
Kademlia on the Open Internet

How to Achieve Sub-Second Lookups in a Multimillion-Node DHT Overlay

RAUL JIMENEZ

Licentiate Thesis
Stockholm, Sweden 2011

TRITA-ICT/ECS AVH 11:10
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-11/10-SE
ISBN 978-91-7501-153-0

KTH School of Information and
Communication Technology

SE-164 40 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av Communication Systems fredag den 9
december 2011 klockan 10.00 i C2, Electrum, Kungl Tekniska högskolan, Forum,
Isafjordsgatan 39, Kista.

© Raul Jimenez, December 2011
This work is licensed under a Creative Commons Attribution 2.5 Sweden License.
http://creativecommons.org/licenses/by/2.5/se/deed.en

Tryck: Universitetsservice US AB

iii

Abstract

Distributed hash tables (DHTs) have gained much attention from the
research community in the last years. Formal analysis and evaluations on
simulators and small-scale deployments have shown good scalability and per-
formance.

In stark contrast, performance measurements in large-scale DHT overlays
on the Internet have yielded disappointing results, with lookup latencies mea-
sured in seconds. Others have attempted to improve lookup performance with
very limited success, their lowest median lookup latency at over one second
and a long tail of high-latency lookups.

In this thesis, the goal is to to enable large-scale DHT-based latency-
sensitive applications on the Internet. In particular, we improve lookup la-
tency in Mainline DHT, the largest DHT overlay on the open Internet, to
identify and address practical issues on an existing system. Our approach is
implementing and measuring backward-compatible modifications to facilitate
their incremental adoption into Mainline DHT (and possibly other Kademlia-
based overlays). Thus, enabling our research to have impact on a real-world
system.

Our results close the performance gap between small- and large-scale DHT
overlays. With a median lookup latency below 200 ms and a 99th percentile of
just above 500 ms, our median lookup latency is one order of magnitude lower
than the best performing measurement reported in the literature. Moreover,
our results do not show a long tail of high-latency lookups, unlike previous
reports.

We have achieved these results by studying how connectivity artifacts on
the underlying network —probably caused by firewalls and NAT devices on
the Internet— affect the DHT overlay. Our measurements of the connectivity
of more than 3 million nodes reveal that connectivity artifacts are widespread
and can severely degrade lookup performance.

Scalability and locality-awareness have also been explored in this thesis,
where different mechanisms have been proposed. Some of the mechanisms are
planned to be integrated into Mainline DHT in future work.

A mis padres, a quienes quiero y admiro

vii

Acknowledgements

This thesis is the result of my work in collaboration with Björn Knutsson and Flutra
Osmani. While I claim most of the contribution as my own, this could not have
been possible without their hard work and support. I cannot write about my work
in good conscience. That is why I will use we instead of I when describing our
work throughout the thesis.

I thank Björn Knutsson, who has gone well beyond his obligations as advisor
to support my research and establish a working environment based on respect and
passion for high spirited discussions. Flutra Osmani also deserves a good deal of
gratitude for her collaboration in most of the research in this thesis.

Many thanks to all my colleagues at TSLab, with whom I have had interesting
discussions about my research and a great deal of fun.

I am grateful to Björn Pehrson, a good advisor who is so passionate about his
work that is hard to notice that he has retired.

I thank Seif Haridi, who recently took his role as advisor when Björn Pehrson
retired. He has been very supportive and I look forward to working with him and
his colleagues at SICS.

Thanks to all my maser thesis students: Jorge Sainz Raso, Flutra Osmani, Sara
Dar, Ismael Saad Garcia, Shariq Mobeen, S.M. Sarwarul Islam Rizvi, Zinat Sultana,
and Md. Mainul Hossain. I hope you have learned something from me, I certainly
have learned a lot from you.

Urko Serrano and Pehr Söderman took the time and effort to read parts of the
draft. Thanks for your comments.

I sincerely appreciate the effort of Arnaud Legout of INRIA and Jim Dowling
of SICS to make room in their busy agendas to be opponent and internal reviewer,
respectively.

Thanks to Amir Payberah and Fatemeh Rahimian who helped me with the draft
and paperwork. And talking about paperwork, thanks to Marianne Hellmin, whose
diligence made all the administrative procedures much easier for me.

Thanks to my colleagues in the P2P-Next project. It is great to collaborate with
such smart and friendly people. Special thanks to Lars-Erik of Dacc; and Victor
Grishchenko, Johan Pouwelse, and Henk Sips of TUDelft with whom I collaborated
to produce two papers, which are not included in this work.

Finally, I thank my family and friends for their unconditional support. Espe-
cially Svetlana Panevina, my wife, my happiness.

Errata

In papers [1], [2] and [3] (acknowledge section), the project number should be 212617
instead of 21617. Papers [1] and [2] are reproduced in their original form in Chap-
ters 7 and 8, respectively.

Contents

Contents ix

I Thesis Overview 1

1 Introduction 3

2 Background 11
2.1 P2P-Next’s Fully-Distributed Peer Discovery System 11
2.2 Distributed Hash Tables . 12
2.3 Mainline DHT . 15
2.4 Related Work on Improving DHT Performance 16

3 Problem Definition 17

4 Thesis Contribution 19
4.1 List of Publications . 19
4.2 Scalability and Locality-Awareness 20
4.3 Connectivity Properties . 20
4.4 Sub-Second Lookups on a Multimillion-Node DHT Overlay 20
4.5 Source Code . 21
4.6 Individual Contribution . 21

5 Discussion 23

6 Conclusion 25
6.1 Future Work . 26

Bibliography 27

ix

x CONTENTS

II Research Papers 31

7 CTracker: a Distributed BitTorrent Tracker Based on Chimera 33

8 Connectivity Properties of Mainline BitTorrent DHT Nodes 43

9 Sub-Second Lookups on a Large-Scale Kademlia-Based Overlay 55

Part I

Thesis Overview

1

Chapter 1

Introduction

Scaling services used to be as simple as replacing one server with a more powerful
one. At first, improvements in processing speed and caches were enough. Then,
servers started to incorporate multiple processors, and even multiple multi-core
chips.

At some point, a single powerful server was not enough to meet demand for
popular services and clusters of tightly coupled servers were created. Then, GRID
technology spread, allowing more loosely coupled, heterogeneous, and geographi-
cally dispersed systems. Finally, we currently witness the dramatic raise of cloud
computing.

Cloud computing providers deploy inter-connected massive data centers, each
one consisting of hundreds or thousands of inexpensive general-purpose machines.
These large-scale distributed systems are possible thanks to automated mechanisms
that coordinate all these machines. Examples of such mechanisms are: Amazon’s
Dynamo [4], Google’s MapReduce [5], and Microsoft’s Dryad [6].

An alternative to —or an option to reduce load on— data centers is to outsource
some of the computation work to machines owned and operated by the users of the
service. A remarkable example of this model is the SETI@home project [7], where
millions of users contribute to the search for extraterrestrial intelligence.

Commercial companies have also leveraged user’s resources to scale their services
and reduce costs. Well-known examples are: Skype1(video-conference service) and
Spotify [8] (music streaming service). In these systems, users’ machines collaborate
directly with each other using peer-to-peer protocols.

Peer-to-Peer Systems

Peer-to-peer (P2P) systems, the subject of this thesis, are composed by machines
which both contribute and consume resources —i.e., they simultaneously act as
servers and clients for the same service. These machines are called peers because

1http://www.skype.com/ (Oct. 2011)

3

http://www.skype.com/

4 CHAPTER 1. INTRODUCTION

they have equal responsibility in the system. Ideally, each peer adds resources
(increasing scalability) and individual peer failures do not cause a system failure
(the P2P system is robust to churn).

One of the main challenges in P2P systems is to coordinate peers in a way
that peers demanding resources are able to find peers offering these resources. The
simplest approach is to coordinate all these peers from a centralized service. In
this case, the system behaves like an orchestra where the coordination service fills
the role of the orchestra’s conductor and the rest gracefully follow the conductor’s
instructions.

A video streaming service, for instance, could be implemented in this fashion.
Each peer interested in a given video stream contacts the coordination service,
which provides the network address of other peers from where the video stream can
be requested. Peers consuming the video stream also contribute resources to the
system by forwarding the video stream to other peers, thus scaling the service and
reducing the content provider’s cost. The coordinator machine keeps a global view
of the system, matching available resources with demand.

This centralized coordination mechanism creates a single critical point of con-
trol. While there are maintenance costs and technical issues (namely, scalability
and single point of failure) associated with centralized services; there are other rea-
sons for service providers to prefer a centralized mechanism. For some commercial
companies, for instance, features such as tighter control and easier monitorization
may outweight the potential benefits of a decentralized mechanism.

Peer-to-Peer Communities

The rise of P2P technologies not only enabled companies to scale their services
while reducing their cost, but also provided individuals with the means to build
distributed communities with no central point of control. The most visible of those
are the communities surrounding some popular file sharing systems.

Early P2P file-sharing systems were divided in two types: centralized coordina-
tion and fully-distributed. The first type imposes a centralized element —Napster’s
central index [9], BitTorrent tracker [10], eDonkey/eMule’s servers [11]— in an oth-
erwise distributed system.

There were also early attempts to build large-scale fully-distributed systems
based on unstructured overlays (Freenet [12], Gnutella [9, 13]) but performance [14]
and scalability [15] issues made them uncompetitive compared to BitTorrent and
eMule.

It is only now that distributed hash tables (DHTs), introduced later in this
chapter, offer a third alternative in which those critical centralized services can be
distributed among peers, while keeping the rest of the system unmodified. In par-
ticular, both eMule and BitTorrent have evolved to combine their high-performance
data transport protocols with fully-distributed coordination services based on large-
scale DHT overlays.

5

There are, however, unresolved issues with large-scale DHT overlays. This thesis
will mainly focus on the performance issue and also study scalability and locality-
awareness.

Low-Latency DHT on the Open Internet

The main goal of this thesis is to understand and, if possible, close the substantial
performance gap between DHT overlays in the lab and large-scale DHT overlays
on the open Internet.

Our approach is adapting one of the existing large-scale DHT overlays on the
Internet. These adaptations are the fruit the analysis of our extensive experiments
performed on the actual multi-million-node DHT overlay.

Our results close the performance gap, enabling latency-sensitive services on
large-scale DHT-based systems on the Internet. In particular, our code is used
by a fully-distributed content streaming platform whose responsiveness should be
able to compete with cable and satellite TV latencies. This platform is currently
developed by the P2P-Next project and will be further discussed in Section 2.1.

Distributed Hash Tables

Distributed hash tables (DHTs), as the name suggests, provide the functionality
of hash tables —i.e. store and retrieve operations. The critical difference being
that a DHT maps keys to nodes’ addresses instead of memory locations. That is,
the DHT provides a mechanism to find the node responsible for handling store and
retrieve operations for a given key.

A DHT overlay consists of nodes connected to each other in a particular struc-
ture to be able to efficiently perform store/retrieve operations. It is called overlay
because a DHT overlay can route messages from one node to another independently
of the underlying network, which provides the basic connectivity between nodes.
The Internet is an example of an underlying network used by DHT overlays.

In a DHT overlay, each node keeps a routing table containing pointers to other
nodes, which are called neighbors. Whenever a node needs to perform a DHT
operation —for instance, store a value for a given key— that node needs to locate
the node responsible for the storage of that key. This process is called lookup and
consists of a number of messages being routed with the help of the nodes’ routing
tables, getting closer to the responsible node at each step.

Different DHT designs propose different approaches to build DHT overlays. Two
important properties are overlay geometry and routing [16]. Geometry (e.g. ring,
tree) is determined by how neighbors are selected. Routing can be recursive or
iterative. These properties will be further discussed in Chapter 2.

Regardless of their geometry and routing, DHTs have been designed to be self-
organized, scalable, and robust to churn. Their self-organizing nature removes
the necessity of a central point of control (and failure). A scalable system is

6 CHAPTER 1. INTRODUCTION

able to grow its number of participants with a limited performance degradation.
Finally, robustness to churn is the capacity to handle dynamic behavior, a critical
property since nodes join and leave the DHT overlay independently of each other.

These properties have attracted much attention from researchers, who have
proposed different DHT designs. Well-known DHT designs include: CAN [17],
Chord [18], Pastry [19], Tapestry [20], and Kademlia [21]. All these DHT designs
have been formally analyzed and tested in controlled environments such as simula-
tors and small-scale deployments.

Deployment of DHT-based applications have received much less attention, though.
Two remarkable exceptions are OpenDHT [22] and CoralCDN [23]. OpenDHT was2

a DHT overlay that third-party applications could use to store and retrieve infor-
mation. CoralCDN is a DHT-based CDN (content distribution network) where
nodes act as proxies to a web server. CoralCDN is especially useful on the event of
flash crowds when the web server is not able to cope with unexpected peak loads.

These two projects have run for several years (CoralCDN is still running), pro-
viding a great opportunity for researchers to discover and analyze issues related to
real-world deployment. On the other hand, both of them where centrally managed
(all the nodes were under the researchers’ control) and the size of the DHT overlay
was small (less than 500 nodes running on PlanetLab [24] in both cases [23, 25]).

Mainline DHT: the Largest DHT Overlay on the Internet

In this thesis, our main motivation stems from our interest in deploying large-scale
DHT-based applications on the Internet. The Internet is a good candidate as the
underlay network (layer providing connectivity between DHT nodes) because of the
large number of devices it interconnects.

To our knowledge, only three deployed DHT overlays (all of them based on
Kademlia [21]) consist of more than one million nodes: Mainline DHT (MDHT),
Azureus DHT (ADHT), and KAD. The first two are independently used as trackers
(peer discovery mechanisms) in BitTorrent [26], while KAD is used both for content
search and peer discovery in eMule (a widely used file-sharing application).

For researchers, such deployments offer a unique opportunity to study large-
scale distributed systems in a real-world environment. KAD is the overlay which
has been studied most thoroughly [27–30]. ADHT [31, 32] and MDHT [31] have
also been studied but not as much.

In this thesis, we focus on MDHT, the largest DHT overlay on the Internet.
Jünnemann et al. [33] estimate its population is between five and ten million nodes3.

By focusing on a single overlay, we aim to study in detail the behavior and
issues of a real-world large-scale distributed system deployment. We argue that we
need to understand the details that make deployment hard if we want DHTs to be

2Discontinued in 2009 (see http://opendht.org).
3A real-time estimation is available at

http://dsn.tm.uni-karlsruhe.de/english/2936.php (October 2011).

http://opendht.org
http://dsn.tm.uni-karlsruhe.de/english/2936.php

7

a viable option to build large-scale distributed systems on the Internet. That is, we
need to evaluate a deployed DHT overlay which, considering the abovementionated
large performance gap, is clearly different from a simulated one.

Like in most of the studies on large-scale DHT overlays, improving lookup per-
formance is our main quantitative goal. This is hardly surprising given the poor
performance of such DHT overlays, far worse than measurements obtained on sim-
ulators [34, 35] and small-scale DHT overlays [25, 36], where lookup latency is
measured in milliseconds.

The only measurement of lookup performance on MDHT we are aware of yielded
a median lookup time of around one minute [31]. The best lookup performance ever
reported on these large-scale DHT overlays is a median of 1.5 seconds, achieved by
Steiner et al. [28] on KAD.

As discussed in Section 2.1, the kind of applications we target in this thesis
cannot tolerate such high latencies due to their strict latency requirements. For
example, one of these requirements could be: “over 50% of the operations must
perform within 500 ms and over 99% within one second”.

Performance improvement is a central part of this thesis and will be addressed
later in this chapter; but first, we need to understand the problem. For that, we
analyze the potential causes of poor performance in Internet-deployed DHT overlays
by defining and studying the underlying network’s connectivity properties and their
effects on the performance of the DHT overlay.

Connectivity Properties

Previous research indicated that connectivity artifacts on the underlying network
may be the main cause of such poor performance in MDHT [31]. In their study,
they found that a large fraction of the queries sent during a lookup are never
responded, causing long delays. While others have proposed approaches to address
this issue (e.g., reducing, or removing, timeout delays [32]), we see these failures
(unresponded queries) as a mere symptom of a deeper problem.

The root of this problem, we argue in this thesis, is a mismatch between the un-
derlying network’s connectivity properties implicitly assumed by the DHT designers
and the far-from-ideal connectivity properties actually present on the underlying
network (the Internet in our case).

In Chapter 8, we characterize nodes’ connectivity using three connectivity prop-
erties: reciprocity, transitivity, and persistence. Each of these properties is
clearly defined and a mechanism to measure the connectivity properties of any node
in the Mainline DHT overlay is presented.

In an ideal underlay, the connectivity between any two nodes would exhibit
all three properties. Our measurement of over 3.6 million Mainline DHT nodes,
however, revealed a large fraction of these nodes lacking one or more connectivity
properties.

Given that DHT designs implicitly assume that the underlying network pro-

8 CHAPTER 1. INTRODUCTION

vides all three connectivity properties, we study the impact of the lack of each of
these properties on the DHT overlay, concluding that these connectivity artifacts
potentially degrade performance. In a previous work, Freedman et al. [37] studied
how non-transitive connectivity in PlanetLab [24] degrades DHT performance.

Understanding the causes of MDHT’s poor performance is just the first step
towards improving lookup performance. The next step is to design mechanisms
that address these issues and deploy them.

Chapter 8 describes the mechanisms we propose. A brief account of the deploy-
ment of some mechanisms is presented next.

Improving Performance on a Large-Scale DHT Overlay

Deploying modifications on a truly-distributed DHT overlay is possible but far from
trivial. Unlike centrally-controlled DHT overlays such as OpenDHT and CoralCDN,
Mainline DHT does not have an authority that can make global changes by push-
ing software updates to all nodes. Instead, the MDHT overlay consists of millions
of computers running different BitTorrent clients developed by independent devel-
opment teams; some implementations developed by the open-source community,
others by commercial companies.

Therefore, it is possible to deploy modified nodes on the MDHT overlay because
it is open to anyone, but it is very difficult to deploy global modifications which
require the collaboration/synchronization of a number of independent development
teams. One of the clear examples of the difficulty of deploying global backward-
incompatible modifications is well illustrated by the IPv6 transition process which
has proven to be a very hard task and still is far from complete.

While our long-term vision is to improve performance globally, our approach is
to start with local backward-compatible modifications, in a bottom-up fashion. If
we manage to significantly improve performance, while conserving other important
properties, other MDHT developers may include our modifications into their soft-
ware. For others to incrementally integrate these modifications, modifications must
be simple and backward compatible.

In this thesis, we explore the approach of deploying nodes with modified rout-
ing table management and lookup algorithms; and evaluate the impact of these
modifications on that node’s performance. These local modifications are backward
compatible. That is, they do not require any modification of the protocol nor the
modification of existing nodes.

While we mainly focus on improving local performance, we also consider the
impact of our modifications globally. Our modifications are designed not to degrade
the performance of existing nodes. On the contrary, some of our modifications
could potentially benefit existing nodes as well. Thus, as developers include our
modifications in their clients, all nodes are potentially benefited. We elaborate on
these local and global benefits in Chapter 9.

9

Scalability and Locality-Awareness

This thesis also considers adding locality-aware features to the DHT which would
facilitate BitTorrent peers to find other peers within the same ISP, thus reducing
BitTorrent traffic between ISPs. This traffic reduction in the inter-ISP links has the
potential to reduce costs for ISPs. Varvello and Steiner [38] have recently studied
this problem and proposed their own solution.

In addition, we proposed a simple mechanism which improves load balance in
the DHT. This is our solution to the open scalability issue where nodes responsible
for very popular keys have to bear much higher loads than average. Carra et al. [30]
have recently proposed a different mechanism where ISPs inject locality-aware nodes
in the Mainline DHT overlay.

Although we designed these mechanisms for Tapestry [20] (see Chapter 7), we
consider integrating them into Mainline DHT as future work.

Thesis Contribution

The first mayor contribution is the performance improvement on an existing large-
scale DHT overlay. The performance achieved is one order of magnitude better
compared to previous attempts in the literature and closes the gap between perfor-
mance observed in large-scale overlays versus simulations and small-scale overlays.

The second mayor contribution is the characterization of nodes’ underlying con-
nectivity properties, the analysis of the impact of each property on DHT perfor-
mance, and the empirical connectivity characterization of over three million nodes
in Mainline DHT.

Finally, we also propose a mechanism to both address scalability issues and add
locality-aware features. We consider integrating these mechanism into Mainline
DHT as future work.

We contribute all the software used in this thesis to the research community.
This software includes all the tools and modules necessary to reproduce our results.
Its open-source license allows others to adapt the tools to study DHT overlays.

Thesis Organization

The thesis is organized in two parts. The first part provides an overview and the
second part is a compilation of peer reviewed papers.

The rest of the first part is organized as follows. The background is presented
in Chapter 2. Chapter 3 defines the problem this thesis addresses. Chapter 4
summarizes the main contributions of this thesis. Chapter 5 discusses the direction
and research focus of the work. Finally, Chapter 6 concludes and presents future
work.

Chapter 2

Background

This chapter aims to introduce the necessary background to understand the rest of
the thesis. The descriptions are by no means exhaustive but just provide a generic
view of the concepts and are focused on the most relevant details related to this
thesis work.

2.1 P2P-Next’s Fully-Distributed Peer Discovery System

The work presented in this thesis is part of a large EU project called P2P-Next1.
P2P-Next’s main goal is to develop a fully-decentralized content distribution plat-
form.

The P2P-Next platform (known as NextShare) has been built on top of BitTor-
rent. BitTorrent [26] is a widely-used peer-to-peer file-sharing platform where peers
share content with each other.

Traditionally, BitTorrent has relied on centralized servers (called trackers) to
coordinate peers. That is, trackers keep track of which peers participate in a given
swarm.

Before going any further, let’s define some terms used through out this thesis.
The entities participating in the DHT overlay are called nodes, while those exchang-
ing pieces of content using the BitTorrent protocol are peers. A swarm is a set of
peers participating in the distribution of a given piece of content.

In an attempt to decentralize the tracker’s tasks, a DHT-based mechanism was
introduced in BitTorrent [39]. Currently, there are two independent DHT-based
peer discovery mechanisms in BitTorrent: Mainline DHT and Azureus DHT. Both
overlays are Kademlia-based. In this thesis, we focus on Mainline DHT, which has
been briefly introduced and will be discussed later in this chapter.

Since P2P-Next focuses on video streaming, low playback latency is one of its
most important requirements. Playback latency is fundamentally the sum of peer
discovery delay plus buffering time since these two tasks are not parallelizable.

1http://p2p-next.org (September 2011)

11

http://p2p-next.org

12 CHAPTER 2. BACKGROUND

These requirements added a practical motivation to our already established
research motivation. The challenge is to develop a fully-decentralized peer discovery
system which scales to millions of nodes and consistently achieves sub-second lookup
latencies.

2.2 Distributed Hash Tables

As the name suggests, a distributed hash table (DHT) provides the functionality
of a hash table. That is, it makes possible to store a value related to a given key.
Conversely, it offers a retrieve operation which will retrieve the value previously
stored under the key, if any.

Analogously to the traditional on-memory hash table, a DHT has a globally
known hash function which maps keys into locations. The critical difference is that
locations, in the case of the DHT, are not memory locations but node addresses.

Hash tables are known to perform store and retrieve operations in O(1) because
the calculation of the memory address from a given key does not depend on the size
of the table, assuming constant access to any memory location, in average. DHT
operations do depend on the number of nodes in the overlay, as we will see below,
but the performance degradation is weak enough, making DHT overlays scalable.

In a DHT, each participating node is identified by a identifier called nodeID.
Both node IDs and keys —keys are also known as objectIDs— are binary strings
of the same size, usually derived from a hash function such as MD5, SHA-1 or
SHA-256. In addition, each DHT design defines a globally known distance function
which calculates the distance between two identifiers.

Each node in the DHT overlay knows the contact information of several other
nodes. A node’s contact information is the node’s address in the underlying network
(e.g., IP address and UDP port number).

In the extreme case where every node is aware of the location of every single
node in the DHT overlay, a node would find the closest nodeID to the given key by
calculating the distance between each nodeID and the key. Given that the node can
sort the list of nodes by their nodeIDs, it can find the closest nodeID to the target
key by simply performing a bisect search. This search operation is performed in
O(log(n)) steps with n being the number of nodes in the DHT overlay. The result
of this local search will be a node —or set of nodes— handling store and retrieve
messages for that particular key.

It is easy to understand that in the case just described, nodes with millions of
connections will be overwhelmed just keeping track of nodes joining and leaving
the DHT overlay. Put in an other way, the load for each node would grow linearly
with the number of nodes in the overlay, posing a serious thread to the scalability
of such system.

In practice, nodes are not directly connected to every other node in the overlay.
Instead, each node is connected to a small group of nodes (usually O(log(n)) nodes).
This point can be easily illustrated by studying, for instance, a DHT overlay where

2.2. DISTRIBUTED HASH TABLES 13

D C B A

2 ^ 1 6 02 ^ 1 5 92 ^ 1 5 82 ^ 1 5 7

2 ^ 1 5 6

2 ^ 1 5 5

0

Figure 2.1: Recursive routing. Node A performs a lookup by sending a query
(full line) to node B. Nodes relay the query to other nodes closer to the target.
Node D, the closest node to the target, sends a response (dashed line) containing
a value to node A. (Another valid option, not shown in the figure, is to send the
response via the established routing path.)

each node is connected to 5∗log2(n) nodes. When the number of nodes in the overlay
is 1, 000 (∼ 210), each node is connected to around 50 nodes, which represent 5%
of the total. For 1, 000, 000 nodes (∼ 220), the number of connections is just 100
(0.01% of the total). It is clear that this model scales much better than a full-mesh
network where every node wold be connected to every other node on the overlay.

These connections, strategically chosen, form the node’s routing table. They are,
in fact, used to route store and retrieve commands from any node to the —usually
a small set of— closest nodes to the key. This routing operation is known as lookup.

A lookup is analogous to a bisect search where the search space is halved in
each step. Therefore, lookups take O(log(n)) steps (or hops)to complete.

Figure 2.1 shows an example how node A can reach the closest node to a key
k in O(log(n)) hops. Notice that the distance range’s upper bound is, at least,
halved in each hop. The distance between node A’s nodeID and K —denoted
as d(A, K)— is within [2159, 2160). The closest node to K in the whole DHT is
node D —d(D, K) ∈ [0, 2155). Node A is not directly connected to node D but is
connected to a set of nodes whose distance to K is within [0, 2159), among them
node B whose distance to K is within [2157, 2158). Likewise, node B is connected
to node C —d(C, K) ∈ [2156, 2157)— which is connected to node D.

Lookups can be recursive or iterative. In recursive routing, whenever a node
receives a query, the node selects the node —or a small set of nodes— closest to
the key and forwards the message to it/them. If the node receiving the query is the
closest node to the key, it performs the required operation and sends a response
to the node performing the lookup. Figure 2.1 illustrates the example given above
using recursive routing.

In the case of iterative routing, nodes do not forward messages. Instead, each
node receiving a query selects the closest nodes to the key from its routing table
and replies with a message containing <nodeID, address> for each of them. Once
the closest node(s) to the key has been located, the operation is performed. In this

14 CHAPTER 2. BACKGROUND

D C B A

2 ^ 1 6 02 ^ 1 5 92 ^ 1 5 82 ^ 1 5 7

2 ^ 1 5 6

2 ^ 1 5 5

0

Figure 2.2: Iterative routing. Node A performs a lookup by sending a query (full
line) to node B. Nodes respond to node A (dashed lines) with a list of nodes closer
to the target. Node A keeps querying ever closer nodes until it finds the closest
node to the key (node D in the figure).

case, nodes just provide routing information and the node performing the lookup is
the only active actor in the whole lookup. Figure 2.2 shows how node A performs
a lookup in an DHT overlay using iterative routing.

Notice that in both figures the horizontal line does not represent the identifier
space in absolute terms, but the distance between each node to the target key.
The distance between two identifiers is determined by the metric used by each
DHT design. For instance, Kademlia uses nodeID ⊕ target, while Chord uses
abs(nodeID − target) as distance function.

It is also worth noticing that both figures clearly illustrate how every hop re-
duces the distance to the key in, at least, half. As discussed above, this property
guarantees lookups to terminate in O(log(n)) hops.

2.2.1 Kademlia: an XOR-metric Iterative DHT

In Kademlia [21], each node and object are assigned a unique identifier from the 160-
bit key space, these identifiers are respectively called nodeID and objectID. Pairs
of (objectID, value) are stored on nodes whose nodeID are closest to the objectID,
where closeness is determined by performing an XOR bit-wise operation.

A node’s routing table is organized in buckets, where each bucket contains up
to k contacts sharing some common prefix with the routing table’s owner. Each
contact in the bucket is represented by the triple (nodeID, IP address, UDP port).

The symmetric property of the XOR metric provides high flexibility and oppor-
tunistic routing table maintenance. These two benefits are briefly described here
and will be exploited later (see Chapter 9) to improve the quality of routing tables
and improve lookup performance.

Routing tables are flexible because a node can select which k nodes to add to
each of its buckets from a potentially large amount of candidate nodes. For instance,
consider a node whose nodeID starts with 100100. One of its buckets covers half
of the identifier space (i.e. all nodes whose nodeID starts with 0), meaning that all

2.3. MAINLINE DHT 15

these nodes are valid candidates to add to this bucket.
Given this flexibility, it is possible to reduce maintenance costs by opportunis-

tically finding and refreshing bucket entries. Whenever a message is received, the
receiver can check which bucket the sender belongs to. If that bucket is not full, the
receiver can consider adding the sender to the bucket. Although this has the benefit
of filling buckets without additional messages, it can also create connectivity issues
as we discuss in Chapter 8. Additionally, bucket entries can be opportunistically
refreshed, reducing maintenance costs [21].

Kademlia’s lookups are iterative. For each lookup, the node performing the
lookup controls the lookup process as described above. This approach has been
criticized because iterative routing can potentially add extra latency. For instance,
when Crosby and Wallach [31] studied Kademlia’s performance on large-scale DHT
overlays (Mainline DHT and Azureus DHT), they hypothesized that one of the
main reasons for such poor performance was due to Kademlia’s iterative routing
which adds a round-trip-time delay for each hop. They argued that a recursive
approach would yield lower latencies because there is only one-way-trip-time delay
per hop since nodes relay each others’ lookup queries.

Iterative routing does have a key advantage over recursive routing. The fact
that the node performing the lookup controls the lookup process means that local
modifications on that node’s lookup algorithm/configuration can have a significant
effect on the node’s lookup performance.

Not less important it is the fact that iterative routing allows us to study the
whole lookup process by looking at a single node’s traffic. We will exploit this
opportunity to profile nodes’ behavior and compare properties (such as performance
and cost) different implementations of Mainline DHT nodes in Chapter 9.

2.3 Mainline DHT

The Mainline DHT overlay is an implementation of Kademlia. The most remarkable
characteristic is the fact that values are not static but a dynamic list. This list
contains the contact information <IP, port> of the peers participating in the swarm.

The process works as follows. A user produces a piece of content. She generates
a .torrent file whose unique identifier (called info hash which identifies the content.
When the user opens the .torrent file on her DHT-enabled BitTorrent client, the
application will automatically announce itself to the DHT. That is, it will perform
a lookup and store (on the nodes closest to the info hash key) its <IP, port>, where
it offers the content via the BitTorrent protocol.

The elements in these lists expire after a period of time. This means that the
peer needs to periodically announce itself to make sure it can be found by others.

A user interested in downloading this piece of content will obtain the content’s
info hash2 and open it on his BitTorrent client. The software will then use MDHT

2There are several ways to distribute info hashes, all of them work outside the Mainline DHT
overlay and hence out of the scope of this thesis.

16 CHAPTER 2. BACKGROUND

to (1) find peers participating in the swarm and (2) announce itself so other peers
can establish connections. The lookup is performed until the closest nodes to the
info hash are identified. During the process, the nodes which have a list of peers
associated to the info hash, will return it. With this information, the BitTorrent
client establishes connections to some peers and starts downloading data. Once the
lookup is done, the node will announce its peer’s <IP, port> on the closest nodes.
Those nodes will add the peer to the list of peers associated to the info hash.

Mainline DHT is, with over 5 million nodes [33], the largest DHT overlay ever
deployed on the open Internet. Therefore, it offers an excellent opportunity for
researchers to analyze a large-scale DHT overlay in the wild.

2.4 Related Work on Improving DHT Performance

Li et al. [34] simulated several DHTs under intensive churn and lookup workloads,
comparing the effects of different design properties and parameter values on per-
formance and cost. The study revealed that, under intensive churn, Kademlia’s
parallel lookups reduce the effect of timeouts compared to other DHT designs stud-
ied. In their simulations, Kademlia achieved a median lookup latency of 450 ms
with their best parameter settings.

Kaune et al. [35] proposed proximity neighbour selection (PNS), a mechanism
to introduce a bias towards geographically close nodes in routing tables. Although
their goal was to reduce inter-ISP Kademlia traffic, they observed that PNS also
reduced lookup latency in their simulations from 800 to 250 ms.

Other non-Kademlia-based systems have been studied. Rhea et al. [25] showed
that an overlay deployed on 300 PlanetLab hosts can achieve low lookup latencies
(median under 200 ms and 99th percentile under 400 ms). Dabek et al. [36] achieved
median lookup latencies between 100–300 ms on an overlay with 180 test-bed hosts.

Crosby and Wallach [31] measured lookup performance in two Kademlia-based
large-scale overlays on the Internet, reporting a median lookup latency of around
one minute in Mainline DHT and two minutes in Azureus DHT. They argue that
one of the causes of such poor performance is the existence of dead nodes (non-
responding nodes) in routing tables combined with very long timeouts. Falkner et
al. [32] reduced ADHT’s median lookup latency from 127 to 13 seconds by increasing
the lookup cost three-fold.

Stutzbach and Rejaie [27] modified eMule’s implementation of KAD to increase
lookup parallelism. Their experiments revealed that lookup cost increased con-
siderably while lookup latency improved only slightly. Their best median lookup
latency was around 2 seconds.

Steiner et al. [28] also tried to improve lookup performance by modifying eMule’s
lookup parameters. Although they discovered that eMule’s software architecture
limited their modifications’ impact, they achieved median lookup latencies of 1.5
seconds on the KAD overlay.

Chapter 3

Problem Definition

To our knowledge, Mainline DHT is the largest DHT overlay on the Internet. Its
performance is, however, very poor compared to simulated and small-scale DHT
overlays. In our attempt to improve Mainline DHT’s performance, we encountered
different research questions which are defined below.

Although these problems are defined in a context where the main goal is to
improve performance, their definitions are not restricted to this specific goal. In-
stead, these problems are some generic problems of adapting an overlay to: (1) the
underlying infrastructure (Internet in our case) and (2) the requirements defined
by the application using the overlay (peer discovery for P2P video-streaming).

Others may use the knowledge and the open-source tools presented in this the-
sis to design, deploy, and evaluate their own system, whichever their application
requirements and underlying infrastructure may be.

• Lookup Performance
In terms of lookup performance, our goal is to achieve sub-second lookups in
the Mainline DHT overlay. We not only aspire to a low-latency median lookup
latency with a long tail of high-latency lookups —as others have reported in
previous work on large-scale DHT, but truly sub-second results where only a
minimal fraction of the lookups (less than one per cent) take over one second.

• Underlying connectivity
It is well known that connectivity on the Internet is far from ideal. Never-
theless, many distributed systems have been designed on the assumption that
underlying connectivity is reciprocal and transitive, although many of these
designs do not explicitly state these assumptions. The only connectivity cha-
llenge commonly addressed is churn (caused by joins, leaves, and failures).
Characterizing common connectivity artifacts on the Internet helps to under-
stand the size of the problem, the potential effects of the underlying connec-
tivity artifacts on the overlay’s performance, and to devise mechanisms to
adapt the overlay to the underlying network environment.

17

18 CHAPTER 3. PROBLEM DEFINITION

• Backward compatibility
Deploying an overlay on the Internet is hard and once it has reached critical
mass it becomes the standard. It then becomes a great hurdle for any new
backward-incompatible replacement to be widely deployed. This point is well
illustrated by the transition of IP from version 4 to 6.
In this work, we propose, implement, and deploy backward compatible mod-
ifications to take advantage of an existing widely-deployed overlay. The ad-
vantages are clear and include: (1) the possibility of studying and testing our
modifications on a real-world large-scale overlay and (2) the potential impact
of our research on production systems. This approach also introduces chal-
lenges: (1) the modifications cannot be applied globally but locally, limiting
our options; (2) any global modification must provide large benefits and a
transition plan that allows the overlay to evolve one node at a time.

• Evaluation tools
We need to be able to quantify properties such as performance and cost to be
able to evaluate the effects of modifications in the nodes. Trade-offs need to be
clearly presented so users and developers can determine which configurations
fulfill their requirements.
Evaluation tools are necessary to measure the impact of different modifica-
tions and explore these trade-offs.

• Scalability and Locality
By using uniformly distributed keys and nodeIDs, nodes are assigned a similar
amount of keys to be responsible for. In the case where all keys have associated
a similar load, all nodes would handle a similar amount of load. In Mainline
DHT, however, keys are associated to BitTorrent swarms, whose popularity
wildly vary. Furthermore, the load associated to a key increases linearly with
the popularity of the swarm. Mainline DHT does not have any load-balancing
mechanism to address this problem.
A peer discovery mechanism would also benefit from locality-aware mecha-
nism which return results close to the requester’s location. These mechanisms
would decrease inter-ISP traffic, potentially benefiting users and ISPs.

Chapter 4

Thesis Contribution

4.1 List of Publications

• R. Jimenez and B. Knutsson
“CTracker: a Distributed BitTorrent Tracker Based on Chimera”
In Proc. eChallenges 2008, vol. 2, pp. 941-947
Stockholm, Sweden, Oct. 2008.

• R. Jimenez, F. Osmani, and B. Knutsson
“Connectivity Properties of Mainline BitTorrent DHT Nodes”
9th IEEE International Conference on Peer-to-Peer Computing 2009
Seattle, Washington, USA, Sept. 2009.

• R. Jimenez, F. Osmani, and B. Knutsson
“Sub-Second Lookups on a Large-Scale Kademlia-Based Overlay”
11th IEEE International Conference on Peer-to-Peer Computing 2011
Kyoto, Japan, Aug. 2011.

Publications of the same author not included in this work

• R. Jimenez, L.-E. Eriksson, and B. Knutsson
“P2P-Next: Technical and Legal Challenges”
In The Sixth Swedish National Computer Networking Workshop and Ninth
Scandinavian Workshop on Wireless Adhoc Networks (poster)
Uppsala, Sweden, May 2009.

• V. Grishchenko, F. Osmani, R. Jimenez, J. Pouwelse, and H. Sips
“On the Design of a Practical Information-Centric Transport”
PDS Technical Report PDS-2011-006, TUDelft
Delft, the Netherlands, March 2011.

19

20 CHAPTER 4. THESIS CONTRIBUTION

4.2 Scalability and Locality-Awareness

The work on scalability and locality on a DHT-based peer discovery system has
been published in a conference paper [1] and appears in Chapter 7.

In this study, our experiments on a popular BitTorrent tracker show that there is
ample room for improvement in locality-awareness, using round-trip-time as locality
metric.

We propose a modified design of Tapestry [20] which addresses both scalability
issues caused by popular keys and provides locality-aware features, with the inten-
tion to reduce inter-ISP BitTorrent traffic. These modifications are planned to be
integrated into Mainline DHT in future work.

The mechanism presented in this work dynamically adapts the number of nodes
responsible for a given key according to the key’s popularity, thus mitigating the
scalability issues. By introducing a bias towards low-latency neighbor selection, we
also obtain locality-aware properties for popular keys.

4.3 Connectivity Properties

The work on connectivity properties has been published in a conference paper [2]
and appears in Chapter 8.

In this work, we defined three connectivity properties that Kademlia nodes must
have in order to be able to properly route lookups and store values: reciprocity,
transitivity, and persistence. We give an account of how the lack of any one of them
negatively affects the ability of nodes to carry out routing and storing operations.
Furthermore, these impaired nodes are not merely failing to contribute resources
to the network. When these nodes try to contribute their resources to the system,
their connectivity issues cause routing failures, disrupting other nodes’ lookups.

In our survey of over 3.6 million nodes in Mainline DHT, almost two-thirds of
them could be considered as impaired. That leaves an environment where one-third
of the nodes do useful work while two-thirds are useless at best, harmful at worst.

Finally, mechanisms are proposed to identify and discard nodes with connectiv-
ity issues to improve the quality of routing tables, thus reducing the routing failure
rate. The integration of these mechanisms have shown to substantially improve
lookup performance.

4.4 Sub-Second Lookups on a Multimillion-Node DHT
Overlay

The work on achieving sub-second lookups on a multimillion-node overlay has been
published in a conference paper [40] and appears in Chapter 9.

In our work, we survey the literature on DHT lookup performance finding no
reports of sub-second lookups on large-scale (over one million nodes) DHT overlays.

4.5. SOURCE CODE 21

On the other hand, sub-seconds results are common when performance is measured
on simulators and small-scale overlays.

We argue that this discordance between laboratory and real-world performance
is due to the non-ideal conditions of the underlying network, based on our previous
analysis of connectivity artifacts on the Internet and their effect on Mainline DHT.

Our main contribution is to show that it is possible for a node participating
in a multimillion-node Kademlia-based overlay to consistently perform sub-second
lookups (median below 200 ms, 99th percentile below 600 ms). The modifications
needed to achieve such performance are completely backward-compatible and can
be incrementally integrated into the existing DHT overlay.

In our efforts to accomplish the goal of supporting latency-sensitive applications
using a large-scale overlay, we also produced the following results: (1) a profiling
toolkit that allows us to analyze DHT traffic without code instrumentation, (2)
deployment and measurement of nodes whose routing table management and lookup
algorithm were modified, and (3) the infrastructure necessary to deploy and evaluate
these modifications.

4.5 Source Code

All source code used to produce these results is freely available, under an open-
source license, for others to use and/or reproduce our experiments at:
http://people.kth.se/~rauljc/lic/

4.6 Individual Contribution

I am the main author of all the papers presented in this thesis and wrote most of
the code. I led the work from the initial idea to writing, and presented them at the
conferences. Instead of listing my individual contributions, I list the contributions
of others:

In all the papers, Björn Knutsson discussed the ideas and co-edited the papers,
contributing with very valuable guidance and comments.

In papers B and C, Flutra Osmani actively assisted in designing and running
the experiments, although I wrote most of the necessary code and processed all the
results. She discussed the ideas with me as they evolved and co-edited the papers.

http://people.kth.se/~rauljc/lic/

Chapter 5

Discussion

The work presented in this thesis started with our focus on designing a fully-
decentralized locality-aware tracking mechanism for BitTorrent. The motivation
for such goal was two-fold: (1) reduce inter-ISP traffic by facilitating the discov-
ery of peers within the same ISP and (2) mitigate the scalability issues caused by
popular key —related to popular content— in the DHT.

Our proposal was based on a recursive DHT design called Tapestry [20] plus
our own modifications to construct low-latency routing tables based on round trip
times and a simple mechanism to avoid hotspots.

This proposal also considered lookup performance. In theory, a recursive DHT
can yield lower latencies than an iterative one, since it avoids several round trips
when the number of hops is large enough [31]1. In addition, both of our modifi-
cations (low-latency neighbors and spread out of values in the DHT) would lower
lookup latency as a side effect.

When we tried to implement and deploy our design, we realized that deploy-
ing a large-scale overlay would require not only hard work, but also collaboration
with existing developing teams. We concluded that our potential impact on real-
world systems would probably be greater if we introduced backward-compatible
incremental modifications to an already widely deployed overlay.

We decided to study one of the large-scale DHT overlays on the open Internet.
We chose Mainline DHT for two reasons: (1) MDHT is the largest DHT overlay
on the open Internet and (2) Tribler [41], the BitTorrent client whose code-base is
used by P2P-Next, already supported MDHT.

In our study of Mainline DHT, we analyzed previous measurements of its perfor-
mance [31]. Mainline DHT’s poor performance was not the exception, but the norm.
All the other large-scale DHT overlays on the open Internet also perform poorly
compared to performance measurements on simulators and small-scale Kademlia-
based overlays.

1In practice, however, we have seen that iterative routing is very flexible and exploiting the
possibility of parallel queries can yield low lookup latencies.

23

24 CHAPTER 5. DISCUSSION

Some previous work identified connectivity artifacts as a cause for such poor
performance [31, 37]. That led us to investigate what connectivity properties where
assumed/required by DHTs (Kademlia in particular) and what kind of connectivity
was actually available on the Internet (Mainline DHT nodes in particular).

Once these properties were defined and measured, we analyzed the effects of
the observed connectivity artifacts on Kademlia, concluding that there is a clear
mismatch between Kademlia’s networking assumptions/requirements and the ac-
tual underlying connectivity. Then, we designed backward-compatible mechanisms
to identify these connectivity artifacts and mitigate their impact on lookup perfor-
mance.

Finally, we demonstrated the effectiveness of our mechanisms by measuring the
performance of nodes implementing them. Our results definitively close the large
performance gap between laboratory and Internet-wide multi-million DHT overlays.

We consider that the performance issue has been successfully addressed in the-
sis. Deciding on the specific trade-off details is now an engineering problem for
BitTorrent developers. They are not alone, though. We offer them our experience
and tools to experiment with different mechanisms and parameters so they can
achieve the performance they require at a cost they can afford.

Chapter 6

Conclusion

This thesis has studied the Mainline DHT overlay, which with 5 to 9 million simulta-
neous nodes is the largest DHT overlay on the Internet. This DHT overlay is based
on Kademlia and is used as peer discovery mechanism (or tracker) in BitTorrent.

The main result of this thesis is a dramatic lookup performance improvement
on Mainline DHT. This improvement is the result of our backward-compatible
modifications of routing table management and lookup algorithm configuration.

We have shown that our novel modifications on routing table management not
only improve performance of the node implementing them, but also have the poten-
tial to improve performance globally. These modifications, combined with lookup
configurations already studied in the literature, yield median lookup latencies far
lower than previous measurements on large-scale DHT overlays.

While median lookup latency is important, consistent low-latency is critical for
the viability of DHT-based latency-sensitive applications. We have also succeeded
in this point, achieving sub-second latencies in well above 99% of the lookups.

These results challenge the idea that Internet-wide DHT overlays are not suit-
able for latency-critical applications due to their inherent poor performance. While
there are still several important issues to address —some of them listed in Future
Work, our work provides the tools to effectively mitigate the poor performance
problem on large-scale Kademlia-based overlays.

In our quest to improve Mainline DHT performance we have studied important
deployment details, in particular how underlying connectivity artifacts affect DHT
overlays. Our analysis uncovered that connectivity artifacts are common on the
underlying network (i.e. the Internet) used by the Mainline DHT overlay. Fur-
thermore, these connectivity artifacts have the potential to pollute routing tables
and degrade lookup performance. Since the original Kademlia design implicitly
assumes a nearly-ideal underlying connectivity, these connectivity artifacts would
explain not only Mainline DHT poor performance, but also all other large-scale
Kademlia-based overlays documented in the literature.

We designed a series of modifications on the routing table management policy

25

26 CHAPTER 6. CONCLUSION

and lookup algorithm based on our analysis of underlying connectivity and its
effects on Kademlia-based DHT overlays. These modifications, as reported above,
have proven to dramatically improve lookup performance.

Conscious of the importance of powerful and reliable tools on our long-term
study of large-scale DHT overlays, we have built a rich open-source software repos-
itory. All necessary software to reproduce the results presented in this thesis are
available on-line at http://people.kth.se/~rauljc/lic/.

Finally, we have also proposed a mechanism to both address scalability chal-
lenges and add locality-aware features to DHT-based peer discovery systems. Al-
though this proposal is based on a non-Kademlia DHT design, we consider inte-
grating these modifications into Mainline DHT as future work.

6.1 Future Work

6.1.1 Scalability and Locality
This thesis has addressed the scalability and locality issues, albeit solely from a
theoretical point of view on a recursive DHT. Our intention is to use all the experi-
ence with Mainline DHT, gained in the process of improving lookup performance,
to integrate scalability and locality improvements proposed in this thesis.

6.1.2 Privacy and Security
Although the Mainline DHT specification [39] states “Node IDs are chosen at ran-
dom from the same 160-bit space as BitTorrent infohashes”, each Mainline DHT
node is free to choose its own nodeID.

This policy has privacy and security implications. From a privacy point of view,
it is trivial for an attacker to create a node whose nodeID is close to a key of interest.
This node would became one of the trackers for that content of interest, collecting
data about users participating in the exchange of that content.

From a security point of view, Mainline DHT does not have any mechanism
to defend itself against a Sybil attack [42]. A Sybil attack can potentially restrict
access to a given piece of content by locating a large amount of nodes close to the
content’s identifier and returning bogus lists of peers. Some work has been done
in this direction. In a master thesis under my supervision, Ismael Saad Garcia [43]
explored the effects of these kind of attacks on Mainline DHT.

These security issues are known in the BitTorrent community and one interesting
tentative solution has been proposed1. In the research community, an excellent
survey by Urdaneta et al. [44] covers the related work on DHT security.

1http://www.rasterbar.com/products/libtorrent/dht_sec.html (Oct. 2011)

http://people.kth.se/~rauljc/lic/
http://www.rasterbar.com/products/libtorrent/dht_sec.html

Bibliography

[1] R. Jimenez and B. Knutsson, “CTracker: a Distributed BitTorrent Tracker
Based on Chimera,” in In Proc. eChallenges 2008, vol. 2, pp. 941–947, Oct.
2008.

[2] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties of Main-
line BitTorrent DHT nodes,” in 9th International Conference on Peer-to-Peer
Computing 2009, (Seattle, Washington, USA), 9 2009.

[3] R. Jimenez, L.-E. Eriksson, and B. Knutsson, “P2p-next: Technical and legal
challenges,” in The Sixth Swedish National Computer Networking Workshop
and Ninth Scandinavian Workshop on Wireless Adhoc Networks, (Uppsala,
Sweden), May 2009.

[4] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” in In Proc. SOSP, Citeseer, 2007.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” SIGOPS Oper. Syst.
Rev., vol. 41, pp. 59–72, March 2007.

[7] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“Seti@home-massively distributed computing for seti,” Computing in Science
Engineering, vol. 3, pp. 78 –83, jan/feb 2001.

[8] G. Kreitz and F. Niemela, “Spotify - Large Scale, Low Latency, P2P Music-
on-Demand Streaming,” in P2P’10, 2010.

[9] S. Saroiu, K. Gummadi, and S. Gribble, “Measuring and analyzing the char-
acteristics of napster and gnutella hosts,” Multimedia systems, vol. 9, no. 2,
pp. 170–184, 2003.

[10] B. Cohen, “BitTorrent Enhancement Proposal 3 (BEP3): The BitTorrent Pro-
tocol Specification,” 2008.

27

28 BIBLIOGRAPHY

[11] Y. Kulbak and D. Bickson, “The emule protocol specification,” eMule project,
2009.

[12] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed anony-
mous information storage and retrieval system,” in Designing Privacy Enhanc-
ing Technologies, pp. 46–66, Springer, 2001.

[13] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in First
International Conference on Peer-to-Peer Computing, pp. 99–100, IEEE, 2001.

[14] H. Zhang, A. Goel, and R. Govindan, “Using the small-world model to improve
freenet performance,” Computer Networks, vol. 46, no. 4, pp. 555 – 574, 2004.

[15] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making
gnutella-like p2p systems scalable,” in Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer commu-
nications, SIGCOMM ’03, (New York, NY, USA), pp. 407–418, ACM, 2003.

[16] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Sto-
ica, “The impact of DHT routing geometry on resilience and proximity,” in
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 381–394, ACM, 2003.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content-addressable network,” in Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer commu-
nications, SIGCOMM ’01, (New York, NY, USA), pp. 161–172, ACM, 2001.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” ACM SIG-
COMM Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[19] A. Rowstron and P. Druschel, “P.: Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” In: Middleware,
pp. 329–350, 2001.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatow-
icz, “Tapestry: a resilient global-scale overlay for service deployment,” IEEE
Journal on Selected Areas in Communications, vol. 22, no. 1, pp. 41–53, 2004.

[21] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information sys-
tem based on the XOR metric,” in Proceedings of the 1st International Work-
shop on Peer-to Peer Systems (IPTPS02), pp. 53–65, 2002.

[22] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: a public dht service and its uses,” in SIG-
COMM ’05: Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, (New York, NY,
USA), pp. 73–84, ACM, 2005.

BIBLIOGRAPHY 29

[23] M. J. Freedman, “Experiences with coralcdn: a five-year operational view,” in
Proceedings of the 7th USENIX conference on Networked systems design and
implementation, NSDI’10, (Berkeley, CA, USA), pp. 7–7, USENIX Associa-
tion, 2010.

[24] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[25] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker, “Fixing the embarrass-
ing slowness of OpenDHT on PlanetLab,” in Proc. of the Second USENIX
Workshop on Real, Large Distributed Systems, pp. 25–30, 2005.

[26] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Eco-
nomics of Peer-to-Peer Systems, vol. 6, Berkeley, CA, USA, 2003.

[27] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a Widely-
Deployed DHT,” in INFOCOM, IEEE, 2006.

[28] M. Steiner, D. Carra, and E. W. Biersack, “Evaluating and improving the
content access in KAD,” Springer "Journal of Peer-to-Peer Networks and Ap-
plications", Vol 2, 2009.

[29] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of kad,” in IMC
’07: Proceedings of the 7th ACM SIGCOMM conference on Internet measure-
ment, (New York, NY, USA), pp. 117–122, ACM, 2007.

[30] D. Carra, M. Steiner, and P. Michiardi, “Adaptive load balancing in kad,”
in Peer-to-Peer Computing (P2P), 2011 IEEE International Conference on,
pp. 92 –101, 31 2011-sept. 2 2011.

[31] S. A. Crosby and D. S. Wallach, “An analysis of bittorrent’s two kademlia-
based dhts,” 2007.

[32] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson, “Profil-
ing a million user DHT,” in IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, (New York, NY, USA), pp. 129–134,
ACM, 2007.

[33] K. Junemann, P. Andelfinger, J. Dinger, and H. Hartenstein, “BitMON: A Tool
for Automated Monitoring of the BitTorrent DHT,” in Peer-to-Peer Computing
(P2P), 2010 IEEE Tenth International Conference on, pp. 1–2, IEEE, 2010.

[34] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A perfor-
mance vs. cost framework for evaluating DHT design tradeoffs under churn,”
in INFOCOM, pp. 225–236, 2005.

30 BIBLIOGRAPHY

[35] S. Kaune, T. Lauinger, A. Kovacevic, and K. Pussep, “Embracing the peer
next door: Proximity in kademlia,” in Eighth International Conference on
Peer-to-Peer Computing (P2P’08), p. 343–350, 2008.

[36] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, “De-
signing a dht for low latency and high throughput,” in IN PROCEEDINGS
OF THE 1ST NSDI, pp. 85–98, 2004.

[37] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica, “Non-transitive
connectivity and dhts,” in In Proc. of the 2nd Workshop on Real Large Dis-
tributed Systems, 2005.

[38] M. Varvello and M. Steiner, “Traffic localization for dht-based bittorrent net-
works,” in NETWORKING 2011 (J. Domingo-Pascual, P. Manzoni, S. Palazzo,
A. Pont, and C. Scoglio, eds.), vol. 6641 of Lecture Notes in Computer Science,
pp. 40–53, Springer Berlin / Heidelberg, 2011.

[39] A. Loewenstern, “BitTorrent Enhancement Proposal 5 (BEP5): DHT Proto-
col,” 2008.

[40] R. Jimenez, F. Osmani, and B. Knutsson, “Sub-Second Lookups on a Large-
Scale Kademlia-Based Overlay,” in 11th International Conference on Peer-to-
Peer Computing 2011, (Kyoto, Japan), 8 2011.

[41] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler: a social-based
peer-to-peer system: Research articles,” Concurr. Comput. : Pract. Exper.,
vol. 20, no. 2, pp. 127–138, 2008.

[42] J. Douceur, “The sybil attack,” Peer-to-peer Systems, pp. 251–260, 2002.

[43] I. S. Garcia, “Exploring Mainline DHT: an experimental approach,” KTH
Master Thesis, November 2010.

[44] G. Urdaneta, G. Pierre, and M. van Steen, “A survey of DHT security tech-
niques,” ACM Computing Surveys, vol. 43, Jan. 2011. http://www.globule.
org/publi/SDST_acmcs2009.html.

http://www.globule.org/publi/SDST_acmcs2009.html
http://www.globule.org/publi/SDST_acmcs2009.html

Part II

Research Papers

31

Paper A

Chapter 7

CTracker: a Distributed
BitTorrent Tracker Based on
Chimera

R. Jimenez, B. Knutsson

In eChallenges 2008, vol.2, pp. 941–947, IOS Press.
Oct. 22–24, 2008, Stockholm, Sweden

© 2008 The authors. Reprinted with permission.

CTracker: a Distributed BitTorrent
Tracker Based on Chimera

Raúl JIMÉNEZ, Björn KNUTSSON
Kungliga Tekniska högskolan, Isafjordsgatan 39, Stockholm, 164 40, Sweden

Tel: +46 8 790 42 85, Fax: +46 8 751 17 93, Email: rauljc@kth.se; bkn@kth.se

Abstract: There are three major open issues in the BitTorrent peer discovery system,
which are not solved by any of the currently deployed solutions. These issues
seriously threaten BitTorrent's scalability, especially when considering that
mainstream content distributors could start using BitTorrent for distributing content
to millions of users simultaneously in the near future.
In this paper these issues are addressed by proposing a topology-aware distributed
tracking system as a replacement for both centralized and Kademlia-based trackers.
An experiment measuring most popular open BitTorrent trackers is also presented. It
shows that centralized trackers are not topology aware. We conclude that an ideal
topology-aware tracker would return peers whose latency to the requester peer is
significantly lower than of a centralized tracker.

1. Introduction
The BitTorrent protocol [1] distributes digital content using the resources every participant
offers. Every participant is called a peer and a swarm is a set of peers participating in the
distribution, i.e., downloading and uploading of a given content.
 Nowadays the most popular swarms on the most popular BitTorrent public trackers hold
a few tens of thousand peers. BitTorrent usage is continuously increasing and with the
participation of legal content distributors we can expect the usage to skyrocket. When
content providers start distributing popular TV shows and movies through BitTorrent we
should not be surprised to have several millions of peers participating simultaneously in a
single swarm.
 Big players are already moving towards on-line content distribution by using different
peer-to-peer and hybrid systems, for instance, BBC with its successful iPlayer [2].
Furthermore, among others, BBC and the European Broadcaster Union participate in the
P2P-Next project [3]. P2P-Next is a Seventh Research Framework Programme project,
which aims to become the standard for on-line content distribution using the BitTorrent
framework.
 The BitTorrent tracker is a key component of the BitTorrent framework. A tracker is set
up in order to track the participants within a swarm. Every peer willing to join the swarm
contacts the tracker and requests a list of peers participating in the swarm. Then this peer
will contact the peers in the list in order to download/upload content from/to them.
 Unfortunately, there are three major open issues that threaten the reliability of the
tracking system. (1) The tracker is a single point of failure. When a tracker fails the current
members of the swarm are not affected but no other peer will be able to join. (2) The
tracker faces a scalability issue since it is only able to handle a finite number of peers based
on the processing power and bandwidth available. (3) The third issue is locality, and it is
more subtle: when you contact the tracker, you will receive a random subset of the available
peers. This means that while a local peer may exist, you may only be notified of peers on

other continents, resulting in both higher global bandwidth consumption and lower
download speed.
 The single point of failure issue has been addressed by distributing the tracking tasks
among the peers. There are two implementations both based on a DHT (Distributed Hash
Table) called Kademlia [4]. Several problems have, however, been found on both of them
[5] and there is no visible effort towards fixing them because they are not considered
critical but a backup mechanism should the tracker fail.
 The scalability issue also affects the distributed trackers because the small set of nodes
that are responsible for tracking a specific swarm (8 or 20 nodes in the current
implementations) will receive every query. Kademlia partially distributes this responsibility
by caching part of the address list on the nearby nodes. This caching feature, however, is
not good enough. Although the caching nodes help replying requests, the core nodes must
still keep track of every single peer in the swarm.
 The locality issue is a consequence of the equality of the peers. From the tracker's point
of view there is no discernible difference among peers, therefore it is not able to return a list
consisting of the “best” peers, but rather just a random set of peers. In order to improve
locality, the tracker could use different heuristics such as geolocation services but that
would imply an extra overload. Probably that is the reason why trackers lack this feature.
 This paper proposes a system that addresses the three issues described in this section.

2. Objectives
The main objective of this paper is to present a design for a topology-aware scalable
distributed tracker based on Chimera, which addresses the issues explained in the
introduction. In addition, we will outline some additional benefits of our proposed design.
 We also show, through our simple experiment, that there is ample room for
improvement. The difference between the ideal tracker and the current centralized tracker
implementations is large enough to justify the research on this topic and the replacement of
the current tracking system.

3. System Overview
We have undertaken a study of the behavior of the BitTorrent protocol and extensions, and
the currently available DHT technologies. Based on the results, we designed and
implemented a prototype and compared its behavior with the existing BitTorrent
implementations [6].
 In this paper a different approach is suggested. Instead of designing, implementing and
deploying a completely new protocol we propose to replace just the DHT system in the
current BitTorrent framework. We consider that, by being BitTorrent backwards
compatible, this DHT replacement can be implemented and deployed more easily,
increasing drastically the probability of a large-scale deployment.
 Furthermore, we are considering, together with the Tribler research team, to integrate
Chimera's key properties into the existing Kademlia-based DHT. If this is possible, the new
solution would be fully backwards compatible with Mainline DHT clients. This task,
however, is out of the scope of this paper and regarded as future work.

3.1 Distributed Tracker within the BitTorrent Framework

BitTorrent applications using a distributed tracker have two components: (1) a peer which
uses the BitTorrent protocol to download/upload data from/to other peers and (2) a node
that is a member of the DHT and performs the distributed tracker's tasks.
 As stated in the introduction the existing implementations of distributed trackers fail to
address the scalability and locality issues. We consider that a topology aware framework
offers us the properties needed to address these issues. This framework would allow us to

spread small lists of topologically close peers among the nodes; contrary to assigning the
task of tracking the whole swarm to a small set of nodes (one node plus a few replicas).
 There is a framework called Chimera whose properties fulfill the requirements for such
system.

3.2 Chimera's Routing Algorithm

In this subsection a brief description of Chimera's behavior is given. Further information
about Chimera is located in the Related Work section.
 Chimera [7] is a topology-aware DHT overlay. It routes each message through a
number of nodes until it reaches the destination node. Every node in the path processes the
message and routes it to another node whose identifier is closer –i.e, more prefix matching
bits– to the destination identifier. A node is a destination of a message when there is no
node whose identifier is closer in the identifier space –node and destination identifiers
might match but that case is very rare.
 When routing a message, a node forwards it to the topologically closest node among the
candidates. This behavior makes Chimera topology aware, especially during the first hops
into the DHT; contrary to the current BitTorrent DHT's behavior, where hops are randomly
long all the way to the destination.
 Furthermore, intermediate nodes can cache and retrieve results, a key property used by
our design, which will be explained in depth later.

3.3 Integrating Chimera as Distributed BitTorrent Tracker

Nodes can send two kind of messages: announce and find_peers. Every message is routed
according to a modified version of Chimera's routing algorithm that is explained along this
section.
 An announce message contains a [IP, port number] pair and its destination is a swarm
identifier. This message announces that this peer is participating in a swarm and where it
can be contacted by other peers. Every node in the path stores the [peer, swarm] pair and
routes the message. There is no reply for this message.
 A find_peers message is addressed to a swarm identifier and it is created by a node
looking for peers participating in the swarm. Every node in the path checks whether it has
information about the swarm. If there is a list of peers for that swarm, that list is sent to the
requester. Otherwise the message is forwarded to the next node.
 So far the scalability related to the centralized tracker and locality issues have been
addressed, allowing intermediate nodes to return small lists of topologically-close peers.
This is still not good enough, however, since the destination of a very popular swarm –say
10 million peers– will receive every single announce message and keep track of every peer.
 Solving this issue is the main contribution of this paper and it justifies replacing the
current DHT used in the BitTorrent framework.

3.4 Scalability Improvement over the Current Distributed Trackers

Chimera's routing algorithm can be modified to forward only a limited number of announce
messages. In this way, destination nodes tracking a few tens of peers will keep track of
every peer in the swarm but when the swarm reaches 10 millions of peers this node will
only track a limited number of peers (the topologically closest peers).
 In the modified routing algorithm there are two new parameters m and n where n ≥ m.
The parameter m is the maximum number of announce messages to be forwarded per
swarm and n is the maximum number of peers stored in a swarm list. The swarm list is
ordered by the distance –network latency– from the node to the peers stored in the list.
These parameters can be calculated independently by every node and might be dynamic
depending the node's configuration and workload. For instance, a powerful node which

wants to store every announcement received might set n to infinite, however, it must be
more careful setting m in order to keep the DHT bandwidth overhead low.
 Every node in the path of an announce message measures the latency to the new peer
and tries to add it to the swarm list. If the list length is already n and the new peer is not
closer than any other in the list then the message is dropped. If the list length is between n
and m, the new peer will be added to the list, but the message will only be forwarded if the
new element is inserted among the m lowest latency peers. Lastly, if the list is shorter than
m elements, the message is forwarded following the original Chimera routing algorithm.
 One may think that the fact a high latency node (e.g, satellite connections) can be
isolated by dropping its announce messages is a design flaw. If this node happens to join a
busy swarm and the next node in the Chimera overlay has already a list with n elements, the
message will be dropped and there will be no reference to its participation in the whole
DHT. Unfortunately for this node, that is exactly what is desired; close nodes are easy to
find and the far-away ones are not. This node can, however, always send find_peers
messages and discover other peers, therefore there is no risk of total isolation. In a sense, it
would have the same effect as a peer behind a NAT or firewall, where the peer can establish
connections to others but cannot be contacted by other peers.

3.5 Additional Benefits

Not only will this system improve tracker's scalability, but it can also decrease costs for
ISPs. Being able to find topologically close peers, peers can easily discover other peers
within the same ISP, thus reducing inter-ISP traffic. Furthermore, ISPs could offer users
incentives to decrease inter-ISP traffic even further (e.g., by increasing link speed in
connections within the ISP's network and/or setting up an easy to find peer offering cached
content).
 This is not a minor benefit, since BitTorrent traffic represents an important fraction of
the total Internet traffic [8] and some ISPs are trying to control this by caching, throttling or
banning BitTorrent traffic, in order to reduce costs and impact on other traffic [9-10].

4. Centralized Tracker Versus Topology-Aware Decentralized Tracker
In this section, the results from a small-scale experiment show how topology (un)aware the
most popular BitTorrent centralized trackers are. Then, these results are compared to an
ideal topology-aware decentralized tracker.
 The BitTorrent specifications [11] do not specify how many peers a tracker should
return as a response to a peer's query, nor how these peers should be selected. It is believed
that most of the tracker implementations return a list of random peers, i.e., trackers are not
topology aware.
 In our experiment, the most popular torrent files in Mininova.org were downloaded.
Since mininova offers torrent files tracked by different trackers, several tracker
implementations are analyzed at once. The results show, however, that there are no
discernible differences among different trackers regarding topology awareness.
 A total of 79 swarms were analyzed. Every 5 minutes a request was sent to every
tracker, obtaining 79 lists of peers. Then, the latency to these peers was measured by using
tcptraceroute to every peer in the list. This process was repeated 5 times.
 One of the most interesting findings is that most of the peers were not reachable on the
port announced to the tracker. The suggested explanations are: peers no longer on-line,
NATs, and firewalls; and has been reported by other experiments on BitTorrent [12]. In
total, 11578 reachable peers were measured; around 150 peers per swarm (i.e., 30 reachable
peers per request on average.
 In Figure 1 the average latency to the peers is plotted. For every swarm there are five
points and two curves, where five points represent the average latency to the peers in the

list returned to each request. One curve represents the average latency to every peer
measured within the swarm while the other shows the average latency to the x lowest
latency peers in the swarm.

Figure 1: Latency measurements to peers participating in popular BitTorrent swarms

 This last curve represents the ideal list of peers that a topology aware tracker should
return and it is calculated as follows. The tracker returns 5 lists of torrents as response to
our 5 requests. We check the reachability of peers in every list and calculate the average
number of reachable peers per request which will be called x. If the tracker were ideally
topology-aware it should have returned just the x lowest latency peers whose average is
plotted in the figure forming the “lowest latency peers” curve.
 The figure shows that the average latency for different requests is as random as we can
expect, when assuming that trackers return lists of random peers. It also shows that the
difference between the average latency to every peer returned (swarm average) and to the
ideal list (lowest latency peers) is between 5 and 10 times. While the former backs our
initial assumption, the latter shows a large room for improvement in BitTorrent trackers.
 Our measurements so far have confirmed our hypothesis, but we are continuously
working to study larger swarms, and we will also start monitoring swarms from multiple
vantage points.

5. Related Work
In this section background information about DHT and Chimera is given.

5.1 Distributed Hash Tables

Several structured lookup protocols [13] have been studied in order to choose one that
offers the characteristics this system needs. Chord [14] is one of the most well-known DHT.
Actually, Kademlia [4] is a Chord derivation used in BitTorrent. Although these protocols
provide a distributed lookup system, they do not offer topology awareness.
 On the other hand, Tapestry [15] is a structured lookup protocol that provides this
characteristic. Moreover, its implementation in C –called Chimera– is flexible enough to be

adapted to our needs. In this project, Chimera was chosen as lookup overlay, whose
description will be explained next.

5.2 Chimera

As an implementation of Tapestry, Chimera routes messages from one node to a
destination's root. In Chimera, each node has a unique identifier. Each node has several
routing tables, with references to its nearest neighbors within a level.
 A link belongs to a level, depending on the length of the shared prefix of the identifiers
of the two nodes involved. For instance, let identifiers in hexadecimal and 4-bit levels, node
6E83 has links of level 4 to nodes whose identifier are 6E8*, level 3 to nodes 6E** and so
on. In fact, this is similar to IP routing.
 A message from one node to another is routed choosing the highest level link in each
step. Since each step routes the message through a greater level, the maximum number of
hops is logβ(N), where the identifiers are expressed in base β and N is the length of the
identifier. Moreover, since each node routes the messages through its nearest neighbor in
that level, the paths are deterministic and topologically aware. At the last hop, the message's
and the node's identifiers match, then the message is delivered.
 Each object –torrent identifier– has a unique identifier as well. When any node wants to
perform an operation over an object (publish, unpublish, lookup, etc.), the message is
routed to the block's identifier. Since most likely there will not be a node matching it, the
message will reach its destination's root. This is the node whose identifier is the closest to
the block's one.
 Then, a publish(objectID) is delivered to the objectID's root and this node stores all the
references to objectID. In the path, each node which forwards the publish messages also
stores the references. A lookup message will be routed in the same manner, however, at any
hop it will reach a node which stores a list of references –list of peers participating in the
swarm. This node can stop the lookup and return its list of references. This list will be
shorter than the root's one and these references were likely published by the closest nodes to
the requester.
 The main difference between Chimera and Tapestry is that Tapestry reaches the node
that actually published an object, while Chimera only routes the messages. Because of the
aforementioned property it was possible to use Chimera in this design.

6. Conclusions
In this paper a design of a topology-aware distributed BitTorrent tracker has been
presented. This design addresses three key open issues in the current BitTorrent tracker
system. We explained how the scalability of the whole system is improved drastically by
removing the existence of hot spots in the DHT. This is a desirable property nowadays but
it will be absolutely necessary when mainstream content providers offer their content on the
BitTorrent framework in the near future.
 ISPs will play a key role in P2P content distribution. This design provides mechanisms
to reduce inter-ISP traffic, improving user experience (lower lookup latency and increased
download speed), without increasing dramatically the ISP's costs.
 Our experiment has shown how the most popular open BitTorrent trackers behave and
how far their results are from an ideal topology aware system. This backs our initial
hypothesis that there is a large room for improvement and encourages us to implement the
described system in order to measure its performance.
 Future work includes modifying Tribler [16], a BitTorrent-based content distribution
framework developed by a research team at Delft University, integrating this design, and
comparing performance against the current unmodified version.

Acknowledgment
The research leading to these results has received funding from the Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 21617.

References
[1] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of the First Workshop on the

Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.
[2] BBC. iPlayer. http://www.bbc.co.uk/iplayer/ (April 2008)
[3] P2P-Next. http://www.p2p-next.org/ (April 2008)
[4] P. Maymounkov and D. Mazieres. Kademlia: A peerto -peer information system based on the xor

metric. In Proceedings of IPTPS02, Cambridge, USA, March 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[5] Scott A Crosby and Dan S Wallach An Analysis of BitTorrent's Two Kademlia-Based DHTs Technical
Report TR-07-04, Department of Computer Science, Rice University, June 2007.

[6] R. Jiménez. Ant: A Distributed Data Storage And Delivery System Aware of the Underlaying Topology.
Master Thesis. KTH, Stockholm, Sweden. August 2006.

[7] CURRENT Lab, U. C. Santa Barbara. Chimera Project. http://current.cs.ucsb.edu/projects/chimera/
(April 2008)

[8] A. Parker. The true picture of peer-to-peer filesharing, 2004. http://www.cachelogic.com/. (April 2008)
[9] TorrenFreak. Virgin Media CEO Says Net Neutrality is “A Load of Bollocks”.

http://torrentfreak.com/virgin-media-ceo-says-net-neutrality-is-a-load-of-bollocks-080413/ (April 2008)
[10] The Register. Californian sues Comcast over BitTorrent throttling.

http://www.theregister.co.uk/2007/11/15/comcast_sued_over_bittorrent_blockage/ (April 2008)
[11] Bram Cohen. The BitTorrent Protocol Specification http://www.bittorrent.org/beps/bep_0003.html

(April 2008)
[12] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "A measurement study of the bittorrent peer-to-peer

file-sharing system," Tech. Rep. PDS-2004-007, Delft University of Technology, Apr. 2004.
[13] Frank Dabek, Ben Zhao, Peter Druschel, and Ion Stoica. Towards a common API for structured peer-to-

peer overlays. In IPTPS '03, Berkeley, CA, February 2003.
[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer

lookup service for Internet applications. Technical Report TR-819, MIT, March 2001.
[15] Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An infrastructure for fault-tolerant wide-

area location and routing. Technical Report UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, April 2001. 55

[16] J.A. Pouwelse and P. Garbacki and J. Wang and A. Bakker and J. Yang and A. Iosup and D.H.J. Epema
and M. Reinders and M. van Steen and H.J. Sips (2008). Tribler: A social-based peer-to-peer system.
Concurrency and Computation: Practice and Experience 20:127-138. http://www.tribler.org/

Paper B

Chapter 8

Connectivity Properties of
Mainline BitTorrent DHT Nodes

R. Jimenez, F. Osmani, B. Knutsson

In the 9th IEEE International Conference on Peer-to-Peer Computing 2009 (P2P’09)
Sept. 9–11, 2009, Seattle, Washington, USA

© 2009 IEEE. Reprinted with permission.

Connectivity Properties of Mainline BitTorrent DHT Nodes

Raul Jimenez Flutra Osmani

Royal Institute of Technology (KTH)
ICT/TSLAB

Stockholm, Sweden
{rauljc, flutrao, bkn}@kth.se

Björn Knutsson

Abstract

The birth and evolution of Peer-to-Peer (P2P) protocols
have, for the most part, been about peer discovery. Napster,
one of the first P2P protocols, was basically FTP/HTTP
plus a way of finding hosts willing to send you the file. Since
then, both the transfer and peer discovery mechanisms have
improved, but only recently have we seen a real push to
completely decentralized peer discovery to increase scal-
ability and resilience.
Most such efforts are based on Distributed Hash Tables

(DHTs), with Kademlia being a popular choice of DHT im-
plementation. While sound in theory, and performing well
in simulators and testbeds, the real-world performance of-
ten falls short of expectations.
Our hypothesis is that the connectivity artifacts caused

by guarded hosts (i.e., hosts behind firewalls and NATs) are
the major cause for such poor performance.
In this paper, the first steps towards testing this hypoth-

esis are developed. First, we present a taxonomy of con-
nectivity properties which will become the language used
to accurately describe connectivity artifacts. Second, based
on experiments “in the wild”, we analyze the connectivity
properties of over 3 million hosts. Finally, we match those
properties to guarded host behavior and identify the poten-
tial effects on the DHT.

1 Introduction

The BitTorrent protocol [6] is widely used in Peer-to-
Peer (P2P) file sharing applications. Millions of users1 col-
laborate in the distribution of digital content every day. As
traditional broadcasters transition to Internet distribution,
we can expect this number to increase significantly, which

1The Pirate Bay alone tracks more than 20 million peers at any given
time.

raises some concerns about the scalability and resilience of
the technology.
Our work is part of the P2P-Next[1] project, which is

supported by many partners including the EBU2 who claims
to have more than 650 million viewers weekly. In the face
of such load, scalability and resilience become vital compo-
nents of the underlying technology.
In BitTorrent, content is distributed in terms of objects,

consisting of one or more files, and these objects are de-
scribed by a torrent-file. The clients (peers) participating in
the distribution of one such object form a swarm.
A swarm is coordinated by a tracker, which keeps track

of every peer in the swarm. In order to join a swarm, a peer
must contact the tracker, which registers the new peer and
returns a list of other peers. The peer then contacts the peers
in the swarm and trades pieces of data with them.
The original BitTorrent design used centralized trackers,

but to improve scalability and resilience, distributed track-
ers have been deployed and currently exist in two flavors:
Mainline DHT and Azureus DHT. Both of them are based
on Kademlia[11], a distributed hash table (DHT). Kadem-
lia is also the basis of Kad[17], used by the competing P2P
application eMule3.
Kademlia’s properties and performance have been thor-

oughly analyzed theoretically as well as in lab settings.
Kademlia’s simplicity is one of its strengths, making the-
oretical analysis simpler than that of other DHTs. Further-
more, simulations such as [9] show that Kademlia is robust
in the face of churn4.
When we analyze previous measurements on three

Kademlia–based DHTs, we find that Kad, eMule’s im-
plementation of Kademlia, has demonstrated good per-
formance [17], while the two Kademlia-based BitTorrent
DHTs (Mainline DHT and Azureus DHT) show very poor
performance [7]. While lookups are performed within 5

2European Broadcasting Union
3http://www.emule-project.net/ (last accessed April 2009)
4Defined in Section 3

seconds 90% of the time in Emule’s Kad, the median lookup
time is around a minute in both BitTorrent DHTs.
One of the main differences between Kad and the other

two implementations is how they manage nodes running be-
hind NAT or firewall devices. Kad attempts to exclude such
nodes from the DHT. On the other hand, neither of the Bit-
Torrent’s DHT implementations have such mechanisms.
Evidence suggests that some connectivity artifacts on de-

ployed networks were not foreseen by DHT designers. For
instance, Freedman et al. [8] show how non-transitivity in
PlanetLab degrades DHT’s performance (includingKadem-
lia). These connectivity artifacts exist on the Internet as
well, as our experiments will show.
Guarded hosts, hosts behind NATs and firewalls [19],

are well-known in the peer-to-peer community for caus-
ing connectivity issues. Different devices and configu-
rations produce different connectivity artifacts, including
non-transitivity.
This evidence leads us to believe that DHT implementa-

tions which consider and counteract guarded hosts’ effects
are expected to perform better than those that do not.
The ultimate test of this hypothesis would be checking

whether guarded host’s connectivity artifacts significantly
affect Kademlia’s lookup performance. In order to do this,
we need to understand the characteristics of these connec-
tivity artifacts and their potential effects on the DHT rout-
ing. Then, we would be able to carry out an experiment
looking for these effects on the actual lookups.
In this paper, we focus on the definition and analysis

of these connectivity properties. We also underlay the po-
tential effects on the DHT performance. Although we do
not attempt to test whether guarded hosts actually degrade
lookup performance, an outline of the future work is pro-
vided in Section 6.
Mainline DHT, used for BitTorrent peer discovery, was

integrated into Tribler[13] —the integral component of the
P2P-Next project. The ultimate goal of this ongoing re-
search is to adapt the Mainline DHT to the non-ideal In-
ternet environment, while keeping backward compatibility
with the millions of nodes already deployed. Thus, we focus
our experiments on the Mainline BitTorrent DHT nodes.
We model nodes’ connectivity according to three prop-

erties: reciprocity, transitivity, and persistence. This taxon-
omy in itself is one of the contributions of this paper, since
it provides the language needed to reason about and spec-
ify the connectivity assumptions made by DHT designers
and deployers. For every property, we discuss the possible
cause and its potential effects on Kademlia.
In our experiments, the connectivity properties of more

than 3 million DHT nodes are studied. We find that most
of the connectivity patterns observed correlate to common
NAT and firewall configurations.
The following section provides an overview of Kademlia

and guarded hosts. In Section 3 the potential effects of the
connectivity artifacts are discussed. We present our exper-
iment in Section 4, discuss the results in Section 5, outline
the future work in Section 6 and conclude in Section 7.

2 Background

In this section we give the background needed to under-
stand the experiments and the results. We provide basic in-
formation regarding Kademlia’s routing table management
and its lookup routing algorithm. In the second part, we
overview the generic behavior found on most common con-
figurations of NATs and firewalls.

2.1 Kademlia

Kademlia[11] is a DHT design which has been widely
deployed in BitTorrent and other file sharing applications.
When used as a BitTorrent distributed tracker, Kademlia’s
objectIDs are torrent identifiers and values are lists of peers
in the torrent’s swarm.
Each node participating in Kademlia obtains a nodeID,

whereas each object has an objectID. Both identifiers con-
sist of a 160-bit string. The value associated to a given
objectID is stored on nodes whose nodeIDs are closest to
the objectID, where closeness is determined by perform-
ing a XOR bitwise operation on the nodeIDs and objectID
strings.
Every node maintains a routing table. The routing table

is organized in k-buckets, each covering a certain region of
the 160-bit key space. Each k-bucket contains up to k nodes,
which share some common prefix of their identifiers. New
nodes are discovered opportunistically and inserted into the
appropriate buckets as a side-effect of incoming queries and
outgoing lookup messages.
Kademlia makes use of iterative routing to locate the

value associated to the objectID, which is stored on the
nodes whose nodeIDs are closest to the objectID. The node
performing the lookup queries nodes in its routing table —
those whose nodeIDs are closest to the objectID. Each of
those nodes returns a list of nodes whose nodeIDs are closer
to the objectID. The node continues to query newly discov-
ered nodes until the result returned is the value associated
to the objectID. This value, when using Kademlia as a Bit-
Torrent tracker, is a list of peers.

2.2 Guarded Hosts

NATs and firewalls are important components of the net-
work infrastructure and are likely to continue to be de-
ployed. According to a recent paper [12], two thirds of all
peers are behind NATs or firewalls in open BitTorrent com-
munities. Despite the fact that different firewalls and NATs

can have different configurations, the most common types
are overviewed in this subsection.
Note that we just focus on UDP connectivity since the

Mainline BitTorrent DHT uses UDP as transport protocol.

2.2.1 Firewalls

A guarded host located behind a firewall is able to send
outgoing packets but may be unable to receive incoming
packets. Though several firewall configurations are de-
ployed, in this paper, we consider the simplest case where
outgoing packets are forwarded but the incoming packets
are dropped. In such a scenario, the connectivity is non-
reciprocal, and the internal host is able to send but not re-
ceive any packet.

2.2.2 NAT Behavior

NAT behavior is more complex. A host behind a NAT is
able to send packets to hosts on the other side of the NAT.
The NAT device, in turn, keeps track of the packets sent by
the internal host in its table, in the form of entries that expire
within a certain timeout. When the external host replies, the
NAT box checks the reply against its address translation ta-
ble, before routing the reply back to the internal host. For as
long as the entry remains in the NAT table, the two hosts are
able to communicate, and the communication, according to
our property definitions in Section 3, is said to be persistent.
The entries in the NAT table are either removed when

they timeout or when new entries replace the old ones.
Since the DHT nodes contact many other nodes, it is ex-
pected that NAT tables can fill up rather quickly.

2.2.3 NAT Timeouts

Recent measurements of NAT/firewall characteristics in the
Tribler system5 reveal that the average NAT timeout value
is 2 minutes for more than 60% of the NATed hosts stud-
ied. Moreover, the IETF RFC 4787 [3] specifies that a NAT
UDP entry should not expire in less than two minutes; it also
recommends a default value of 5 minutes or more for each
entry. However, since NAT behavior is not really standard-
ized, applications must be extremely conservative, in order
to cope with the large variation of (observed) behaviors.
When the entries are removed from the table, the external

hosts are unable to reach the internal host, since NAT boxes
discard all incoming packets for which they find no match
in their table entries. From the perspective of an external
host, the internal host is no longer reachable, while in fact,
the internal host continues to listen behind the NAT box.
Consequently, the size-limited tables or short timeouts of
NAT devices may break persistence.

5https://www.tribler.org/trac/wiki/NATMeasurements (last accessed
June 2009)

2.2.4 NAT Configuration

Usually, the NAT (or firewall) device behind which the node
is sitting is under the control of the user. Most of the issues
created by them can be resolved, or at least mitigated to a
large extent, by proper configuration. In many cases, this
is as simple as enabling Universal Plug and Play-support[2]
(UPnP) in the NAT-box, and have the DHT implement a
UPnP-client to correctly setup forwarding.
Alternatively, the DHT application could provide the in-

formation needed by the user to manually configure the
NAT to forward UDP traffic.

2.2.5 STUN

When participating in the DHT, a node will keep a routing
table with pointers to other DHT nodes. Additionally, it
will be a tracker for a small number of BitTorrent objects.
The role of a node in DHT is to receive queries from other
nodes —either updating routing information or performing
DHT lookups. In either case, this is a very light weight
computational operation.
Session Traversal Utilities for NAT[16] (STUN) may ini-

tially seem like an option for dealing with NAT traversal.
STUN is certainly possible to implement, and perfectly rea-
sonable for setting up VoIP streams and other long-term
communications. However, unlikeVoIP streams, DHTmes-
sages are very short-term communications (usually a single
query/response) and the number of connections to different
nodes is high (commonly a few hundred).
For the DHT as a whole, we argue that the cost of using

STUN to reach an otherwise unreachable node exceeds the
benefit gained by having that node participate in the DHT.

3 Dissecting Churn — Property Definitions

In a DHT, any node can join or leave the DHT at any
moment. Churn is measured as the number of nodes joining
and leaving the DHT during a given period of time, and is
thus an indicator of how dynamic a DHT network is.
Since each node needs to keep its routing table updated

and accurate, a maintenance overhead is associated with
churn. That is why counteracting churn is so important
when designing and deploying a DHT.
Much research has been done on DHT performance in

presence of churn [15, 18]. Our hypothesis, however, is
that a large fraction of the reported churn in deployed DHTs
is caused by connectivity artifacts. Unlike real churn, this
apparent churn follows certain patterns which may be used
to identify it and, potentially, eliminate it.
Although we have not attempted to perform similar ex-

periments on other Kademlia-based implementations, we
expect that our findings hold for all implementations which

 






Figure 1. Non-reciprocal connectivity

do not have explicit mechanisms in place to mitigate
guarded nodes’ effects on the DHT.
In the next subsections, we define the three connectivity

properties we have identified, along with the percentage of
DHT nodes exhibiting them in the measurements we have
performed. We also examine plausible reasons why a large
fraction of nodes are missing one or more of these proper-
ties, and how this will impact the performance of the DHT.
Throughout the subsections, the numbers accompanying

the protocol descriptions refer to the message exchange or-
der and match the numbers in the corresponding figures.

3.1 Non-reciprocal Connectivity May
Create Apparent Churn

On the open Internet, it is assumed that if node A can
establish a connection to node B, then node B can establish
a connection to node A, i.e., connectivity is reciprocal. Our
experiments, however, reveal that just 80% of the nodes
exhibit reciprocal connectivity. Firewalls and NATs which
forward outgoing, but drop incoming, packets are the likely
cause.
Figure 1 depicts the non-reciprocity of the connectivity

between A and B. In this scenario, A is the node behind a
firewall and the one to initiate the connection with B (1). B
assumes the connectivity to be reciprocal and thus inserts A
in its routing table.
After a while, when refreshing the buckets in the routing

table, node B finds that A no longer replies to its queries.
After several failed attempts to reach A (2), B regards A as
unreachable and therefore removes it from the routing table.
After being removed from the routing table, A may send

a new query to B. As before, B would consider A a good
candidate for its routing table and therefore start the process
over again.

3.2 Non-transitive Connectivity May
Break Lookup Routes

On the Internet, there is a general assumption of transi-
tivity, meaning that if node A can reach node B, then any
node that can reach B will also be able to reach A. NATs
and firewalls break this assumption, and in fact, less than
40% of the nodes analyzed have transitive connectivity.

 







Figure 2. Non-transitive connectivity

 








Figure 3. Non-persistent connectivity

Figure 2 illustrates the case, where node A, which is
located behind a NAT, causes non-transitive connectivity.
When node A sends a query to B (1), B replies back and
adds A to its routing table. Later, when node C is perform-
ing a lookup, it queries B (2) and B replies with a reference
node from its routing table (3), which in this case is A. On
the next lookup step, node C sends a query to A (4), but re-
ceives no reply. If the connectivity were transitive, C would
have been able to reach A, but in this case, C will eventually
wait for a timeout—confirming that A is unreachable—and
attempt to use an alternate node. Or, formally expressed: C
can reach B (2), B can reach A (reply to 1), but C is not able
to reach A.
DHTs employing iterative routing, such as Kademlia, are

affected by non-transitive connectivity. Concretely, non-
transitive connectivity breaks lookup routes.

3.3 Non-persistent Connectivity May
Create Apparent Churn

Persistence is a more vague concept. We say that A node
exhibits persistent connectivity if it can be reached all the
way from the moment it joins until it leaves the DHT.
As explained in Section 2.2, NATs are known to cause

ephemeral connectivity. In Figure 3, the connectivity be-
tween node A and B is a non-persistent one, where A is
located behind a NAT.
Immediately after node A sends a message to B (1), node

A is able to receive messages from B (2). Assuming that A
does not leave the DHT, B should be able to reach A at any
given time. In this case, however, the connection breaks
down and node B is unable to reach A (3).
This behavior could be explained in terms of generic

NAT behavior, as described in Section 2.2. The NAT en-
ables connectivity between A and B, but only for the period

of time when the entry in the NAT table is valid, after which
the connection is effectively broken.
In our experiments, slightly less than 44% of the nodes

were reachable during, at least, a five minute window.
Please note that some of the unreachable nodes could be
legitimately unreachable, i.e., due to actually leaving. Sim-
ilarly, some of the reachable nodes may have been reach-
able only because of communication from other nodes “re-
freshed” the relevant NAT table entry.

4 Experiment Description

In this experiment, DHT nodes’ reachability is analyzed
from three different vantage points. Every time a node sends
a query to one of our instrumented DHT nodes, queries are
sent from (1) the same IP and port number, (2) same IP but
different port number, and (3) a different IP.6 The process is
repeated after a period of 5 minutes.
The pieces of software developed are described in the

following subsections. Both source code and result logs are
available online.7
The setup consists of one PC running Ubuntu

GNU/Linux. This computer is assigned 17 IP ad-
dresses which are managed through virtual interfaces. re-
motechecker is associated with one of the virtual interfaces.
While an instrumented DHT node and a localchecker are
associated with each of the rest of virtual interfaces.
Our DHT nodes’ identifiers are chosen in a way that the

first four bits are different from each other. This “spreads
out” our nodes in the identifier space. The aim of this con-
figuration is to broaden the DHT identifier space coverage
in order to discover as many nodes as possible.
Figure 4 illustrates the reachability analysis process.

Numbers in the arrows indicate chronological order and are
referenced throughout the following subsections.

4.1 Rechability Checker

We have developed a piece of software called Reachabil-
ity Checker (RChecker). Rchecker checks and logs reacha-
bility information regarding a given DHT node.
Nodes are identified by their IP address and nodeID.

Nodes with different nodeIDs and same IP could be dif-
ferent nodes running on the same host or on different hosts
behind a common NAT. Nodes with the same nodeID and
different IP should not exist on the DHT. The latter nodes
exist, albeit in small numbers, and are considered in the re-
sults. When two queries are received from the same IP and
nodeID but different port, they are considered as coming
from the same node, and just the first instance is considered.

6The reference point is our modified DHT node (IP address and port).
7http://tslab.ssvl.kth.se/raul/p2p09/

 



 










Figure 4. Experiment setup

Subsequent queries from nodes that were already checked
are discarded.
Every time a node is to be checked, RChecker sends a

burst of queries to the node. Queries are sent every 5 sec-
onds, up to 5 times. Once RChecker receives a reply, a
reachable status is recorded and no more queries are sent.
This multiple querying should avoid recording reachable
nodes as unreachable due to temporary network conditions.
If no reply is received within one minute, an unreachable

status is recorded. Note that most of the BitTorrent Kadem-
lia implementations have a 20 seconds timeout. Some have
argued that 20 seconds is already too long and actually
harms lookup performance [7]. In this experiment, how-
ever, we have chosen such a long timeout because we want
to be able to detect network connectivity; even when the
round trip time is longer than a DHT implementation’s time-
out would be.
A second burst, identical to the one described above, is

sent 5 minutes later.

4.2 Instrumented DHT Node

We have instrumented Tribler’s implementation of
Kademlia8. The original code is modified to call RChecker
as needed. Additionally, the socket used by Kademlia is
passed to RChecker, so the queries are sent using the same
source IP and port.
Everytime a query is received (1) and the node has not

been already checked, the node’s information (IP, port,
ID) is sent to localchecker and remotechecker (2). Then,
RChecker is called in order to check the node’s reachability
using the same IP and port as the DHT node (3).

4.3 Localchecker

Every localchecker is listening to the instrumented DHT
node sharing the same virtual interface —i.e., both have the
same IP address. Every time localchecker receives informa-
tion from the instrumented DHT node (2), it calls RChecker
to check the node’s reachability from the same IP address as
the DHT node but different port (4).

8http://svn.tribler.org/khashmir/ (last accessed June 2009)

Table 1. Experiment results and possible
causes

Pattern Nodes (%) Possible cause(s)
UUU-UUU 10.6 Firewall
RUU-UUU 31.3 Port restricted cone
RUU-RUU 2.8 and symmetric NAT
RRU-UUU 0.8 Restricted cone NAT
RRU-RRU 2.0
RRR-UUU 2.7 Full cone NAT

and real churn
RRR-RRR 35.5 Open Internet
UUU-RRR 7.6 Behavior not matched
RRU-RRR 1.7
Other 5 Rest of the cases

4.4 Remotechecker

The single remotechecker listens to every instrumented
DHT node. Every time remotechecker receives informa-
tion from the DHT node (2), it calls RChecker to check the
node’s reachability from an IP address which is different
from the one used by the instrumented DHT node (5).

5 Experiment Results

During 24 hours of running the experiment, 3,683,524
unique nodes were observed. Table 1 shows the observed
connectivity patterns along with the NAT or firewall types,
matching the pattern and the percentage of nodes.
The notation used throughout this section is XXX-XXX,

where the X can be either R (reachable) or U (unreachable).
The connectivity fingerprint of each checked node can be
represented by this 6-character string.
The first character accounts for the reachability of the

node from the instrumented DHT node (same IP and same
port). The second character represents the reachability of
the node from localchecker (same IP but different port).
Likewise, the third one indicates wheather the node is reach-
able or not from the remotechecker (different IP).
The last three characters follow the same structure, how-

ever, they represent node’s connectivity after a 5 minute pe-
riod.

5.1 Analysis

More than 10% of the nodes are globally unreachable
(UUU-UUU). They are able to send messages — our modi-
fied DHT node received at least one query from them. They
are, however, unable to receive messages from any of our

vantage points. This connectivity pattern matches the fire-
wall behavior, configured to let outgoing messages through
but drop incoming messages.
A large percentage of the nodes in the DHT population

are only partially reachable. Typically, they can be reached
only under certain circumstances. We argue that NATs are
the main cause of this partial reachability of nodes.
As explained in Section 2.2, NAT devices have a time-

out parameter which make stale entries expire after a given
period of time. In table 1, NAT types have two associated
observed patterns. The former matches the case when the
NAT entry expires within 5 minutes, therefore, the node is
unreachable the second time it is checked. In the latter, the
NAT timeout is longer than 5 minutes. Notice that a full
cone NAT, whose entry has not expired, matches the open
internet behavior.
More than 34% of the nodes are reachable from our

modified DHT node, but neither from localchecker nor
remotechecker (RUU-RUU and RUU-UUU). This behavior
matches port restricted cone and symmetric NAT types.
These NAT types register outgoing connections that are ini-
tiated by an internal host. An incoming packet is only for-
warded to the internal host if both the IP and port of the
external host match the NAT’s entry. Packets coming from
the same IP but different port (localchecker) or a different
IP (remotechecker) are discarded by the NAT device.
About 3% of the nodes are reachable from our modi-

fied DHT node and the localchecker but not from the re-
motechecker (RRU-UUU and RRU-RRU). The plausible ex-
planation is that the node is behind a restricted coneNAT, in
which case, the incoming packets are forwarded only when
the IP address of the external host matches the NAT’s entry.
Therefore, packets coming from our modified DHT node
and the localchecker (same IP) are received by the analyzed
node, while those from the remotechecker are dropped.
Less than 3% of the nodes in the DHT are reachable

from the instrumented DHT, the localchecker and the re-
motechecker during the first time when testing their con-
nectivity (RRR-UUU). However, the nodes are globally un-
reachable when checked after a period of 5 minutes. The
probable cause of this pattern is a full cone NAT, whose
corresponding entries in the NAT table have expired within
the testing period. This case will be further discussed in this
section.
Approximately 35.5% of the DHT nodes are globally

reachable. They are reachable from all of our vantage points
before, as well as, after the 5 minute waiting period.
Finally, we show two patterns that do not match any of

the expected behaviors but represent more than 1% each.
They are UUU-RRR (7.6%) and RRU-RRR (1.7%). These
cases remain open for further research.

Figure 5. Properties Chart

5.2 Correlation between Transitivity and
Persistence

Figure 5 depicts transitivity (RXR-XXX) and persistence
(RXX-XXX) as subsets of reciprocity (RXX-XXX). We also
notice the significant overlap between transitivity and per-
sistence. This overlap was indeed expected since NAT
devices commonly cause both non-transitivity and non-
persistence, as previously discussed. Furthermore, some of
the cases exhibiting persistence and non-transitivity might
be due to long NAT table timeouts or casual messages –
“refreshing” the right NAT table entry.
Based on the above observations, we can formulate the

heuristic that if a node’s connectivity is known to be transi-
tive, it is very likely to be persistent as well, and vice versa.
By applying this heuristic, we may be able to use a less ex-
pensivemethod of testing connectivity, without a significant
loss of accuracy.

5.3 Apparent & Real Churn

Since we identify the nodes’ properties from an out-
sider’s point of view, we do not know what connectivity
properties a given node actually has. This fact complicates
the task of differentiating apparent churn from nodes effec-
tively leaving the DHT (i.e., real churn).
We can certainly say that any node which replies to one

or more of our venture points after the 5 minute period,
has not left the DHT. Therefore, connectivity patterns in
the XXX-UUU category might be caused by nodes actually
leaving the DHT. This category accounts for 45.6% of the
nodes.
The UUU-UUU pattern (10.6%) belongs to this category.

These nodes fail to reply to us immediately after they have
sent us a query9. Since the time is so short (a UDP round
trip) we can assume that very few nodes, if any, would have
left the DHT within such extremely short period. Instead,
we argue that this is apparent churn caused by firewalls.
Another interesting pattern is RRR-UUU (2.7%). This

pattern may be caused by full coneNAT which forwards the
traffic to the internal host regardless of the source’s IP ad-
dress, but the NAT entry would expire within the 5-minutes

9The query triggers the reachability check.

window. However, according to our observations, DHT
nodes constantly receive and send messages which refresh
the NAT entries, thus making the connections effectively
open, given a long enough NAT timeout. This fact makes
us believe that a good part of these cases corresponds to real
churn —i.e., nodes in the open Internet which have left the
DHT within the 5-minutes window.
The case which accounts for most of the nodes in the

XXX-UUU category is RUU-UUU (31.3%). The fact that
these nodes have limited connectivity in the first place
makes them unfit to carry out DHT tasks. Therefore, DHT
implementations that avoid adding nodes with limited con-
nectivity into the routing tables, will most likely not experi-
ence the churn issues caused by NATs, notoriously reducing
DHT’s churn.

6 Related and Future Work

6.1 Dealing with Limited Connectivity
Nodes

As previously stated, our hypothesis is that limited con-
nectivity often is a result of an improperly configured
NAT/firewall. The very first step towards dealing with lim-
ited connectivity should thus be to properly document the
requirements of the client, and to make it easy to configure
and test port forwarding in the NAT/firewall for the client.
Still, the DHT must be able to cope with the prob-

lems limited connectivity nodes pose, and we have seen in
Emule’s Kad [17] that fairly simple modifications to exist-
ing DHT implementations can go a long way towards miti-
gating the effects of limited connectivity.
Many of the proposals and perfomed simulations have

mainly tried to mitigate the negative effects and improve
the overall performance of the DHT, but none has addressed
the underlying problem. Moreover, their benefits come at
the cost of other performance factors, mainly bandwidth
consumption. We find examples of such improvements in
[7, 4, 9]:

• Check node’s reachability before adding it to the rout-
ing table.

• Reduce timeout value or implement adaptive timeouts.

• Increase lookup parallelism.

• Increase the refresh rate, such that dead nodes are dis-
covered earlier.

• Implement an “extended table” or bigger size routing
tables, such that the probability of having fresh entries
in the routing table increases.

• Maintain small and fresh routing tables, by removing
neighbors whose estimated probability of being alive
is below some calculated threshold [10].

The above parameter fine-tunings should be considered
in the widely-deployed Kademlia DHT, where millions of
users simultaneously participate today and tens of millions
of users may participate in the near future. The increase
in user participation implies larger routing tables, and a po-
tentially exponential growth in the number of maintenance
messages. The proposed tweaks requiring additional mes-
sages would exacerbate this growth, and may prove an ob-
stacle to DHT scalability. Tweaks that only require local re-
sources, i.e., memory and processing, are much more likely
to scale, and will benefit from Moore’s Law.
Another approach is to try to determine the specific prop-

erties of hosts before adding them to the routing table, see
the discussion in Section 3. Rhea proposes a set of mea-
surements in order to counteract the effects of non-transitive
connectivity on OpenDHT [14].
As our experiment demonstrates, the connectivity prop-

erties essential to a DHT of a given node can be determined.
Reciprocity is easily detected by sending a single query,
while checking transitivity is more complex to detect. The
strategy used in our experiments relied on multiple IP ad-
dresses being available to the test host, but we can’t expect
a normal DHT node to have access to more than a single IP
address.
While one DHT node could use another node as re-

motechecker, letting it relay queries and report the reach-
ability status, this opens a whole new can of worms. For
example, this mechanism could be exploited for DDoS10
attacks.
Nevertheless, localchecker can be easily implemented

and deployed without the need of several IP addresses per
host or additional trust. In fact, localchecker is able to cor-
rectly identify most of the non-transitive connectivity cases.
Based on our results, only 4.6% of them are detected by re-
motechecker but not by localchecker. Thus, if only the local
mechanisms were to be applied, we would still vastly im-
prove the quality of nodes in the routing table. Furthermore,
we would avoid introducing excessive complexity and secu-
rity vulnerabilities.
An additional mechanism that would improve the qual-

ity of the routing table content is to quarantine new nodes
before adding them to the routing table. This gives enough
time to perform a second reachability check in order to de-
termine whether the candidate node’s connectivity is persis-
tent, similarly to the approach used in our experiment.
As seen previously in Figure 5, transitivity and persis-

tence are correlated but do not completely overlap. There-
fore, either localchecker or quarantine alone would identify
10DDoS stands for Distributed denial of service.

most of the limited connectivity nodes, but a combination
of both would correctly classify the vast majority of nodes,
thus increasing the detection effectiveness.
The mechanisms described above can be combined with

a policy that is consistent with our discussion in 2.2.5 —
where guarded nodes are not allowed to join the DHT. In
Kad, however, the node will instead find a DHT node to use
as a proxy. While this approach has been used in a fairly
large deployment, it moves load and responsibility to nodes
already in the DHT, thus adding complexity by requiring a
separate proxy mechanism/protocol.
A policy similar to the one used in StealthDHT[5] might

be more appropriate. According to StealthDHT, nodes par-
ticipating in the DHT are separated in two categories: ser-
vice nodes and stealth nodes. Service nodes perform routing
and value storage tasks, while stealth nodes are not involved
in any active task but are able to maintain their own routing
tables and perform lookups.
We would like to take a further step and add concep-

tual as well as practical separation. Nodes which are able
to, will be part of the DHT and act as a service node, han-
dling routing and storage of values. Nodes with limited con-
nectivity will only be clients. As such, they will perform
their own lookups using DHT nodes, and they may even
cache information locally, but they will never be contacted
by other nodes. Finally, notice that, due to Kademlia’s it-
erative routing, service nodes only need to reply to simple
queries, while DHT clients can initiate and keep track of the
lookup’s state on their own.

6.2 Future Work

We have argued that the large percentage of DHT nodes
having limited connectivity has repercussions on the DHT
performance. They become passive participants of the rout-
ing tables, only causing delays and stale entries.
At the most basic level, Emule’s Kad implementation

tries to detect nodes that don’t reply to queries, and com-
pletely excludes them from the DHT. However, since we
can find no references to how or why this was done, we are
unable to determine whether this was an ad hoc solution, or
it was the result of careful design based on a study similar
to ours.
In this paper, we have studied the connectivity properties

of nodes by deploying a set of DHT nodes and studying the
properties of nodes which exchange messages with them.
However, the fact that guarded hosts exist, and are active in
the DHT, is not a problem per se. It is only when routing
tables are effectively poisoned that lookup performance de-
clines. A logical next step would thus be to take inventory
of the routing tables of DHT nodes “in the wild”, and find
out to what extent guarded nodes actually end up in routing
tables.

Furthermore, our ultimate goal is to use the knowledge
we have gained from this research to repair and improve the
DHT performance. As dissussed in the previous subsec-
tion, that would include designing mechanisms that iden-
tify/remove limited connectivity nodes from the routing ta-
ble, and prevent such nodes from being added in the first
place.
Finally, it could be instructive to compare the “pollution

rate”11 in the routing tables of different DHTs, such as the
Mainline and Azureus DHT, as well as eMule’s Kad.

7 Conclusion

In this paper, we have defined a set of properties which
provides the language needed to spell out the assumptions
made by DHT designers and deployers. These proper-
ties were not explicitly considered in the original Kadem-
lia design. Instead, their effects were only discovered when
DHTs were deployed and faced with the non-ideal connec-
tivity artifacts in the real world.
We have studied over 3 million BitTorrent Mainline

DHT nodes’ connectivity according to these properties. The
results point to the generalized presence of NAT and firewall
devices causing connectivity issues in the DHT. In fact, only
around one third of the nodes analyzed have “good connec-
tivity” —i.e. reciprocal, transitive, and persistent.
Finally, we do not propose a stopgap solution for poor

DHT performance. Instead, we offer the taxonomy to ex-
plicitly specify the DHT’s connectivity assumptions and the
toolkit to determine whether those assumptions are met.
Our long-term ambition is to enable ourselves and others
to design and implement DHTs where the underlying prob-
lems are addressed, instead of just tweaking parameters and
adding kludges to handle the symptoms.

Acknowledgment

The research leading to these results has received fund-
ing from the Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 21617 (P2P-Next).
We would like to thank Lucia d’Acunto, Delft Univer-

sity, The Netherlands, for providing us with preliminary re-
sults of her experiments on NATs.

References

[1] P2P-Next Project. http://www.p2p-next.org/ (last accessed
June 2009).

[2] UPnP Forum. Internet Gateway Device (IGD) V 1.0.
http://www.upnp.org/ (last accessed June 2009).

11Number of limited connectivity nodes versus the total number of
nodes in the routing table.

[3] F. Audet and C. Jennings. Network Address Translation
(NAT) Behavioral Requirements for Unicast UDP. Tech-
nical report, BCP 127, RFC 4787, January 2007.

[4] A. Binzenhfer, H. Schnabel, A. Binzenhfer, and H. Schn-
abel. Improving the performance and robustness of
kademlia-based overlay networks, 2007.

[5] A. Brampton, A. MacQuire, I. A. Rai, N. J. P. Race, and
L. Mathy. Stealth distributed hash table: a robust and flex-
ible super-peered dht. In CoNEXT ’06: Proceedings of the
2006 ACM CoNEXT conference, pages 1–12, New York,
NY, USA, 2006. ACM.

[6] B. Cohen. Incentives Build Robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer Systems, volume 6.
Berkeley, CA, USA, 2003.

[7] S. A. Crosby and D. S. Wallach. An analysis of bittorrent’s
two kademlia-based dhts, 2007.

[8] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Sto-
ica. Non-transitive connectivity and dhts. In In Proc. of the
2nd Workshop on Real Large Distributed Systems, 2005.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek.
Comparing the performance of distributed hash tables under
churn. In In Proc. IPTPS, 2004.

[10] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek.
Bandwidth-efficient management of dht routing tables. In
NSDI, 2005.

[11] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. pages 53–65,
2002.

[12] J. Mol, J. Pouwelse, D. Epema, and H. Sips. Free-Riding,
Fairness, and Firewalls in P2P File-Sharing. In Proceedings
of the 2008 Eighth International Conference on Peer-to-Peer
Computing-Volume 00, pages 301–310. IEEE Computer So-
ciety Washington, DC, USA, 2008.

[13] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Iosup, D. H. J. Epema, M. Reinders, M. R. van Steen,
and H. J. Sips. Tribler: a social-based peer-to-peer sys-
tem: Research articles. Concurr. Comput. : Pract. Exper.,
20(2):127–138, 2008.

[14] S. Rhea. OpenDHT: A Public DHT Service. PhD thesis,
UNIVERSITY OF CALIFORNIA, 2005.

[15] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. In ATEC ’04: Proceedings of the annual
conference on USENIX Annual Technical Conference, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[16] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy.
STUN-simple traversal of user datagram protocol (UDP)
through network address translators (NATs). Technical re-
port, March 2003. RFC 3489.

[17] M. Steiner, T. En-Najjary, and E.W. Biersack. A global view
of kad. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 117–122, New
York, NY, USA, 2007. ACM.

[18] D. Stutzbach and R. Rejaie. Understanding churn in peer-
to-peer networks. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages
189–202, New York, NY, USA, 2006. ACM.

[19] W. Wang, H. Chang, A. Zeitoun, and S. Jamin. Charac-
terizing guarded hosts in peer-to-peer file sharing systems.
In IEEE GLOBECOM Global Internet and Next Generation
Networks Symposim, 2004.

Paper C

Chapter 9

Sub-Second Lookups on a
Large-Scale Kademlia-Based
Overlay

R. Jimenez, F. Osmani, B. Knutsson

In the 11th IEEE International Conference on Peer-to-Peer Computing 2011 (P2P’11)
Aug. 30 – Sept. 2, 2011, Kyoto, Japan

© 2011 IEEE. Reprinted with permission.

Sub-Second Lookups on a Large-Scale
Kademlia-Based Overlay

Raul Jimenez, Flutra Osmani and Björn Knutsson
KTH Royal Institute of Technology

School of Information and Communication Technology
Telecommunication Systems Laboratory (TSLab)

{rauljc, flutrao, bkn}@kth.se

Abstract—Previous studies of large-scale (multimillion node)
Kademlia-based DHTs have shown poor performance, measured
in seconds; in contrast to the far more optimistic results from
theoretical analysis, simulations and testbeds.

In this paper, we unexpectedly find that in the Mainline
BitTorrent DHT (MDHT), probably the largest DHT overlay on
the Internet, many lookups already yield results in less than a
second, albeit not consistently. With our backwards-compatible
modifications, we show that not only can we reduce median
latencies to between 100 and 200 ms, but also consistently achieve
sub-second lookups.

These results suggest that it is possible to deploy latency-
sensitive applications on top of large-scale DHT overlays on the
Internet, contrary to what some might have concluded based on
previous results reported in the literature.

I. INTRODUCTION

Over the years, distributed hash tables (DHTs) have been
extensively studied, but it is only in the last few years that
multimillion node DHT overlays have been deployed on the
Internet. To our knowledge, only three DHT overlays (all of
them based on Kademlia [1]) consist of more than one million
nodes: Mainline DHT (MDHT), Azureus DHT (ADHT), and
KAD. The first two are independently used as trackers (peer
discovery mechanisms) by BitTorrent [2], while KAD is used
both for content search and peer discovery in eMule (a widely
used file-sharing application).

KAD has been thoroughly studied [3], [4], [5]. Stutzbach
and Rejaie [3] reduced median lookup latency to approxi-
mately 2 seconds (with a few lookups taking up to 70 seconds).
Steiner et al. [4] focused solely on lookup parameters, provid-
ing useful correlations between parameter values and lookup
latency. Their modest achieved lookup performance (lowest
median lookup latency at 1.5 seconds), authors discovered,
was not due to shortcomings in Kademlia or the KAD protocol
but due to limitations in eMule’s software architecture.

In this paper, we focus on Mainline DHT which, with up
to 9.5 million nodes1, is probably the largest DHT overlay
ever deployed on the Internet [6]. In 2007, a study of the then
most popular node implementation in MDHT reported median
lookup latencies around one minute [7] and, to our knowledge,
no systematic attempts to improve lookup performance have
been reported.

1A real-time estimation is available at
http://dsn.tm.uni-karlsruhe.de/english/2936.php (June 2011)

Lookup latency results for MDHT, KAD and ADHT [7],
[8] are disappointing considering the rather promising latency
figures —in the order of milliseconds— previously reported in
studies using simulators and testbeds [9], [10]. Our main goal
is to improve lookup performance in MDHT, thus closing the
gap between simulators and real-world deployments.

To measure and compare performance, we developed a
profiling toolkit able to measure different node properties
(lookup performance and cost among others) by parsing the
network traffic generated during our experiments. This toolkit
is capable of profiling any MDHT node, including closed-
source, without the need of its instrumentation.

We profiled the closed-source µTorrent (also called UTor-
rent) implementation, currently the most prevalent MDHT
implementation with 60% of the nodes in the overlay. Our
results show that UTorrent’s performance is unexpectedly
good, with median lookup latencies well under one second.

UTorrent’s performance does not, however, fulfill the de-
mands of latency-sensitive applications such as the system
that motivated this work (see Section II) because more than a
quarter of its lookups take over a second. Thus, in an attempt to
further reduce lookup latency, we developed our own MDHT
node implementations.

In this paper, we show that our best node implementations
achieve median lookup latencies below 200 ms and sub-second
latencies in almost every single lookup, meeting our system’s
latency requirements.

The rest of the paper is organized as follows. The back-
ground is presented in Section II. Section III introduces the
profiling toolkit. Section IV describes our MDHT node imple-
mentations while Section V discusses routing modifications.
Section VI presents the experimental setup, Sections VII
and VIII report the results obtained, Section IX briefly presents
related work, and Section X concludes.

II. BACKGROUND

The work presented in this paper is part of the P2P-Next
project2. This project’s main aim is to build a fully-distributed
content distribution system capable of streaming live and on-
demand video. Unlike file sharing applications, this is an
interactive application, and thus reducing perceived latency

2http://p2p-next.org/ (June 2011)

(e.g., the time it takes to start playback of a video after
the user selects it) to a level acceptable by users is of great
importance [11].

This system uses BitTorrent [2] as transport protocol and a
DHT-based mechanism to find BitTorrent peers in a swarm.
To avoid confusion, the following terms are defined here:
BitTorrent peers (or simply peers) are entities exchanging
data using the BitTorrent protocol; a swarm is a set of peers
participating in the distribution of a given piece of content;
and DHT nodes (or nodes for short) are entities participating
in the DHT overlay and whose main task is to keep a list of
peers for each swarm.

Our work is not, however, restricted to BitTorrent or video
delivery. One can imagine more demanding systems, for in-
stance, a DHT-based web service capable of returning services
(e.g. a web page) quickly and frequently. CoralCDN [12] is
a good example of such a service, although its scale is much
smaller.

Our hope is that our results will encourage researchers and
developers to deploy new large-scale DHT-based applications
on the Internet.

A. Kademlia

Kademlia [1] belongs to the class of prefix-matching DHTs,
which also includes other DHTs like Tapestry [13] and Pas-
try [14].

In Kademlia, each node and object are assigned a unique
identifier from the 160-bit key space, respectively known as
nodeID and objectID. Pairs of (objectID, value) are stored
on nodes whose nodeID are closest to the objectID, where
closeness is determined by performing an XOR bit-wise
operation. In BitTorrent, an objectID is a swarm identifier
(called infohash) and a value is a list of peers participating
in a swarm.

A lookup traverses a number of nodes in the DHT overlay,
each hop progressing closer to the target objectID. Each node
maintains a tree-based routing table, containing O(log n)
contacts (references to nodes in the overlay), such that the total
number of lookup hops does not exceed O(log n), where n
is the network size. The routing table is organized in buckets,
where each bucket contains up to k contacts sharing some
common prefix with the routing table’s owner. Each contact
in the bucket is represented by the triple (nodeID, IP address,
port).

New nodes are discovered opportunistically and inserted
into appropriate buckets as a side effect of incoming queries
and outgoing messages. To prevent stale entries in the routing
table, Kademlia replaces stale contacts —nodes that have been
idle for longer than a predefined period of time and fail to reply
to active pings— with newly discovered nodes.

To locate nodes close to a given objectID, the node perform-
ing the lookup uses iterative lookup from start to finish. This
node queries nodes from its routing table whose identifiers
have shorter XOR distances to the objectID, and waits for
responses. The newly discovered nodes —included in the
responses— are then queried during the next lookup step.

Kademlia makes use of parallel routing to send several parallel
lookup requests, in order to decrease latency and the impact
of timeouts. Lookup terminates when the closest nodes to the
target are located.

B. Improving Lookup Performance

Given Kademlia’s iterative lookup, lookup performance can
be greatly enhanced by modifying the initiating node alone,
without the need of changing any other node in the overlay.
Thus, modified nodes can be deployed at any moment, setting
the path for experimentation and incremental deployment of
“better”, yet backward-compatible, node implementations.

Researchers have proposed various approaches to increase
overall lookup performance in iterative DHTs, while keeping
costs relatively low. Parallel lookups and multiple replicas
are two parameters that have often been fine-tuned to reduce
the probability of lookup failures and alleviate the problem
of stale contacts in routing tables, which in turn, increase
DHT performance. Various bucket sizes, various-length prefix
matching (known as symbol size) and reduced —usually RTT-
based— timeout values have also been investigated as means
of improving the overall performance.

We discuss some of these improvements in detail in Sec-
tion IV and V, where we present the modifications we have
deployed and measured.

III. PROFILING MDHT NODES

In a DHT overlay, nodes are independent entities that collab-
orate with each other in order to build a distributed service.
A DHT protocol defines the interaction between nodes, but
provides significant latitude in how to implement it. Indeed, the
Mainline DHT protocol specification [15] leaves many blanks
for the implementer to fill in as best as he can.

It follows naturally that many different node implemen-
tations will coexist in the MDHT overlay. Some, developed
by commercial entities (e.g., Mainline and UTorrent), others
cooperatively as open source projects (e.g., Transmission and
KTorrent). Even though they have been developed to coexist,
significant differences in their behavior can be observed, parts
just accidents of separate development, others the result of
making different trade-offs.

From our initial studies of Mainline DHT, we had observed
diversity in the existing MDHT node implementations. We
also recognized that our efforts to improve the performance of
MDHT nodes would likely make use of the latitude afforded
by the protocol specifications, and thus it was of critical impor-
tance that we be able to study the impact of our modifications.
To this end, we built a toolkit for profiling and analyzing the
behavior and performance of MDHT nodes.

A. Profiling Tools

Instrumenting an open source DHT node is a common
approach to measure its performance. The instrumented node
would join an overlay, perform lookups, and log performance
measurements.

It is, however, unpractical to instrument nodes whose source
code is unavailable. In MDHT, UTorrent is by far the most

A B C D E* G*

C, D

E, C

F, G, *

NuT F*

F, G, *

F, G
, *

L
a
te

n
c
y

F, G

Fig. 1. Lookup performed by node under test (NuT). Letters A–G represent
nodes in the overlay. Values are represented with “*”.

popular node implementation (2.7 out of 4.4 million nodes
according to our results presented in Section VIII). Given
that UTorrent’s source code is closed, we devised a different
approach.

Our toolkit uses a black-box approach: an MDHT node is
commanded to perform lookup operations (by using the node’s
GUI or API), while simultaneously capturing its network
traffic. Figure 1 illustrates a lookup performed by the node
under test (NuT). This node joins the MDHT overlay and is
under our control (we can command it to perform lookups);
the rest of the nodes shown in the figure (A–G) are a minute
fraction of the millions of MDHT nodes —over which we
have no control.

Whenever NuT sends or receives a message, the data packet
is captured. When the experiment is over, all captured packets
can be parsed to measure lookup latency and cost, among other
properties.

The toolkit’s core, written in Python, provides modules to
read network captures and decode MDHT messages. Tools to
analyze and manipulate messages are also available, as are
the plotting modules that can produce various graphs. Along
with the rest of the software presented in this paper, we have
released the profiling toolkit under the GNU LGPL 2.1 license.

We use the toolkit in Sections VII and VIII to illustrate our
results, and as will be seen, it is already capable of measuring
and displaying many interesting properties of MDHT nodes.
New measurements and presentations are easily added as
plug-ins, using existing analysis and presentation plug-ins as
templates.

B. Profiling Metrics

In theoretical analysis and simulations of DHTs, lookup
performance is often measured in routing hops between the
initiator —node performing the lookup— and the node closest
to the target key. Although our profiling toolkit can measure
hops, we find it more appropriate to measure lookup latency
because that is the parameter determining whether a DHT is
suitable for latency-sensitive applications.

In this paper, we define lookup latency as the time elapsed
between the first lookup query is sent and the first response
containing values is received.

Figure 1 illustrates a full lookup performed by the node
under test. NuT starts the lookup by selecting the nodes closest
to the target in its routing table (A and B) and sending lookup
queries to them. NuT receives a response from A containing
nodes (C and D) closer to the target but no values. Then,
NuT sends queries to nodes C and D. The lookup continues
until NuT receives a response containing values (*) from E.
At this point we consider the goal achieved and we record the
lookup latency, although the lookup can progress further to
obtain more values associated with the key, as we will discuss
in Section VIII.

We define lookup cost as the number of lookup queries sent
before receiving a value (including queries sent but not yet
replied). In the example above, lookup cost is five queries. At
the time values are retrieved (E’s response contains values),
three queries were replied (A, B and E), D replies shortly
after, and C never replies (this query would eventually trigger
a timeout).

Finally, we define maintenance cost as the total number of
maintenance queries —ping and find_node messages—
sent by the node under test. These queries are sent to detect
stale entries in the routing table and find replacements for these
entries. As we later propose modifications to the routing table
management, which is the source of maintenance traffic, we
will also measure their impact on maintenance cost.

IV. IMPLEMENTING MDHT NODES

We have developed a flexible framework based on a plug-in
architecture, capable of creating different MDHT nodes. The
central part of the architecture handles the interaction between
network, API, and plug-ins; while the plug-ins contain the ac-
tual policy implementation. There are two categories of plug-in
modules: routing modules and lookup modules. The policies
are concentrated on these plug-ins (e.g., all algorithms and
parameters related to routing table management are exclusively
located in routing modules), simplifying their modification.
This architecture allows us to quickly implement different
routing table and lookup configurations, and compare them
against each other.

The combination of the core, a routing module and a
lookup module forms a fully-functional MDHT node, which
can be deployed and further analyzed with the profiling tools
described in Section III-A.

Although this paper examines only two lookup and four
routing modules, several additional modules have been de-

signed, implemented and measured. The modules presented
here have been chosen due to their characteristics and their
effects on lookup performance and cost.

Even though our plug-in architecture allows us to freely
modify lookup modules, we observe that merely adjust-
ing well-know lookup parameters can dramatically improve
lookup performance.

These lookup parameters are known as α and β. The α
parameter determines how many lookup queries are sent in
parallel at the beginning of the lookup, while β is the number
of maximum queries sent when a response is received. Figure 1
is an example of a lookup with both parameters set to two.

In this paper, we describe and measure two lookup modules:
• Standard Lookup Since the protocol specification does

not specify parameters such as α and timeout values,
we have resorted to an analysis of UTorrent’s lookup
behavior. According to our observations, UTorrent’s value
for α and β are four and one, respectively. Our standard
lookup implements the same parameters.

• Aggressive Lookup In our aggressive lookup module, β
is set to three while α remains four.

Our routing modules introduce much deeper modifications
to the original MDHT routing table management specified
in BEP5 (BitTorrent Enhancement Proposal 5) [15]. These
modifications are detailed in the next section.

V. ROUTING MODULES

Although some of the previous studies on Kademlia perfor-
mance have considered modifications on routing table manage-
ment, most of them estimate the performance gain assuming
that all nodes implement them.

We do not propose global modifications where all nodes
in the overlay must be modified to obtain benefits. Instead,
we propose modifications that benefit the nodes implement-
ing them, regardless of whether other nodes in the overlay
implement these modifications or not.

To our knowledge, this is the first attempt to deploy alterna-
tive routing table management implementations on an existing
multimillion overlay on the Internet, and then measure their
effects on lookup latency.

A. Standard Routing Table Management (BEP5)

The BEP5 routing module aims to implement the routing
table management specified in the BEP5 specifications [15]
as rigorously as possible. The specifications define bucket
size k to be 8. The routing table management mechanism is
summarized next.

When a message is received, query or response, the ap-
propriate bucket is updated. If there is already an entry
corresponding to this node in the bucket, the entry is updated.
Otherwise, three scenarios are possible: (1) if the bucket is full
of good nodes, the new node is simply discarded; (2) if there is
a bad node inside the bucket, the new node simply replaces it;
(3) if there are questionable nodes inside the bucket, they are
pinged; if any of them fail to respond after two ping attempts,
they will be replaced.

According to the specifications, nodes are defined as good
nodes if they respond to queries or they have been seen alive in
the last 15 minutes. Nodes which have not been seen alive in
the last 15 minutes become questionable. Nodes that failed to
respond to multiple consecutive queries (we chose this value
to be two) are defined as bad nodes.

Buckets are usually kept fresh as a side effect of lookup traf-
fic. Buckets which have not been opportunistically refreshed in
the last 15 minutes are refreshed by performing a maintenance
lookup. Maintenance lookups are similar to normal lookups
but they use find_node messages instead of get_peers.

B. Nice Routing Table Management (NICE)

The NICE routing module attempts to improve the quality
of the routing table by continuously refreshing nodes in the
routing table and checking their connectivity. While, as our
results show, this quality improvement directly reduces our
nodes’ lookup latency, we expect other nodes to be also
benefited as a side effect. We plan to measure this indirect
benefit in future work.

The refresh task is regularly triggered (every 6 seconds in
NICE). Each time it is triggered, it selects a bucket and pings
the most stale node in the bucket. This continuous refresh
guarantees that each bucket must have at least one contact
that was recently refreshed and no contacts that have not
been refreshed for more than 15 minutes. As a side benefit,
this makes maintenance traffic smooth and predictable, with a
maximum maintenance traffic of 10 queries per minute.

This module also actively probes nodes to detect and remove
nodes with connectivity issues from the routing table. In par-
ticular, we implement the quarantine mechanism we previously
proposed [16] where nodes are only added to the routing table
after a 3 minute period. This quarantine period is mainly aimed
at detecting DHT nodes with limited connectivity (probably
caused by nodes behind NAT and firewall devices) which cause
widespread connectivity artifacts in Mainline DHT, hindering
performance.

C. NICE + Low-RTT Bias (NRTT)

In Kademlia, any node falling within the region covered
by a bucket is eligible to be added to that bucket. Kademlia
follows a simple but powerful strategy of preferring nodes that
are already in the bucket over newly discovered candidates.
The reasoning is that this policy leads to more stable routing
tables [1].

Having stable contacts in the routing table benefits lookups
by reducing the probability of sending lookup queries to nodes
that are no longer available. Likewise, if the round trip time
(RTT) to these nodes is low, then the corresponding lookup
queries will be quickly responded, reducing lookup latency.

The impact of low-RTT bias in routing tables has been
previously discussed [17], [10] but never deployed on a large-
scale overlay.

The NRTT module is an implementation of the NICE mod-
ule plus low-RTT bias. While NICE follows Kademlia’s rules
regarding node replacement —i.e. nodes cannot be replaced

unless they fail to respond to queries— NRTT introduces
the possibility of replacing an existing node with a recently
discovered node, if the RTT of the incoming node is lower
than that of the existing node.

D. NRTT + 128-bucket (NR128)

Another approach to improve performance is to reduce the
number of lookup hops. The most extensive study of bucket
modifications in Kademlia [3] considered two options: (1)
adding more buckets to the routing table and (2) enlarging
existing buckets. Their theoretical analysis concluded that,
while both approaches offer comparable hop reduction on
average, increasing bucket size is simpler to implement, has
lower maintenance cost, and improves resistance to churn as
a side effect. Finally, they showed that performance improves
logarithmically with bucket size.

Enlarging buckets is simple but costly because maintenance
traffic grows linearly with bucket size. That is, if one is to
enlarge all buckets equally. But not all the buckets are equal
when it comes to lookup performance.

Given the structure of a Kademlia routing table, on average,
the first bucket is used in half of the lookups, the second
bucket in a quarter of the lookups, and so forth. In the NR128
routing module, buckets are enlarged proportionally to the
probability of them being used in a given lookup. The first
buckets hold 128, 64, 32, and 16 nodes respectively, while the
rest of the bucket sizes remain at 8 nodes. To our knowledge,
this technique has not been proposed before.

The expected result is that, while half of the lookups are
bootstrapped by a 128-bucket, and more than nine in ten by an
enlarged bucket, maintenance traffic merely doubles compared
to NICE (20 queries per minute).

VI. EXPERIMENTAL SETUP

To measure and understand the behavior of UTorrent and of
our own implementations, we have run numerous experiments
in a variety of configurations, both sequential and parallel. Our
final configuration is one in which we ran all implementations
in parallel, providing the same experimental conditions to all
nodes being compared, on a large number of freshly acquired
torrent infohashes (see below). The experiment we document
in this paper is neither the best nor the worst but rather
representative, as the results we obtained are very consistent
between different runs.

The experiment, which started on March 26, 2011 and
ran over 80 hours, tested all our eight (two times four)
implementations and UTorrent version 2.2 (build 23703)3. A
very simple coordination script is used to command our nodes
under test; a Python interface is used for our MDHT node
implementations and an HTTP interface is used for UTorrent.

Each node under test joins the multimillion-node MDHT
overlay. Upon joining the overlay, the lookup rounds begin.
In each round, a random NuT sequence is generated. Every
10 seconds, the next NuT in the sequence is commanded to

3Downloaded from http://www.utorrent.com/downloads/

10-3 10-2 10-1 100 101

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RTT

RTT

Fig. 2. RTT to nodes in the MDHT overlay (Queries that have not been
replied within 2 seconds are considered timed-out, thus excluded from this
graph.)

perform a lookup on an identifier that is randomly selected
from its list of infohashes and then remove the infohash from
its list. All nine NuTs perform one lookup per round, until
every NuT has emptied its list of infohashes —i.e. when
every NuT has performed a lookup for every infohash. The
experiment is then considered complete and the captured traffic
is ready to be parsed by our profiling toolkit.

Experiments were not CPU-bound, and were run on a
system with a P4@3.0GHz, 3GB RAM and running Windows
7. Regarding network latency, as shown in Figure 2, the RTTs
from the nodes under test to other MDHT nodes were mainly
concentrated between 100 and 300 ms, with very few RTTs
over one second (2nd percentile: 2.13 ms, 25th percentile:
94.8 ms, median: 175.2 ms, 75th percentile: 343.6 ms, 98th

percentile: 1093.9 ms).

Infohashes can be obtained from various sources, and can
even be generated by us. We are, however, specifically inter-
ested in active swarms under “real world” conditions. This
has led us to obtain infohashes from one of the most popular
BitTorrent sites on the Internet, thepiratebay.org. This
site has a “top” page with the most popular content organized
in categories. We have extracted all infohashes from these
categories, obtaining a total of 3078 infohashes.

It should be noted that our MDHT node implementations
neither download, nor offer for upload, any content associated
with these infohashes. UTorrent is given only 3 seconds to
initiate the download —triggering a DHT lookup as a side-
effect— before being instructed to stop its download, thus
leaving no time for any data transfer. We have observed
that the DHT lookup progresses normally despite the stop
command.

10-3 10-2 10-1 100 101

Lookup latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

NR128-A
NRTT-A
NICE-A
NR128-S
NRTT-S
NICE-S
UT
BEP5-A
BEP5-S

Fig. 3. Lookup latency when retrieving a value from the MDHT overlay

VII. EXPERIMENTAL RESULTS

Each of the eight node implementations we have studied
is one of the combinations of our four routing and two
lookup modules described previously, and the names we use
for them reflect the components combined. For instance, the
NICE-S node implementation uses the NICE routing module
plus the standard (S) lookup module. Similarly, we will use
“wildcards”. For example, *-S indicates all nodes using the
standard lookup module, and NICE-* all nodes using the NICE
routing module. UTorrent is simply referred to as UT.

A. Lookup Latency

Figure 3 shows the empirical cumulative distribution func-
tion (CDF) of lookup latency when retrieving a value from the
overlay, as defined in Section III-B.

In Table I we document lookup latencies for the 50 (me-
dian), 75, 98, and 99 percentiles. We expect these figures to
be valuable for those interested in large-scale latency-sensitive
systems, whose requirements usually specify a maximum
latency for a large fraction of the operations.

Since our BEP5 routing module follows the MDHT spec-
ifications published by the creators of UTorrent (BitTorrent,
Inc.) and our standard module implements the same lookup
parameters as UTorrent, we expected that BEP5-S would
perform similarly to UTorrent. As our measurements reveal,
this is not the case. UT performs significantly better than
our BEP5-S, and even outperforms our BEP5-A, which we
expected to beat UT by using more aggressive lookups.
This fact suggests undocumented enhancements in UTorrent’s
routing table management.

We see that the aggressive lookup module consistently
yielded lower median lookup latency, but more importantly,
drastically reduced the worst-case latencies, as seen in the 98th

and 99th percentile columns of Table I.
Nodes implementing the NICE routing module perform

better than BEP5 and also UTorrent. We believe that this is

TABLE I
LOOKUP LATENCY (IN MS)

Node median 75th p. 98th p. 99th p.
UT 647 1047 3736 5140
BEP5-S 1105 3011 6828 7540
NICE-S 510 877 4468 5488
NRTT-S 459 928 5060 5737
NR128-S 286 589 4375 5343
BEP5-A 825 2601 3840 4168
NICE-A 284 420 2619 3247
NRTT-A 185 291 512 566
NR128-A 164 269 506 566

due to an improvement in the quality of the initiator’s routing
table caused by our constant refresh strategy and mechanisms
to detect and avoid nodes with connectivity limitations.

The performance gain from the addition of low-RTT bias
(NICE vs. NRTT) is uneven. NRTT-A performs significantly
better than NICE-A, but using standard lookups, the difference
is less pronounced. This is due to standard lookups not being
able to take full advantage of low-RTT contacts by rapidly
fanning out. The comparison between NRTT-S and NRTT-A
illustrates this point, where the worst-case latency is an order
of magnitude lower for NRTT-A.

When examining the routing table, we find that NICE-*
nodes have contacts with RTTs in the 100–300 ms range, while
NRTT-* nodes have contacts whose RTTs are lower than 20
ms.

Conversely, we see that the impact of enlarged routing tables
in NR128-variants is the opposite to that in NRTT. The small
performance gain from NRTT-A to NR128-A may be a sign
that the maximum performance has been reached already.
Indeed, NR128-A’s median lookup latency is, in fact, lower
than the median RTT to MDHT nodes.

NR128-A, our best performing node implementation,
achieves a median lookup latency of 164 ms. While median
lookup latency is important, many latency-sensitive applica-
tions are more concerned with the worst-case performance,
and treat lookup latency above a narrow threshold as failure.

Where previous measurements of large-scale Kademlia-
based overlays report long tails with worst-case latencies in
the tens of seconds, our NRTT-A and NR128-A consistently
achieve sub-second lookups, with almost 98% finishing in
less than 500 ms. More importantly, assuming a hard lookup
deadline of 1 second, less than five out of over three thousand
lookups would fail using any of these two implementations.

B. Lookup Cost

Lookup cost, defined in Section III-B, is also an important
characteristic to measure. As Figure 4 shows, implementations
using the aggressive lookup module require more lookup
queries, thus increasing the lookup cost.

Lookup cost in UTorrent and our *-S nodes are very
similar, as we expected. Among them, NRTT-S is slightly
more expensive than the rest, which is caused by a more
intensive query burst, due to the fan-out effect discussed in the
previous section. Conversely, NR128-S has the lowest lookup

100 101 102 103

Queries per lookup

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

NR128-S
UT
BEP5-S
NICE-S
NRTT-S
NR128-A
BEP5-A
NICE-A
NRTT-A

Fig. 4. Lookup cost. (We recognize that distinguishing between individual
lines in this graph is hard, but the difference between standard (*-S and UT)
and aggressive (*-A) lookup is clear. Also notice the tendency of NR128-*
and NRTT-* to have lower and higher cost than the rest, respectively.)

cost, which comes as no surprise since its enlarged buckets
will reduce the number of hops required.

We predictably see similar relationships between the *-A
nodes, but with higher average lookup costs across the board.

C. Maintenance Cost

Figure 5 depicts the cumulative maintenance queries sent
over time. The obtained results confirm that all our MDHT
node implementations generate less maintenance traffic, by a
considerable margin, than UTorrent.

As mentioned earlier, we believe that UTorrent’s unexpect-
edly good lookup performance is due to modifications to its
routing table management, compared to the specification. This
would go a long way towards explaining why we observe
much more maintenance traffic than for our BEP5-* imple-
mentations.

Figure 6 shows only the first 6 hours of the experiment,
revealing a peculiar stair-like pattern in UT and BEP5-*.
Every 15 minutes, UTorrent triggers a burst of maintenance
messages, approximately 600 messages for a period of 1–2
minutes, and few or no queries between bursts. We see a
similar pattern initially in our own BEP5-* implementations,
but they quickly flatten out. This observation suggests that
while the initial occurrence is an artifact of the specification,
the continued behavior is due to the way UTorrent implements
its internal synchronization mechanism, causing maintenance
message bursts.

All our MDHT node implementations, regardless of the
modifications they include, drastically reduce maintenance
traffic compared to UTorrent. BEP5-S and BEP5-A have irreg-
ular maintenance traffic patterns while the rest were designed
to have very regular traffic patterns.

The enlarged bucket implementations (NR128-*) generate
twice the maintenance traffic of NICE-* and NRTT-* (whose

0 20 40 60 80 100
Time (h)

0

50

100

150

200

250

M
ai

nt
en

an
ce

 q
ue

rie
s

(c
um

ul
at

iv
e,

 in
 th

ou
sa

nd
s)

UT
BEP5-A
BEP5-S
NR128-*
NRTT-*
NICE-*

Fig. 5. Cumulative maintenance traffic during the entire experiment

0 1 2 3 4 5 6
Time (h)

0

2

4

6

8

10

12

14

16

M
ai

nt
en

an
ce

 q
ue

rie
s

(c
um

ul
at

iv
e,

 in
 th

ou
sa

nd
s)

UT
BEP5-A
BEP5-S
NR128-*
NRTT-*
NICE-*

Fig. 6. Cumulative maintenance traffic during the first 6 hours

lines overlap), but still generate less traffic than BEP5-* in the
long run.

D. Trade-offs

In comparing our different implementations, we have ex-
plored different trade-offs between performance and cost. We
do, however, also see that some benefits can be gained at zero,
or even negative, cost. For instance, NR128-S is better than
UTorrent in all aspects, with significantly lower maintenance
cost, lower lookup cost and median lookup latencies less than
50% of UTorrent’s. Both NR128-S and UTorrent suffer from
long tails, however, with 10% and 14%, respectively, of the
lookups taking more than 2 seconds.

While achieving better performance at lower cost is cer-
tainly desirable, our target applications have very strict latency
requirements. We are thus forced to go a step further, and

100 101 102

Number of nodes returning values

100

101

102

103

104

Nu
m

be
r o

f p
ee

rs
 re

tu
rn

ed
 (u

ni
qu

e
IP

s)

Fig. 7. Peers versus nodes returning values

carefully explore what trade-offs we can make to meet these
requirements, even at sometimes significantly higher costs.

Specifically, our low-RTT bias nodes (NRTT-*) achieve
a noticeable performance improvement while keeping the
same maintenance cost and just a small increase in lookup
cost, which we attribute to being able to more rapidly fan
out queries, compared to NICE-*. Finally, enlarging buckets
improves lookup performance while slightly reducing lookup
cost, which might be suitable when lookup cost dominates
over maintenance cost. For example, a system where lookups
are performed very frequently.

VIII. ADDITIONAL RESULTS

Our primary goal was to reduce the time until our node
under test received the first value, but since we have not
changed the way lookups terminate, they will continue until
they reach the node closest to the key. Our toolkit continued
to capture information about this phase of the lookups as well.

The modifications we have made have implications not only
for the first phase, analyzed in the previous section, but for the
complete lookup. In this section, we will present our analysis
and summarize our results as they apply to the whole lookup.

A. Lookup Latency Versus Swarm Size

In principle, in a Kademlia-based DHT, only a fixed number
of nodes need to store the values corresponding to a given key,
regardless of the size of DHT or the popularity of the key. In
practice, we find that popular keys in MDHT tend to have
values distributed among a large number of nodes, while less
popular keys are less widely dispersed.

In Figure 7 we plot the number of nodes returning values
(replicas) against number of unique values stored (swarm size).
We see that as swarm size increases, the number of replicas
found increases as well.

This has no impact on the time it takes to reach the node
closest to the key, but has a significant impact on lookup

10-3 10-2 10-1 100 101

Lookup latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

NR128-A >200
NR128-A 101-200
NR128-A 51-100
NR128-A 1-50
UT >200
UT 101-200
UT 51-100
UT 1-50

Fig. 8. Lookup latency versus swarm size for UTorrent and NR128-A. Both
implementations perform better on larger swarms.

latency, as defined by us. Not only because there are more
replicas to find, but also because having more replicas increase
the chance that at least one of them is close (low RTT) to the
node under test.

We thus see a relationship between swarm size and lookup
latency. Figure 8 illustrates that lookup latency is lower when
looking up popular infohashes (large swarms). In NR128-A,
for instance, median lookup latency for swarms with more
than 200 peers is 92 ms versus 289 ms for swarms with 50
peers or less (521 ms vs. 848 ms in UTorrent).

We draw two conclusions from these observations. First,
users should expect significantly lower latency when looking
up popular keys (i.e., popular content). And second, our
techniques yield medians well under half second even for small
swarms.

B. Reaching the Closest Node

In this paper, we have focused on a more user-centric metric
of DHT performance, the time to find values. Another metric
that has been widely used and studied in DHTs is the time to
reach the closest node to the target key [3]. For completeness,
and to allow our results to be easily compared to previous
work, we plot our results according to this metric in Figure 9.

Using this metric, our NR128-A implementation still
achieves sub-second results, with a median of 455 ms and
92.8% of its lookups reaching the closest node within a second.

C. Queries & Responses

The Internet is a pretty hostile environment, and many
issues that normally would not arise in a testbed or simulator
will impede performance when the same code is deployed
“in the wild”. As an example, Table II presents information
about lookup traffic obtained in our experiments. The queries
columns show the number of queries generated, and responses
the responses received, both the absolute number and as

10-1 100 101 102

Lookup time to closest node (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

NR128-A
NRTT-A
NICE-A
BEP5-A
NR128-S
NICE-S
UT
NRTT-S
BEP5-S

Fig. 9. Lookup latency to reach the closest node to the key

a percentage of queries issued, with the remainder being
timeouts.

As can be seen, for BEP5-* and UT, less than 60% of
queries receive responses, the equivalent, one could say, of
more than a 40% packet loss ratio. In previous work [16],
we characterized these connectivity artifacts and proposed
mechanisms to identify and filter out nodes with connectivity
issues. In this paper, some of these mechanisms have been
implemented, improving the quality of our own routing tables.
We believe that these improvements explain why NICE-*,
NRTT-* and NR128-* consistently see a higher response rate
than BEP5-* and UT. We plan to analyze the impact of these
routing policies on the quality of routing tables in future work.

D. Implementation Market Share

Mainline DHT messages have an optional field where the
sender can indicate its version in a four-character string.
The first two characters indicate the client —UTorrent nodes
identify themselves as “UT”— and the other two, the version
number. The client labels reported by nodes are presented in
Table III.

During the course of this experiment, the nodes under test
have exchanged messages with over four million nodes (unique
IP addresses) in the MDHT overlay. We have identified 2.6
out of 4.4 million (60%) as UTorrent nodes, far ahead of the
second most common node implementation, libtorrent. It is
also noteworthy that about one third of the nodes did not
include this optional field in their messages.

IX. RELATED WORK

Li et al. [18] simulated several DHTs under intensive churn
and lookup workloads, in order to understand and compare
the effects of different design properties and parameter values
on performance and cost. The study revealed that, under
intensive churn, Kademlia’s capacity of performing parallel
lookups reduces the effect of timeouts compared to other DHT

TABLE II
LOOKUP QUERIES AND RESPONSES

Label Queries Responses (%)
UT 92,450 52,378 (57)
BEP5-S 67,454 36,361 (54)
NICE-S 68,923 43,937 (64)
NRTT-S 70,234 44,515 (63)
NR128-S 64,488 39,633 (61)
BEP5-A 198,015 116,070 (59)
NICE-A 260,849 166,026 (64)
NRTT-A 281,335 183,175 (65)
NR128-A 221,543 140,025 (63)

TABLE III
IMPLEMENTATION MARKET SHARE

Implementation Nodes (unique IPs) Percentage
UT 2,663,538 60.0
LT 324,122 7.3
TR 7,666 0.2
Other versions 4,813 0.1
No version 1,441,899 32.5
Total 4,442,038 100.0

designs studied. In their simulation results, Kademlia achieved
a median lookup latency of 450 ms with the best parameter
settings.

Kaune et al. [10] proposed a routing table with a bias
towards geographically close nodes, called proximity neigh-
bour selection (PNS). Although their goal was to reduce inter-
ISP traffic in Kademlia, they observed that PNS also reduced
lookup latency in their simulations from 800 to 250 ms.

Other non-Kademlia-based systems have been studied. Rhea
et al. [19] showed that an overlay deployed on 300 PlanetLab
hosts can achieve low lookup latencies (median under 200 ms
and 99th percentile under 400 ms). Dabek et al. [20] achieved
median lookup latencies between 100–300 ms on an overlay
with 180 test-bed hosts.

Crosby and Wallach [7] measured lookup performance
in two Kademlia-based large-scale overlays on the Internet,
reporting a median lookup latency of around one minute in
Mainline DHT and two minutes in Azureus DHT. They argue
that one of the causes of such performance is the existence of
dead nodes (non-responding nodes) in routing tables combined
with very long timeouts. Falkner et al. [8] reduced ADHT’s
median lookup latency from 127 to 13 seconds by increasing
the lookup cost three-fold.

Stutzbach and Rejaie [3] modified eMule’s implementation
of KAD to increase lookup parallelism. Their experiments
revealed that lookup cost increased considerably while lookup
latency improved only slightly. Their best median lookup
latency was around 2 seconds.

Steiner et al. [4] also tried to improve lookup performance
by modifying eMule’s lookup parameters. Although they
discovered that eMule’s design limited their modifications’
impact, they achieved median lookup latencies of 1.5 seconds
on the KAD overlay.

X. CONCLUSION

In this paper, we have shown that it is possible for a node
participating in a multimillion-node Kademlia-based overlay
to consistently perform sub-second lookups. We have also
analyzed the impact of each proposed modification on per-
formance, lookup cost, and maintenance cost, exposing the
trade-offs involved. Additionally, we observed a phenomenon
relevant for applications using the overlay: the more popular
a key is, the faster the lookup.

In our efforts to accomplish the goal of supporting latency-
sensitive applications using Mainline DHT, we have also
produced other noteworthy secondary results, including, but
not limited to: (1) a profiling toolkit that allows us to analyze
MDHT messages exchanged between the node under study
and other MDHT nodes, without code instrumentation; (2) the
deployment and measurement of three modifications to routing
table management (NICE, NRTT, NR128); and (3) an infras-
tructure to rapidly implement and deploy those modifications
in the form of plug-ins.

Our initial study of MDHT node implementations revealed
that UTorrent is the most common implementation currently in
use, with a measured “market share” of 60%, making UTorrent
a good candidate as the state-of-the-art benchmark for us to
beat.

Our most aggressive implementation (NR128-A) not only
beats UTorrent, but also steals its lunch money. Not only
is our median lookup latency almost four times lower than
UTorrent’s, but, most importantly for our purposes, just 0.1%
of NR128-A’s lookups need over a second versus over 27% of
UTorrent’s. While this comes at a higher lookup cost (220%),
when we consider both lookup and maintenance traffic, our
implementation actually generates substantially less traffic
than UTorrent.

Amongst our less aggressive lookup implementations,
NR128-S needs slightly less queries per lookup, half the
maintenance traffic, and still its median lookup latency is less
than half of UTorrent’s, beating it in all three metrics.

We hope that others will find our results useful in de-
signing, evaluating, and improving applications deployed on
top of large-scale DHT overlays on the Internet. All the
source code described in this paper is available on-line at:
http://people.kth.se/∼rauljc/p2p11/.

ACKNOWLEDGMENT

The authors would like to thank Rebecca Hincks, Amir
H. Payberah, and the anonymous reviewers for their valuable
comments on our drafts.

The research leading to these results has received funding
from the Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 216217 (P2P-Next).

REFERENCES

[1] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Proceedings of the 1st
International Workshop on Peer-to Peer Systems (IPTPS02), 2002, pp.
53–65.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer Systems, vol. 6. Berkeley, CA, USA, 2003.

[3] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a
Widely-Deployed DHT,” in INFOCOM. IEEE, 2006.

[4] M. Steiner, D. Carra, and E. W. Biersack, “Evaluating and improving
the content access in KAD,” Springer ”Journal of Peer-to-Peer Networks
and Applications”, Vol 2, 2009.

[5] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of kad,”
in IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement. New York, NY, USA: ACM, 2007, pp. 117–
122.

[6] K. Junemann, P. Andelfinger, J. Dinger, and H. Hartenstein, “BitMON:
A Tool for Automated Monitoring of the BitTorrent DHT,” in Peer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on.
IEEE, 2010, pp. 1–2.

[7] S. A. Crosby and D. S. Wallach, “An analysis of bittorrent’s two
kademlia-based dhts,” 2007.

[8] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson,
“Profiling a million user DHT,” in IMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement. New York, NY,
USA: ACM, 2007, pp. 129–134.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing
the performance of distributed hash tables under churn,” in In Proc.
IPTPS, 2004.

[10] S. Kaune, T. Lauinger, A. Kovacevic, and K. Pussep, “Embracing
the peer next door: Proximity in kademlia,” in Eighth International
Conference on Peer-to-Peer Computing (P2P’08), 2008, p. 343–350.

[11] A. Bakker, R. Petrocco, M. Dale, J. Gerber, V. Grishchenko, D. Rabaioli,
and J. Pouwelse, “Online video using bittorrent and html5 applied
to wikipedia,” in Peer-to-Peer Computing (P2P), 2010 IEEE Tenth
International Conference on, 8 2010, pp. 1 –2.

[12] M. J. Freedman, “Experiences with coralcdn: a five-year operational
view,” in Proceedings of the 7th USENIX conference on Networked
systems design and implementation, ser. NSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 7–7. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855711.1855718

[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[14] A. Rowstron and P. Druschel, “P.: Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” In: Middle-
ware, pp. 329–350, 2001.

[15] A. Loewenstern, “BitTorrent Enhancement Proposal 5 (BEP5): DHT
Protocol,” 2008.

[16] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties of
Mainline BitTorrent DHT nodes,” in 9th International Conference on
Peer-to-Peer Computing 2009, Seattle, Washington, USA, 9 2009.

[17] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica, “The impact of DHT routing geometry on resilience and
proximity,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, 2003, pp. 381–394.

[18] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn,” in INFOCOM, 2005, pp. 225–236.

[19] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker, “Fixing the embar-
rassing slowness of OpenDHT on PlanetLab,” in Proc. of the Second
USENIX Workshop on Real, Large Distributed Systems, 2005, pp. 25–30.

[20] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a dht for low latency and high throughput,” in IN PRO-
CEEDINGS OF THE 1ST NSDI, 2004, pp. 85–98.

	Contents
	Thesis Overview
	Introduction
	Background
	P2P-Next's Fully-Distributed Peer Discovery System
	Distributed Hash Tables
	Mainline DHT
	Related Work on Improving DHT Performance

	Problem Definition
	Thesis Contribution
	List of Publications
	Scalability and Locality-Awareness
	Connectivity Properties
	Sub-Second Lookups on a Multimillion-Node DHT Overlay
	Source Code
	Individual Contribution

	Discussion
	Conclusion
	Future Work

	Bibliography

	Research Papers
	CTracker: a Distributed BitTorrent Tracker Based on Chimera
	Connectivity Properties of Mainline BitTorrent DHT Nodes
	Sub-Second Lookups on a Large-Scale Kademlia-Based Overlay

