A1 and is shown as a green band.

re
gi

on
s

of
tim

e
st

ep
t i

regions of time step ti +1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20 Histogram of outgoing edges from ti

Figure 4: The number of edges between two consecutive time steps
in the DAG is very small, since we only establish edges between
overlapping regions. The dot matrix on the top reveals this sparsity
of the DAG for the Square Cylinder flow. Edges are depicted as
grayscale dots where darker dots refer to lower distances between
the regions according to the edge weight de. The histogram at the
bottom shows that most nodes connect to 0 to 4 nodes in the next
time step.

the requirement that two regions have some overlap (do > 0) is
responsible for most of the reduction.

Figure 4 reveals the sparsity of the DAG between two consecutive
time steps in the Square Cylinder flow (see also Section 7). The
merge trees of the two time steps give rise to 123 and 125 regions,
respectively. An all-to-all connectivity would lead to 15375 edges.
However, only 505 pairs have some overlap, which is a mere 3
percent. Figure 4 (top) shows the established edges as a dot matrix,
where the grayscale level of the dots encodes the edge weight de.

Note that we did not filter on de in this example, yet the number of
edges is very small. We observe this behavior for all our data sets.

It is interesting to look at the edge statistics of this data set in
more detail. Figure 4 (bottom) shows a histogram over the number
of outgoing edges in time step ti. Note how the majority of regions
have 0 to 4 outgoing edges. The median is 3, the average is 4.11.

4.3. Tracking a Subtree Region in the Graph
Consider a region Sti at time step ti. We want to track it forward and
backward in time. This means to follow the edges in the DAG in
forward or backward direction, and we want to incorporate a global
constraint that effectively avoids broken tracks due to local decisions
as discussed earlier.

We define the forward track of Sti as the shortest path starting
from Sti in forward direction. This means, we are searching for the
path for which the normalized squared sum of edge weights de is
smallest. This ensures that consecutive regions in this path have con-
siderable overlap, meaning minimal local displacement of features,
as well as considerable similarity in signatures, ensuring minimal
variation in size and shape. Similarly, we define the backward track
of Sti as the shortest path starting from Sti in backward direction.
The combination of backward and forward track give the desired
track of Sti . See Figure 5 for an illustration.

A formal description follows. Let G = (V,E) denote the entire
DAG as created in the previous section. A node Sti ∈ V repre-
sents a region in the data set at time step ti. We define a forward
path P+ = 〈Sti , . . . ,Stn〉 as a sequence of nodes with connecting
edges (St j ,St j+1) ∈ E for ti ≤ t j < tn. Let us further require that
(Stn ,Stn+1) /∈ E , i.e., the path reached a node Stn that has no outgo-
ing edges. Since G is a directed acyclic graph, paths always progress
in time, i.e., each time step between ti and tn is represented by ex-
actly one node. LetH+ denote the induced subgraph that contains
all nodes and edges reachable from Sti via any forward path P+.
We find the shortest path with respect to the normalized squared
sum of edge weights de as follows:

P+
min = argmin

P+∈H+

√
∑de(St j ,St j+1)

2

|P+|−1
. (4)

Similarly, we find P−min as the shortest path in backward direction.
Finally, we stitch both shortest paths together to obtain the track of
the region Sti :

Pmin =
〈
P−min,P

+
min

〉
. (5)

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

We solve (4) using Djikstra’s shortest path algorithm [Dij59]. Let
V be the number of vertices and E the number of edges. Djikstra’s
algorithm can be computed in O(V logV + E) time using a min-
priority queue on a general graph. Since we have a directed acyclic
graph, Djikstra’s algorithm can be computed in O(V) time, if we
sort the vertices using Topological Sorting [CLRS01] which requires
O(V +E) time itself. Hence, the total runtime of our algorithm is
O(V +E).

On current commodity hardware, tracking a region is a matter
of a few milliseconds even for larger data sets. See Section 6 for
details.

4.4. Tracking all Subtree Regions in the Graph

A straightforward algorithm to track all subtree regions is to apply
the algorithm from the previous section to each node in the DAG,
and then remove duplicated tracks. Such an algorithm spends more
computational effort than necessary, since a large number of dupli-
cated or partly overlapping tracks can be expected in most data sets.
We leave an optimized version to future research.

Our main application of finding spatio-temporally similar struc-
tures does not require extracting all tracks of all regions at once, as
we will show in the next section.

5. Finding Spatio-Temporally Similar Structures

To the best of our knowledge, we present the first algorithm for
finding spatio-temporally similar structures. These features exhibit
similarity not only in a given time step, but also their temporal
development is similar. This allows distinguishing features from
each other based on their development, or it allows quantifying
changes to periodic structures.

In a nutshell, our algorithm works as follows. The user selects
a subtree region S in a time step. We search for spatially similar
regions in the entire time-dependent data set, where similarity is
determined using the signature distance ds (normalized histogram
comparison). We track each of these candidate matches over time
and compare these tracks to the track of the initially selected S
using Dynamic Time Warping. The best matches are selected via
thresholding and visualized in a volume rendering framework.

A detailed description follows. We enable the user to inspect any
region S in the DAG and view its temporal development by means
of an animated volume rendering. Given a selected region S and
its track, we are now tasked with finding similar tracks. The basic
premise is that similar tracks will also contain a time step where the
region is similar to the selected S . Hence, we start with finding a set
of spatially similar regions S′. To do so, we compute the signature
distance ds(S,S′) for all nodes in the DAG. This requires us to
store the histogram at each node. We obtain a set of candidate match
regions by thresholding ds conservatively – more candidate matches
avoid false negatives at the expense of slightly more computational
effort.

We compute the track for each candidate match region S′ and
compare it to the track of the selected S using Dynamic Time
Warping (DTW). This algorithm is often employed to compute
the difference between two time series while allowing for tempo-
ral contraction and expansion. For a more detailed analysis of this

Figure 6: Dynamic Time Warping matches two signals while allow-
ing for temporal contractions and expansions. The arrows indicate
the matched time steps. DTW employs an optimality criterion such
that the sum of distances between the matches is minimal.

behavior, please refer to the supplemental material. Consider the
tracks Pmin = 〈S1, . . . ,Sn〉 and P ′min =

〈
S′1, . . . ,S′m

〉
to be com-

pared, noting that they can have different lengths and can cover
different time spans. The goal is now to match these tracks such
that the sum of signature distances between matches is minimal.
More formally, we describe a match as a sequence of index pairs
{(p1, p′1), . . . ,(pmax(m,n), p′max(m,n))}. Those indices are to be ap-
plied to the elements of the tracks Pmin and P ′min. They progress
monotone through time, i.e., pi ≤ p j and p′i ≤ p′j for any i≤ j. We
want to find a match such that the sum of signature distances

∑
1≤k≤max(m,n)

ds(Spk ,S
′
p′k
) (6)

is minimized. This problem is similar to computing the Levenshtein
distance [Nav01] and is conveniently solved using dynamic pro-
gramming in O(nm) time. An illustration of DTW matches is shown
in Figure 6.

6. Evaluation

6.1. Runtime and Memory Analysis

All our experiments were performed on a machine with a 2.3GHz
Intel i7 processor and 16GB main memory.

Our method spends most of its time in computing the merge trees
in each time step, all other steps of our approach are in the order of
milliseconds per time step. Detailed numbers are given in Table 1.
As can be seen, the method is quite fast.

The DAG itself does not require much memory as it is sparse, but
the histograms attached to each node require a medium amount. In
total assuming a 10% overlap requirement: 2D Checkerboard (34
MB), 2D Streak Line Curvature (540 MB), 3D Square Cylinder (96
MB), 3D Trefoil Knot (195 MB).

6.2. Translation and Rotation Invariance

To test whether our method is invariant against translation and ro-
tation of features, we took a static scalar field and applied these
transformations to it, thereby making it a 3D time-dependent field.
We used the electrostatic field of the Benzene molecule for this test
as shown in Figure 7. Our method tracks the regions of this data set
flawlessly.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

Data Set Dimensions Merge Tree and Average number Overlap distance Signature distance Average time Average time
Simplification of regions (do) (ds = χ

2) for Dijkstra’s for DTW
x× y× z× t per time step per time step per time step per time step Shortest Paths comparison

2D Checkerboard 128×128×1×128 19ms 44 0.9ms 0.5ms 0.4 ms 1.5 ms
2D Streak Line Curvature 750×136×1×368 134ms 92.9 29ms 11.4ms 1.9 ms 25.6 ms
3D Square Cylinder 192×64×48×134 2053ms 125.7 24ms 6.7ms 0.1 ms 0.2 ms
3D Trefoil Knot 128×128×128×500 4241ms 64.4 12ms 1.3ms 0.2 ms 0.7 ms

Table 1: Runtime statistics for merge tree and distance computations. We used 100 bins for our histogram signatures for all data sets. The
average shortest path and DTW times are computed from all tracks started from a time step and a subsequent DTW comparison of all pairs.

Figure 7: Our method tracks ro-
tated and translated regions flaw-
lessly, which exemplifies its invari-
ance against these transformations.

(a) Stable FFF [WTGP11]. (b) Combin. FFF [RKWH12]. (c) Our method.

Figure 8: Our tracking method is robust to noise and produces qualitatively as good results as
Combinatorial Feature Flow Fields [RKWH12], since both methods can deal with noise by means of
topological simplification. Continuous methods such as Stable Feature Flow Fields [WTGP11] are
strongly affected by noise. Images reproduced with permission of the respective authors.

6.3. Comparison to Reininghaus et al. [RKWH12] and
Weinkauf et al. [WTGP11]

Feature Flow Fields are a well-established tool for extracting and
tracking a large variety of features in different types of data. The
general concept has been introduced by Theisel and Seidel [TS03].
As a numerical method, it builds upon derivatives, interpolation, and
ordinary differential equations, which make it susceptible to noise.
The main idea is to describe feature tracks as tangent curves in
derived vector fields. A numerical stabilization has been developed
by Weinkauf et al. [WTGP11], not to tackle noise, but to increase
the stability of the numerical tangent curve integration.

Reininghaus et al. [RKWH12] introduced Combinatorial Feature
Flow Fields for tracking critical points in 2D time-dependent scalar
fields. While a generalization to 3D may be quite feasible, it is
still missing. Their article contains a challenging example where
a checkerboard of hills and valleys is rotated while noise is being
added.

We use this test case to compare the three approaches. Figure 8
shows how the continuous approach fails in the presence of noise
and produces only reasonable tracks near the smooth part of the
data. Our method is able to track the hills and valleys in this data
set as shown in Figure 8. This result is on a par with [RKWH12],
which does not come as a surprise: both methods employ topological
simplification to deal with noisy structures. While [RKWH12] uses
Discrete Morse theory and tracks here only the saddles of the Morse-
Smale complex, our method tracks regions defined by subtrees of
merge trees. Although different features have been tracked, the
results are clearly similar on a qualitative level.

We obtained our result here by first computing the join tree and
tracking the hills (shown in red), and then computing the split tree
and tracking the valleys (shown in blue). Tracking has been per-
formed for all regions at t = 0 (bottom slice in Figure 8c). Since
we track regions, it is slightly misleading to represent our tracking
results as lines. However, it makes for a clearer overview and allows
better comparison to [RKWH12]. We computed the lines via the
center of mass of a tracked region in each time step, which explains
the small zig-zag fluctuations. This example shows that our method
is robust against noise.

6.4. Comparison to Oesterling et. al. [OHW∗15]
Oesterling et. al. [OHW∗15] present a method for tracking merge
trees. In contrast to our method, their approach takes care to track
changes to the hierarchy in the tree. In that sense, their output is
significantly more detailed than ours.

On the flip side, this requires significantly more computation
time. Its runtime complexity is polynomial in the data size, more
precisely, it is O(n3) with n being the number of voxels. In contrast,
our method depends on the topological complexity of the data, i.e.,
it is polynomial in the size of the number of subtrees of the merge
tree.

We ran both methods on a very small 2D time-dependent example
shown in Figure 9. Both methods gave the same result. Table 2
reports the timings. Note how tracking the merge tree depends on
the data size and the method requires more than 50 minutes for
a 60× 60 data set with 11 time steps. Note how the computation
times for our method practically remain constant as they depend on

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 9: Simple Blobs data set. Two circular blobs emerge at the
center, move apart and collapse into each other again.

Size Merge Tree Tracking [OHW∗15] Our Merge Tree Region Tracking

Avg. per time step Total Avg. per time step Total

20x20 0.2 s 2 s 0.4 ms 4 ms
40x40 12 s 136 s 0.4 ms 4 ms
60x60 277 s 3052 s 0.5 ms 5 ms

Table 2: Our method performs significantly faster than Oesterling
et. al. [OHW∗15] and may serve as a faster alternative when the
focus is on tracking Morse cells independent of their hierarchy.
However, if a record of the merge tree hierarchy evolution is desired,
the method of Oesterling et. al. [OHW∗15] is to be preferred. See
Figure 9 for the data set. Note also that we report the timings in
seconds and milliseconds, respectively.

the topological complexity. The reported numbers for our method
involve computing the overlap and signature distances between
all pairs of regions, creating the DAG, and tracking all regions
starting from a given time step. Note that we report these numbers
in milliseconds.

The timings for the merge tree tracking have been measured with
our own implementation, but we contacted the authors of [OHW∗15]
and they confirmed this behavior [Hei16].

The method of Oesterling et. al. [OHW∗15] is useful for provid-
ing exact information about the fate of every single element of a
merge tree. Our method does not provide this information, but may
serve as a faster alternative when the focus is on tracking Morse
cells independent of their hierarchy.

7. Results

Square Cylinder Figure 12 shows the 3D time-dependent flow
around a confined square cylinder. This is a direct numerical Navier
Stokes simulation by Simone Camarri and Maria-Vittoria Salvetti
(University of Pisa), Marcelo Buffoni (Politecnico of Torino), and
Angelo Iollo (University of Bordeaux I) [CSBI05] which used to be
publicly available at the now defunct International CFD Database.
We use a uniformly sampled version [WHT12] for which we com-
puted the Okubo-Weiss criterion, which is a scalar field indicating
vortex behavior [SWTH07].

This flow exhibits periodic vortex shedding leading to the well
known von Kármán vortex street. There are so-called primary and
secondary vortex structures in this flow. The primary ones have a
spanwise orientation, while the secondary ones have a streamwise
orientation. We validate our method by finding and distinguishing
these complicated periodic patterns. Note that this flow simulation is
initiated from an impulsive start-up and the periodic vortex shedding
develops with time. The flow becomes increasingly unsteady, which
increases the total number of features and changes the shape and

(a) Primary vortex at T = 65. (b) Secondary vortex at T = 31.

Figure 10: The shown primary and secondary vortex structures
are close matches when considering only spatial information, but
including their temporal development by means of DTW allows us to
tell them apart: the secondary vortex is the 10th best spatial match
of the primary vortex out of over 16000 regions in all time steps, but
only the 82nd best spatio-temporal match out of the 100 best spatial
matches. Compare to Figure 11.

0 10 20 30 40 50

0

50

100

rank according to spatial similarity

sp
at

ia
lm

at
ch

in
g

co
st

0

500

1,000

1,500
82nd spatio-temporal match

sp
at

io
-t

em
po

ra
lm

at
ch

in
g

co
st

Figure 11: Plot of spatial (blue) and spatio-temporal (red) matching
costs of the selection from Figure 10(a). The discrepancy between
spatial and spatio-temporal ranks reveals that adding the temporal
dimension aids in discriminating structures with similar spatial
scores based on their temporal evolution. Compare to Figure 10.

intensity of the vortex structures to some extent. This is another
stress test for our method.

A primary vortex has been selected in time step 45 as indicated
in the left column of Figure 12a. This vortex was tracked backwards
and forward in time using our DAG. Its entire track spans from time
step 25 to 65. Based on this, we find all spatio-temporally similar
structures as shown in the right column, and indeed these are the
other primary vortices in this data set. Note how the life times of the
other seven primary vortices extend over different time steps.

The secondary structures have been discovered in the same man-
ner, see Figure 12b. This also shows that our method has enough
discriminative power to distinguish these different vortex types. Fig-
ures 10 and 11 reveal the reason for this: it turns out that the spatial
similarity measure (signature distance ds) is not sufficient to dis-
tinguish between these different vortex types, since the secondary
vortex from Figure 10b is the 10th best match for the primary vortex
from Figure 10a out of over 16000 regions in all time steps. Starting
from this, our method takes the best spatial matches including this
false positive, tracks each of them over time, and then compares
these tracks against the track of the primary vortex using DTW.
Differences in the temporal evolution are revealed this way and the
false positive has been identified.

Streak Line Curvature We tracked drastically changing regions
in a 2D parameter-dependent scalar field denoting the curvature of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

T = 15

T = 25

T = 35

T = 45

T = 55

T = 65

T = 75

T = 85

(a) Primary vortex structures.
Selected track (left) and
matching tracks (right).

T = 15

T = 25

T = 35

T = 45

T = 55

T = 65

T = 75

T = 85

(b) Secondary vortex structures.
Selected track (left) and
matching tracks (right).

Figure 12: A primary and secondary vortex structure have been
selected at T = 45 and tracked backwards and forwards in time.
Their tracks have been used to find spatio-temporally similar struc-
tures in the entire data set. Note how the discriminative power of
our signature distance ds enables us to distinguish between both
types of vortices, and how the matched vortex tracks span through
the entire time of the data set.

0

−1.5

1.5

τ

Figure 13: Our method is able to track regions even if they change
their properties drastically over the course of the track. Shown are
tracked regions in the streak line curvature field for a 2D flow around
a cylinder. These regions indicate vortex activity.

streak lines in a 2D flow around a cylinder, see Figure 13. Based on
the streak line vector field of Weinkauf and Theisel [WT10], the cur-
vature of streak lines can be computed without actually computing
any streak lines, but just by means of partial derivatives. Streak lines
are characteristic curves of flows and describe how smoke or dye is
being transported in a flow when released from a fixed position. An
important parameter is their integration time τ, which is the amount
of time that the oldest particle of a streak line spent in the flow. With
increasing τ, the shape of a streak line becomes more complex due
to the flow, and its curvature changes accordingly. Figure 13 reveals
how strongly the curvature field changes with increasing τ. Note the
difference between the shown slices for τ = 0 and τ = 1.5.

We tracked the regions from τ = 0 through the data set and ob-
tained tracks that reveal the periodicity of the flow and show how our
method is able to track regions even if they change their properties
drastically.

Trefoil Knot The time-dependent Trefoil field represents three in-
terlocked magnetic flux tubes and is used to study magnetic energy
decay processes like coronal mass ejections of the sun [CDSB11].
We are investigating the magnitude of the magnetic field lines. The
initial configuration is a trefoil knot of flux tubes, but the simulation
quickly progresses to a decayed state. It is challenging for a user
to investigate these structures manually. Our tool can help in this
process by automating parts of the analysis: in Figure 14, the user
selects a region near the inner ring in time step T = 200, then our
system tracks it through time and finds spatio-temporally similar
tracks. They reveal the still prevailing 3-symmetry in this data set
despite the obvious decay. This example shows how our method
can be useful to reveal structure and symmetry in seemingly chaotic
data.

8. Conclusion
Tracking features in complex and noisy data sets requires some form
of noise reduction or simplification technique to give meaningful
results. The classic continuous methods such as Feature Flow Fields
[TS03,WTGP11] or the linear-element methods [TWSH02,GTS04]
lack this. Still, assuming one can deal with the numerics, these con-
tinuous methods provide the exact solutions that every method has
to live up to. Combinatorial methods such as Jacobi sets [EH04]
or Combinatorial Feature Flow Fields [RKWH12] take their in-
spiration from the continuous methods and enable simplification

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

T = 180

T = 200

T = 220

T = 240

T = 260

Figure 14: Our method is useful to reveal structure and symmetry
in seemingly chaotic data. The Trefoil data set shows the decay
of three interlocked magnetic flux tubes. The left column shows a
full volume rendering. The middle column shows the user selection
and its track. The right column shows the spatio-temporally similar
regions revealing the 3-symmetry of the data set.

[SN11, BWN∗15]. Yet, these methods still require further develop-
ment as they have practically been shown only for 2D data, and the
3D case is particularly difficult for Jacobi sets. Merge tree track-
ing [OHW∗15] is an alternative combinatorial method that supports
simplification, but unfortunately requires very high computational
effort.

Our tracking method supports simplification to deal with noise.
It is based on topological features that have proven highly useful
in the past for e.g. vortex analysis in flows. But in contrast to other
combinatorial methods, it employs a very fast, histogram-based
tracking scheme. As shown in Sections 6 and 7, the results are of

high quality and on a par with other methods, but we obtain them
significantly faster, and for 2D and 3D data.

This has been made possible by our first contribution: a tracking
graph that records several alternative local tracking decisions to
support a global optimization of feature tracks. In future research
we would like to lift the restriction of requiring overlap between
regions in consecutive time steps.

Our second contribution is the first method for finding spatio-
temporally features in time-dependent data sets. As shown in Section
7, it is highly useful for automating parts of the analysis process and
for revealing structure and symmetry in seemingly chaotic data. A
possible option for future work in this regard is to find all interesting
groups of spatio-temporal features by means of clustering the set of
all feature tracks.

Acknowledgments

This work was supported through a grant from the Swedish e-
Science Research Centre (SeRC). The presented concepts have been
developed and evaluated in the Inviwo framework.

References
[BHSH14] BUJACK R., HOTZ I., SCHEUERMANN G., HITZER E.: Mo-

ment invariants for 2d flow fields using normalization. In Proc. IEEE
Pacific Visualization (2014), pp. 41–48. 1

[BP02] BAUER D., PEIKERT R.: Vortex tracking in scale space. In Proc.
VisSym (2002), pp. 233–240. 2

[BR05] BIRCHFIELD S. T., RANGARAJAN S.: Spatiograms versus his-
tograms for region-based tracking. In IEEE CVPR (June 2005), vol. 2,
pp. 1158–1163 vol. 2. 3

[BWN∗15] BHATIA H., WANG B., NORGARD G., PASCUCCI V., BRE-
MER P.-T.: Local, smooth, and consistent Jacobi set simplification. Com-
putational Geometry 48, 4 (2015), 311–332. 2, 10

[Car04] CARR H.: Topological Manipulation of Isosurfaces. PhD thesis,
The University of British Columbia, 2004. 3

[CDSB11] CANDELARESI S., DEL SORDO F., BRANDENBURG A.: De-
cay of trefoil and other magnetic knots. In Proc. Advances in Plasma
Astrophysics (2011), pp. 461–463. 9

[CLRS01] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C.:
Introduction to algorithms, vol. 6. MIT press Cambridge, 2001. 6

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO A.: Sim-
ulation of the three-dimensional flow around a square cylinder between
parallel walls at moderate reynolds numbers. In XVII Congresso di Mec-
canica Teorica ed Applicata (2005). 8

[Dij59] DIJKSTRA E. W.: A note on two problems in connexion with
graphs. Numerische Mathematik 1, 1 (1959), 269–271. 6

[DS16] DUTTA S., SHEN H.-W.: Distribution driven extraction and
tracking of features for time-varying data analysis. IEEE TVCG 22, 1
(2016), 837–846. 2

[EH04] EDELSBRUNNER H., HARER J.: Jacobi sets of multiple Morse
functions. In Foundations of Computational Mathematics: Minneapo-
lis 2002, Cucker F., DeVore R., Olver P., Süli E., (Eds.). Cambridge
Universtiy Press, 2004, pp. 37–57. 2, 9

[EHM∗08] EDELSBRUNNER H., HARER J., MASCARENHAS A., PAS-
CUCCI V., SNOEYINK J.: Time-varying reeb graphs for continuous
space–time data. Computational Geometry 41, 3 (2008), 149–166. 2

[ELZ02] EDELSBRUNNER H., LETSCHER D., ZOMORODIAN A.: Topo-
logical persistence and simplification. Discrete and Computational Ge-
ometry 28, 4 (2002), 511 – 533. 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.inviwo.org/

H. Saikia & T. Weinkauf / Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields

[ES03] EBLING J., SCHEUERMANN G.: Clifford convolution and pattern
matching on vector fields. In Proc. IEEE Visualization (2003), pp. 193–
200. 1

[GRP∗12] GÜNTHER D., REININGHAUS J., PROHASKA S., WEINKAUF
T., HEGE H.-C.: Efficient computation of a hierarchy of discrete 3d
gradient vector fields. In Topological Methods in Data Analysis and
Visualization II. Springer, 2012, pp. 15–30. 3

[GTS04] GARTH C., TRICOCHE X., SCHEUERMANN G.: Tracking of
vector field singularities in unstructured 3D time-dependent datasets. In
Proc. IEEE Visualization (2004), pp. 329–336. 2, 9

[Hei16] HEINE C.:, 2016. private communication. 8

[HEWK03] HEIBERG E., EBBERS T., WIGSTRÖM L., KARLSSON M.:
Three dimensional flow characterization using vector pattern matching.
IEEE TVCG 9, 3 (2003), 313–319. 1

[JS06] JI G., SHEN H.-W.: Feature tracking using earth mover’s distance
and global optimization. In Pacific Graphics (2006). 2

[KWKS11] KERBER J., WAND M., KRÜGER J., SEIDEL H.-P.: Partial
symmetry detection in volume data. In Vision, Modeling, and Visualiza-
tion (2011), pp. 41–48. 1

[Low04] LOWE D. G.: Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91–110. 1

[MM09] MUELDER C., MA K. L.: Interactive feature extraction and
tracking by utilizing region coherency. In IEEE Pacific Visualization
Symposium (April 2009), pp. 17–24. 2

[MPWC13] MITRA N. J., PAULY M., WAND M., CEYLAN D.: Sym-
metry in 3D geometry: Extraction and applications. Computer Graphics
Forum 32, 6 (2013), 1–23. 1

[Nav01] NAVARRO G.: A guided tour to approximate string matching.
ACM Comput. Surv. 33, 1 (Mar. 2001), 31–88. 6

[OHW∗15] OESTERLING P., HEINE C., WEBER G. H., MOROZOV D.,
SCHEUERMANN G.: Computing and visualizing time-varying merge trees
for high-dimensional data. In Topology-Based Methods in Visualization
(TopoInVis) (2015). 1, 2, 7, 8, 10

[OSBM14] OZER S., SILVER D., BEMIS K., MARTIN P.: Activity detec-
tion in scientific visualization. IEEE TVCG 20, 3 (March 2014), 377–390.
2

[PW09] PELE O., WERMAN M.: Fast and robust earth mover’s distances.
In IEEE ICCV (2009), IEEE, pp. 460–467. 3

[PW10] PELE O., WERMAN M.: The quadratic-chi histogram distance
family. In ECCV (2010), Springer, pp. 749–762. 3

[RKWH12] REININGHAUS J., KASTEN J., WEINKAUF T., HOTZ I.:
Efficient computation of Combinatorial Feature Flow Fields. IEEE TVCG
18, 9 (September 2012), 1563–1573. 1, 2, 7, 9

[RSVP02] REINDERS F., SADARJOEN I. A., VROLIJK B., POST F. H.:
Vortex tracking and visualisation in a flow past a tapered cylinder. Com-
puter Graphics Forum 21, 4 (Nov. 2002), 675–682. 2

[SB06] SOHN B. S., BAJAJ C.: Time-varying contour topology. IEEE
TVCG 12, 1 (Jan 2006), 14–25. 2

[SN11] SUTHAMBHARA N., NATARAJAN V.: Simplification of Jacobi
sets. In Topological Methods in Data Analysis and Visualization: Theory,
Algorithms, and Applications, Pascucci V., Tricoche X., Hagen H., Tierny
J., (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 91–
102. 2, 10

[SSW14] SAIKIA H., SEIDEL H.-P., WEINKAUF T.: Extended branch
decomposition graphs: Structural comparison of scalar data. Computer
Graphics Forum (Proc. EuroVis) 33, 3 (June 2014), 41–50. 1, 2

[SSW15] SAIKIA H., SEIDEL H.-P., WEINKAUF T.: Fast similarity
search in scalar fields using merging histograms. In TopoInVis (Annweiler,
Germany, May 2015), Carr H., Garth C., Weinkauf T., (Eds.), pp. 1–14.
1, 3

[SSZC94] SAMTANEY R., SILVER D., ZABUSKY N., CAO J.: Visual-
izing features and tracking their evolution. Computer 27, 7 (July 1994),
20–27. 2

[SW97] SILVER D., WANG X.: Tracking and visualizing turbulent 3d
features. IEEE TVCG 3, 2 (Apr. 1997), 129–141. 2

[SW14] SKRABA P., WANG B.: Interpreting feature tracking through
the lens of robustness. In Topological Methods in Data Analysis and
Visualization III, Theory, Algorithms, and Applications, Bremer P.-T.,
Hotz I., Pascucci V., Peikert R., (Eds.). Springer, 2014, pp. 19–37. 2

[SWTH07] SAHNER J., WEINKAUF T., TEUBER N., HEGE H.-C.: Vor-
tex and strain skeletons in eulerian and lagrangian frames. IEEE TVCG
13, 5 (September - October 2007), 980–990. 8

[TN11] THOMAS D. M., NATARAJAN V.: Symmetry in scalar field topol-
ogy. IEEE TVCG 17, 12 (2011), 2035–2044. 1, 3

[TN13] THOMAS D. M., NATARAJAN V.: Detecting symmetry in scalar
fields using augmented extremum graphs. IEEE TVCG 19, 12 (2013),
2663–2672. 1

[TN14] THOMAS D., NATARAJAN V.: Multiscale symmetry detection
in scalar fields by clustering contours. IEEE TVCG 20, 12 (Dec 2014),
2427–2436. 1

[TS03] THEISEL H., SEIDEL H.-P.: Feature flow fields. In Proc. VisSym
(2003), pp. 141–148. 2, 7, 9

[TSW∗05] THEISEL H., SAHNER J., WEINKAUF T., HEGE H.-C., SEI-
DEL H.-P.: Extraction of parallel vector surfaces in 3D time-dependent
fields and application to vortex core line tracking. In Proc. IEEE Visual-
ization (2005), pp. 631–638. 2

[TWSH02] TRICOCHE X., WISCHGOLL T., SCHEUERMANN G., HA-
GEN H.: Topology tracking for the visualization of time-dependent
two-dimensional flows. Computers & Graphics 26 (2002), 249–257. 2, 9

[WBD∗11] WEBER G., BREMER P.-T., DAY M., BELL J., PASCUCCI
V.: Feature tracking using reeb graphs. In Topological Methods in
Data Analysis and Visualization: Theory, Algorithms, and Applications,
Pascucci V., Tricoche X., Hagen H., Tierny J., (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 241–253. 2

[WCBP12] WIDANAGAMAACHCHI W., CHRISTENSEN C., BREMER P.-
T., PASCUCCI V.: Interactive exploration of large-scale time-varying
data using dynamic tracking graphs. In IEEE LDAV (2012), Barga R. S.,
Pfister H., Rogers D. H., (Eds.), IEEE, pp. 9–17. 2

[WCK∗15] WIDANAGAMAACHCHI W., CHEN J., KLACANSKY P., PAS-
CUCCI V., KOLLA H., BHAGATWALA A., BREMER P.-T.: Tracking
features in embedded surfaces: Understanding extinction in turbulent
combustion. In IEEE LDAV (2015), Bennett J., Childs H., Hadwiger M.,
(Eds.), IEEE Computer Society, pp. 9–16. 2

[WHT12] WEINKAUF T., HEGE H.-C., THEISEL H.: Advected tangent
curves: A general scheme for characteristic curves of flow fields. Com-
puter Graphics Forum (Proc. Eurographics) 31, 2 (April 2012), 825–834.
8

[WRS∗13] WANG B., ROSEN P., SKRABA P., BHATIA H., PASCUCCI
V.: Visualizing robustness of critical points for 2d time-varying vector
fields. Computer Graphics Forum 32, 3 (2013), 221–230. 2

[WSTH07] WEINKAUF T., SAHNER J., THEISEL H., HEGE H.-C.: Cores
of swirling particle motion in unsteady flows. IEEE TVCG (Proc. IEEE
Visualization) 13, 6 (November – December 2007), 1759–1766. 2

[WSW16] WANG Z., SEIDEL H.-P., WEINKAUF T.: Multi-field pattern
matching based on sparse feature sampling. IEEE TVCG (Proc. IEEE
VIS) 22, 1 (January 2016), 807–816. 1

[WT10] WEINKAUF T., THEISEL H.: Streak lines as tangent curves of
a derived vector field. IEEE TVCG (Proc. IEEE Visualization) 16, 6
(November - December 2010), 1225–1234. 9

[WTGP11] WEINKAUF T., THEISEL H., GELDER A. V., PANG A.: Sta-
ble Feature Flow Fields. IEEE TVCG 17, 6 (June 2011), 770–780. 2, 7,
9

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

