
Optimal input design for nonlinear dynamical systems:

a graph-theory approach

Theory and Applications

PATRICIO E. VALENZUELA PACHECO

Licentiate Thesis
Stockholm, Sweden 2014

TRITA-EE 2014:059
ISSN 1653-5146
ISBN 978-91-7595-339-7

KTH Royal Institute of Technology
School of Electrical Engineering

Department of Automatic Control
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan framläg-
ges till offentlig granskning för avläggande av teknologie licentiatesexamen i elektro
och systemteknik fredagen den 21 november 2014 klockan 10.00 i Kollegiesalen,
Kungliga Tekniska högskolan, Brinellvägen 8, Stockholm.

© Patricio E. Valenzuela Pacheco, October 2014

Tryck: Universitetsservice US AB

iii

Abstract

Optimal input design concerns the design of an input sequence to maxi-
mize the information retrieved from an experiment. The design of the input
sequence is performed by optimizing a cost function related to the intended
model application. Several approaches to input design have been proposed,
with results mainly on linear models. Under the linear assumption of the
model structure, the input design problem can be solved in the frequency do-
main, where the corresponding spectrum is optimized subject to power con-
straints. However, the optimization of the input spectrum using frequency
domain techniques cannot include time-domain amplitude constraints, which
could arise due to practical or safety reasons.

In this thesis, a new input design method for nonlinear models is intro-
duced. The method considers the optimization of an input sequence as a
realization of the stationary Markov process with finite memory. Assuming
a finite set of possible values for the input, the feasible set of stationary pro-
cesses can be described using graph theory, where de Bruijn graphs can be
employed to describe the process. By using de Bruijn graphs, we can express
any element in the set of stationary processes as a convex combination of
the measures associated with the extreme points of the set. Therefore, by
a suitable choice of the cost function, the resulting optimization problem is
convex even for nonlinear models. In addition, since the input is restricted to
a finite set of values, the proposed input design method can naturally handle
amplitude constraints.

The thesis considers a theoretical discussion of the proposed input design
method for identification of nonlinear output error and nonlinear state space
models. In addition, this thesis includes practical applications of the method
to solve problems arising in wireless communications, where an estimate of
the communication channel with quantized data is required, and application
oriented closed-loop experiment design, where quality constraints on the iden-
tified parameters must be satisfied when performing the identification step.

Acknowledgements

The present work is the result of the support I received from many people. I would
like to start by expressing my profound gratitude to my supervisors, Assistant
Professor Cristian Rojas and Professor Håkan Hjalmarsson. You gave me the op-
portunity to continue my studies towards a Ph.D. degree, and I learned from you
many important aspects to consider in research. During these years I enjoyed a lot
the work we do in the system identification group, and I am pretty sure that this
will be the case for the coming years, with new exciting challenges waiting for us!

The present form of this thesis is the contribution from many people who vol-
unteer to read it and provide many valuable suggestions. Many thanks to Johan
Dahlin, Christian Larsson, André Teixeira, Martin Jakobsson, and Håkan Terelius
for the time you spent reading the first drafts of this thesis, and for the feedback
you gave me to improve the document. I also want to thank the people who con-
tributed to the articles that are part of this thesis. My profound gratitude also goes
to Professor Thomas Schön, Professor Bo Wahlberg, Professor Brett Ninness, Dr.
Juan Carlos Agüero, Dr. Boris Godoy, Johan Dahlin, and Afrooz Ebadat. Thank
you very much!

I want to thank also the administrators Anneli Ström, Hanna Holmqvist, Kristina
Gustafsson, Gerd Franzon, and Karin Karlsson for all the support I received from
you to solve many different questions I came up with, and for the good times we
spend during lunch (especially the episodes of Lunch with Hanna) and fika, I really
appreciate that.

During my time in the Department I met many nice people, that contributes
to make our working place even more enjoyable. I appreciate every conversation
we have had, and all your support through these years. I would like to express my
gratitude to all the people in the Department of Automatic Control, especially to
Mohamed Rasheed Abdalmoaty, Mariette Annergren, Per Hägg, Christian Lars-
son, Niklas Everitt, Niclas Blomberg, Giulio Bottegal, Afrooz Ebadat, Riccardo
Sven Risuleo, and Miguel Ramos for all the good times we have spent working
together in the system identification group; Martin Jakobsson, Kuo-Yun Liang,
Marco Molinari, Olle Trollberg, André Teixeira, Sadegh Talebi, Pedro Lima, and
Demia Della Penda for making our office a nice working place, and all the time we
shared talking about non-research topics; Damiano Varagnolo, Themistoklis Char-
alambous, Winston García, Farhad Farokhi, Euhanna Ghadimi, Bart Besselink,

v

vi

P.G. di Marco, Martin Andreasson, Meng Guo, Stefan Magureanu, Arda Aytekin,
Valerio Turri, and Burak Demirel for many interesting conversations; and Håkan
Terelius for all the funny times we have had (including running, of course). Thanks
a lot to all of you!

During my stay in Sweden I met very nice people who are willing to help when
I need support. My profound gratitude goes to Mats and Awa Danielsson and their
family; and Fernando de Hoyos and Lupita Nava for all the good times we have had
in Stockholm. I am really indebted with you for all your love and support during
our stay in Sweden, thank you a lot!

I also want to deeply thank to the academics in the Department of Electronic
Engineering in my home university, Professors Mario Salgado, Eduardo Silva (rest
in peace) and Ricardo Rojas, for guiding me in my first steps in the research field,
and for encouraging me to continue my studies towards a Ph.D. degree. Thank you
very much!

The step of doing a Ph.D. would not be possible without the support of many
friends I met in Chile. I am really indebted with every one of you guys! My profound
gratitude goes specially to Claudia Cortez, Marisol Vera, Alfred Rauch, Mauricio
Moya, Cristian Carrasco, Felipe López, Sebastián “el testigo” Pulgar, Matías Gar-
cía and Gabriela Leal, Nelson López and Marcela Cubillos, Ramón Delgado, Rocío
Guerra and their daughters, Diego Carrasco, Pedro Riffo and Valeria Araya, Iván
Velásquez, Verónica Contreras and their children, Francisco Arredondo and Lucre-
cia Aedo, Stjpe Halat and Francisco Vargas. I really appreciate all the support I
received from all of you over the years, thank you very much!

Finally, I would like to thank all the support and love I received from my family,
my parents and my siblings. Your support and love is the essential energy I need
to cope with all the challenges I face in my life. I am deeply indebted to my
wife Daniela Medina for accepting the challenge of moving from Chile, and for all
the love and support I receive from her every day, I love you! I am also really
grateful to the love and support received from my parents Patricio Valenzuela and
Brígida Pacheco, and my siblings Cristian (and his family), Alex and my little sister
Claudia. My parents in law Germán Medina and Magda Miranda and my sisters
in law Valentina and Rosario have always been present, giving us love and support
through all these years. My gratitude goes also to Raúl Díaz, Teresa Ojeda and
Mauricio Díaz (rest in peace), who are beyond a friendship: they became part of
my family, and their love is always present. Thank you very much!

¡Muchas gracias de corazón a todos!
Patricio E. Valenzuela

Stockholm, Sweden. October 2014.

Contents

Contents vii

Glossary ix

Acronyms xi

1 Introduction 1
1.1 System identification . 2
1.2 Input design . 11
1.3 Thesis outline and main contributions 15

I Theory 19

2 Graph theory and stationary processes 21
2.1 Graph theory: basic concepts . 21
2.2 De Bruijn graphs and stationary processes 23
2.3 Generation of stationary sequences 30
2.4 Conclusion . 35

3 Input design for NOE models 37
3.1 Problem formulation . 38
3.2 Input design via graph theory . 42
3.3 Reducible Markov chains . 44
3.4 Numerical examples . 44
3.5 Conclusion . 52

4 Input design for nonlinear SSM 55
4.1 Problem formulation . 56
4.2 A review on SMC methods . 57
4.3 New input design method . 67
4.4 Numerical examples . 71
4.5 Conclusion . 73

vii

viii CONTENTS

II Applications 75

5 Input design for quantized systems 77
5.1 Input design problem . 78
5.2 Background on ML estimation . 80
5.3 Information matrix computation . 86
5.4 Numerical example . 88
5.5 Conclusion . 90

6 Closed-loop input design 91
6.1 Preliminaries . 93
6.2 Input design for feedback systems . 96
6.3 Numerical example . 103
6.4 Conclusion . 108

7 Conclusions 109

A Algorithms for elementary cycles 115
A.1 Preliminaries . 115
A.2 Strong connected components of a graph 116
A.3 Elementary cycles of a graph . 117

B Convergence of the approximation of IF 121

C The EM algorithm 123
C.1 The expectation-maximization algorithm 123
C.2 EM algorithm: useful identities . 125

Bibliography 129

Glossary

δ(x) Dirac delta function at x = 0.
(·)⊤ Transpose operator.
#X Cardinality of the set X .
det(·) Determinant operator.
exp{x} Exponential function: ex.
λmin(·) Minimum eigenvalue.
1X Indicator function: 1X = 1 if X is true; 0 otherwise.

erf(X) Error function: 2√
π

∫
X e−u2

du.

supp(p) Support of p.
tr{·} Trace operator.
�, � Matrix inequalities.
q Time shift operator, q ut = ut+1.
x1:N {xk}Nk=1.
P Cumulative distribution function (cdf).
p Probability density function (pdf).
E{·} Expectation operator.
Cov(x) E

{
(x− E{x})(x− E{x})⊤}.

χ2
α(n) α-percentile of the χ2-distribution with n degrees of free-

dom.
N (x, y) Normal distribution with mean x and variance y � 0.
AsN (x,M) Asymptotic normal distribution with mean x and covari-

ance M � 0.
P{·|·} Conditional probability measure.
P{·} Probability measure.
P Set of cdfs associated with stationary vectors {ut}nm

t=1.
PC Set of probability mass functions associated with stationary

vectors {ut}nm

t=1.
VPC

Set of all the extreme points of PC .
E Set of edges.
V Set of nodes.
GV Directed graph with nodes in V .
GCn n-dimensional de Bruijn graph derived from Cn.

ix

x GLOSSARY

Ar Set of ancestors of r.
Dr Set of descendants of r.
M Model set.
Θ Set of feasible parameters.
θ Parameter employed for estimation.
θ0 True parameter in Θ.

θ̂N Estimated parameter based on the data set ZN .
ŷt|t−1(θ) Mean square optimal one-step ahead predictor given Zt−1.

S(θ) Score function:
∂

∂θ
log pθ(y1:N).

ZN Data set composing of N samples.
R+ {x ∈ R : x > 0}.
Rn Set of n-dimensional vectors with real entries.
Rr×s Set of r × s matrices with real entries.
Z Set of integer numbers.

Acronyms

APF Auxiliary particle filter.
AR Autoregressive.
ARMA Autoregressive moving average.
ARMAX Autoregressive moving average with exogenous input.
ARX Autoregressive with exogenous input.

cdf Cumulative distribution function.
CRLB Cramér-Rao lower bound.

EM Expectation maximization.

FIM Fisher information matrix.
FIR Finite impulse response.
FL Fixed-lag.

IS Importance sampling.

MA Moving average.
MIMO Multiple input multiple output.
ML Maximum likelihood.
MPC Model predictive control.

NOE Nonlinear output error.
NSSM Nonlinear state space model.

OE Output error.

pdf Probability density function.
PEM Prediction error method.
PF Particle filter.
pmf Probability mass function.

xi

xii ACRONYMS

SIS Sequential importance sampling.
SISO Single input single output.
SMC Sequential Monte Carlo.
SSM State space model.

Chapter 1

Introduction

Modeling is an important stage in many applications. By modeling we mean the
process of obtaining a mathematical description for a given natural phenomenon
(also called system). Examples include prediction of prices in finance [85], channel
estimation in communication systems [88], and design of controllers in industrial
processes [80].

We can distinguish two main approaches to modeling. The first approach con-
siders the modeling of a natural phenomenon based on physical laws (e.g., the use of
the Kirchhoff’s current and voltage laws to model an electrical circuit). The second
approach is to model the natural phenomenon as a black box model (or gray box
model, if some physical insight for the model is taken into account) and identify the
model based on the input-output data from an experiment performed in the system
(e.g., provide a voltage excitation to an electrical circuit, and measure the current
to obtain a model for the equivalent impedance). In this thesis we are interested
in the second approach, which is commonly referred to as system identification.

One key issue in system identification is the input sequence we provide to excite
the system. Since system identification requires input-output data, it is relevant
to design an input excitation that maximizes the information in the experiment
in a certain sense (e.g., optimizing a cost function related to the intended model
application). The process of designing an input sequence for system identification
is commonly referred to as input design, which is the focus of this thesis.

A distinction is made between the terms input design and experiment design.
In experiment design, the choices include the definition of input and output signals,
the measurement instants, the manipulated signals, and how to manipulate them
(which is the focus of input design). It also includes signal conditioning (e.g., the
choice of presampling filters [59, Chapter 13]).

In this chapter, we provide some background on the theory of system identifi-
cation and input design, which will be useful for the next chapters. In addition,
this chapter also presents the main contributions of this work and the outline of
the thesis.

1

2 CHAPTER 1. INTRODUCTION

ytSystem
ut

vm
t

vt︷ ︸︸ ︷

Figure 1.1: Block diagram representing the concept of a system.

1.1 System identification

System identification concerns the modeling of a system based on input-output
data collected from it. Quoting [59, Section 1.1], we can define a system as “an
object in which variables of different kinds interact and produce observable signals”.
In this context, the inputs are the external stimuli affecting the system (which
are available to be manipulated by the user), and the outputs are the observable
signals of interest. In addition, the system can also be affected by disturbances,
which are stimuli that cannot be controlled (but which could possibly be measured).
Figure 1.1 depicts a block diagram with the concept of a system. In this figure,
yt denotes the output, ut the input, vmt the measured disturbances, and vt the
disturbances.

As can be seen from the given definition of a system, the theory of system
identification can be applied in a wide range of fields. In the following subsections,
we will provide a brief discussion of the main elements and results in the theory of
system identification.

The basic entities

To build a model from data, we require three basic entities: a data set, a set of
candidate models describing the relation between the input-output data (referred to
as model structure), and an estimator to choose a model from the set of candidates
(referred to as identification method).

Data set

In order to estimate a model, we require a set of input-output data from the sys-
tem. This data set can also contain information regarding the measured distur-
bances. Following the notation in Figure 1.1, the data set is defined as ZN :=
{yt, ut, vmt }Nt=1.

1.1. SYSTEM IDENTIFICATION 3

Model structure

Given the data set ZN , we want to use it to estimate a model for the system.
The model is normally constrained to a set containing the possible mathematical
descriptions, which is called the model set. The choice of the model set is based
on prior information available about the system, on information obtained from the
data set using nonparametric techniques, or a combination of both approaches. In
the next examples we illustrate some common choices for the model set.

Example 1.1 (Linear time invariant models) If the system is working locally around
an equilibrium point, then it is reasonable to consider that it can be described by a
model in the set

M = {yt = G(q; θ)ut +H(q; θ)et|θ ∈ Θ} , (1.1)

where Θ ⊆ Rnθ is a set of parameters. G(q; θ) and H(q; θ) are rational functions
in the time shift operator q (i.e., q ut = ut+1), parameterized by θ. Here, {et}
is a white noise sequence with zero mean and finite variance. In this case, the
disturbance vt in Figure 1.1 can be described as

vt = H(q; θ0)et , (1.2)

for some θ0 ∈ Θ. We notice that the system in Figure 1.1 is assumed to have
additive output disturbances. Finally, since we do not have access to measure the
disturbance (or part of it), the signal vmt in Figure 1.1 is empty.

Remark 1.1 (Undermodeling) A common assumption on the model set M is that
there exists at least one θ0 ∈ Θ such that the model evaluated at θ0 describes the
true system. If this condition is not fulfilled, then we say that the system is under-
modeled by M. In this thesis we assume that M contains the exact description of
the system, i.e., there is no undermodeling.

Depending on the assumptions on G(q; θ) and H(q; θ), the model set of linear
systems in Example 1.1 can describe different structures, such as moving average
(MA), autoregressive (AR), autoregressive with exogenous input (ARX), autore-
gressive moving average (ARMA), and autoregressive moving average with exoge-
nous input ARMAX [59].

Example 1.2 (Nonlinear state space models (NSSM)) Sometimes the linear as-
sumption introduced in Example 1.1 is very restrictive. For example, the system
could work in regions where the nonlinearities cannot be neglected.

There are several alternatives to model nonlinear systems. One of the most
general model sets is given in terms of a nonlinear state space description [77]. A
nonlinear state space model is defined as

M =

{
xt+1 = fθ(xt, ut, et)
yt = gθ(xt, wt)

∣∣∣∣ θ ∈ Θ

}
, (1.3)

4 CHAPTER 1. INTRODUCTION

where Θ ⊆ Rnθ is a set of parameters as in Example 1.1. fθ and gθ are nonlinear
functions parameterized by θ. In this example, {et} and {wt} are mutually inde-
pendent white noise sequences, with zero mean and finite variance. In this case, vt
in Figure 1.1 is composed by the processes et and wt, and the signal vmt is empty
(as in Example 1.1).

We notice that the model set in Example 1.2 includes also linear time invariant
models with static nonlinearities, known as Wiener-Hammerstein models [59]. An-
other interesting model set included in Example 1.2 is described in the following
example.

Example 1.3 (Nonlinear output error models (NOE)) A particular model set as-
sociated with the nonlinear state space model in Example 1.2 is

M =

{
xt+1 = fθ(xt, ut)
yt = hθ(xt) + wt

∣∣∣∣ θ ∈ Θ

}
. (1.4)

Notice that (1.4) can be obtained from (1.3) by setting et = 0 for all t, and
gθ(xt, wt) = hθ(xt)+wt. The models in the set (1.4) will be referred to as nonlinear
output error (NOE) models.

We must emphasize that the model sets introduced in the previous examples are
not the only ones existing in the literature. Indeed, it is possible to find model sets
with time varying structure [59], neural networks [101], and models based on kernel
estimators [67], among others. The results discussed in the following chapters will
be mainly focused on the model sets introduced in Examples 1.1-1.3.

Identification method

A natural question is how to select a model from a given model set M and a given
data set ZN . The goal is to choose the model from M that best explains the
data ZN in a given sense. The technique employed to choose a model from the
structures in M is referred to as the identification method. Several identification
methods have been proposed in the literature, including, e.g., least squares [28],
instrumental variables [78], and subspace techniques [93], among others.

In this thesis, we work with two identification methods:

1. The maximum likelihood method, and

2. the prediction error method.

The methods are described in the next subsections.

1.1. SYSTEM IDENTIFICATION 5

The maximum likelihood method

The maximum likelihood (ML) method is one of the most attractive identification
methods due to its statistical properties [24]. The ML method is based on the
distribution of the data set y1:N := (y1, . . . , yN), which is parameterized by θ ∈
Θ. The objective is to find the estimated parameter θ̂N that best explains the
measurements y1:N . If we define pθ(y1:N) as the probability density function (pdf)

associated with y1:N , then the estimate θ̂N obtained by the ML method is given by

θ̂N = arg max
θ∈Θ

pθ(y1:N) . (1.5)

The expression (1.5) has an intuitive interpretation: θ̂N ∈ Θ is such that the
observed event y1:N becomes “as likely as possible” [59].

For simplicity reasons, the logarithm of the probability density function (pdf)
pθ(y1:N) is usually maximized instead of pθ(y1:N). This quantity is referred to as
the log-likelihood function. Due to the monotonicity of the logarithm function, the
solution

θ̂N = arg max
θ∈Θ

log pθ(y1:N) , (1.6)

is equal to the solution in (1.5). The expression (1.6) is usually prefered to (1.5)
because products appearing in pθ(y1:N) are converted into sums, and that the log-
arithm removes exponentials (when the density pθ(y1:N) is in the exponential class
[9]) since log{ea} = a. Another reason is that the use of logarithms results in
algorithms that are numerically more well-behaved [76].

To illustrate the computation of the log-likelihood function, we consider the
following example.

Example 1.4 (ML of a nonlinear SSM) Consider the nonlinear SSM described in
Example 1.2. Due to the stochastic properties of the sequences {et} and {wt}, the
model set (1.3) can be rewritten as

M =

xt+1 ∼ pθ(xt+1|xt, ut)
yt ∼ pθ(yt|xt)
x1 ∼ pθ(x1)

∣∣∣∣∣∣
θ ∈ Θ

 , (1.7)

where “∼” denotes “distributed according to”, and pθ(xt+1|xt, ut), pθ(yt|xt) are
the conditional probability density functions of xt+1 and yt, conditioned on xt and
ut, respectively.

An important property associated with the stochastic models in (1.7) is the
Markov property, which means that the distribution of xt+1 and yt given {xk, uk}tk=−∞
equals their distribution given {xt, ut}.

The likelihood function can be computed using the definition of conditional prob-
ability density functions as [69]

pθ(y1:N) = pθ(y1)

N∏

t=2

pθ(yt|y1:t−1) . (1.8)

6 CHAPTER 1. INTRODUCTION

Taking the logarithm of (1.8), we obtain

log pθ(y1:N) = log pθ(y1) +

N∑

t=2

log pθ(yt|y1:t−1) . (1.9)

From (1.9) we see that the logarithm of the likelihood function transforms the product
of pdfs into a sum.

We use the Markov property associated with the model set (1.7) to compute the
pdfs in (1.9) as

pθ(yt|y1:t−1) =

∫

Xt

pθ(yt|xt)pθ(xt|y1:t−1) dxt , (1.10)

pθ(xt|y1:t) =
pθ(yt|xt)pθ(xt|y1:t−1)

pθ(yt|y1:t−1)
, (1.11)

pθ(xt+1|y1:t) =

∫

Xt

pθ(xt+1|xt, ut)pθ(xt|y1:t) dxt , (1.12)

where Xt denotes the set of values for xt. Equations (1.10)-(1.11) are known as the
measurement update, and equation (1.12) is known as the time update. Together,
equations (1.10)-(1.12) can be employed to recursively compute the pdfs in the log-
likelihood function (1.9).

Example 1.4 illustrates how the information available in the model set can be
employed to compute the log-likelihood function. It is important to emphasize
that, in general, equations (1.10)-(1.12) cannot be computed in closed form. An
exception is when the system is linear and Gaussian, where we can recover the
expressions for the Kalman filter [47] from (1.10)-(1.12). The reason is that the
analytic solutions of the integrals (1.10) and (1.12) are only available for specific
cases. When a closed-form expression is not available, the optimization of (1.9)
over Θ is highly complex. An approach to solve this issue has been proposed in
[77], where particle methods are employed to numerically compute the expectation-
maximization algorithm [20, 66] to maximize (1.9).

The prediction error method

The prediction error method (PEM) is another approach to find the best model in
the set M that explains the data ZN [59]. In this method, the estimated parameter

θ̂N is obtained as
θ̂N = arg min

θ∈Θ
VN (θ) , (1.13)

where

VN (θ) :=

N∑

t=1

ℓ(εt(θ)) , (1.14)

1.1. SYSTEM IDENTIFICATION 7

εt(θ) := yt − ŷt|t−1(θ) . (1.15)

Here ŷt|t−1(θ) denotes the mean square optimal one-step ahead predictor given
y1:t−1, which is computed as

ŷt|t−1(θ) := E{yt|y1:t−1} =

∫

Yt

yt pθ(yt|y1:t−1) dyt , (1.16)

and E{·} is the expectation operator. In (1.16) Yt denotes the set of values for yt,
and the function ℓ(·) is an arbitrary and user chosen positive function (typically
defined as a quadratic operator). We note that minimizing the prediction errors,
εt(θ), makes sense since the models are normally employed for prediction, as in
control system synthesis. Normally the systems are stochastic, which means that
the output of the system at time t cannot be exactly determined by the data up
to time t− 1. Therefore, it is valuable to know at time t− 1 what the output yt is
likely to be in order to compute the appropriate control action [79].

The prediction error method has a number of benefits [60]:

• It can be applied to a wide spectrum of model parameterizations since only
an expression for (1.16) is required.

• It gives models with excellent asymptotic properties, thanks to its kinship
with the ML method (cf. Example 1.5 below).

• It can handle systems that operate in closed-loop (the input is partly de-
termined via output feedback, when the data are collected) without addi-
tional modifications to the method [27]. This property is also part of the ML
method.

To illustrate the connection between PEM and the ML method, we introduce the
following example:

Example 1.5 (PEM and ML method) Consider a single output system that can be
written as

yt = ŷt|t−1(θ0) + et , (1.17)

where {et} is white noise, Gaussian distributed with zero mean and variance σ2(θ0),
and ŷt|t−1(θ0) given by (1.16). Under the previous assumption, the log-likelihood
function can be written as

log pθ(y1:N) = −1

2

N∑

t=1

ε2
t (θ) − N

2
log σ2(θ) + c , (1.18)

where εt(θ) is defined in (1.15), and c is a constant independent of θ. If we assume
that εt(θ) and σ2(θ) are independently parameterized in θ, then we can maximize

8 CHAPTER 1. INTRODUCTION

over σ2(θ) to obtain an expression in terms of εt(θ). This allows to rewrite (1.18)
as

log pθ(y1:N) = − 1

N

N∑

t=1

ε2
t (θ) + c . (1.19)

If we compare (1.14) with (1.19), we see that PEM is retrieved from ML when {et}
is Gaussian distributed white noise, and ℓ(εt(θ)) = N−1ε2

t (θ).

As in the previous subsection, equation (1.16) does not have a closed form expression
in general. Except for linear and specific nonlinear models, expression (1.16) can
only be computed numerically, e.g., using particle methods [77]. The next example
shows the closed form expression for the optimal one-step ahead predictor in the
linear case.

Example 1.6 (Optimal one-step ahead predictor, linear case) Consider the model
set M introduced in Example 1.1. We will compute its optimal one-step ahead
predictor ŷt|t−1(θ), with θ ∈ Θ. To this end, we assume that limq→∞ H(q; θ) = I.
Under this assumption, we can rewrite any model in M as

yt = G(q; θ)ut + (H(q; θ) − I)et + et . (1.20)

We notice that (H(q; θ)− I)et in (1.20) only contains information up to time t−1.
Using (1.1) to compute et as a function of yt and ut, and inserting the result into
(1.20), we obtain

yt = H−1(q; θ)G(q; θ)ut + (I −H−1(q; θ))yt + et . (1.21)

The first two terms in the right-hand side of the equality in (1.21) only depend on
{yk, uk}t−1

k=1 if G is strictly proper (otherwise it is not a problem if ut is deter-
ministic). In addition, since {et} is a white noise sequence, we have that the best
prediction of et given Zt−1 is E{et} = 0. Therefore, the optimal one-step ahead
predictor associated with the model set in Example 1.1 is

ŷt|t−1(θ) = H−1(q; θ)G(q; θ)ut + (I −H−1(q; θ))yt . (1.22)

The expression (1.22) is a valid predictor if H−1(q; θ)G(q; θ) and H−1(q; θ) are
stable [59, 79].

Remark 1.2 In Example 1.6, et cannot be predicted from Zt−1 since et is white
noise. Due to this property, et is called the innovation of the process [59].

A useful predictor is introduced in the following example:

Example 1.7 (Optimal one-step ahead predictor, nonlinear output error models)
Consider the nonlinear output error model introduced in Example 1.3. Since {wt}

1.1. SYSTEM IDENTIFICATION 9

is a white noise sequence with zero mean and finite variance, the optimal one-step
ahead predictor associated with this model is

xt+1 = fθ(xt, ut) , (1.23a)

ŷt|t−1(θ) = hθ(xt) . (1.23b)

As it can be seen from the previous examples, PEM can be applied to find the
estimated parameters θ̂N for different models. The limitations of this method are
that an expression for ŷt|t−1(θ) must be available, and that the optimal one-step
ahead predictor ŷt|t−1(θ) must be stable. For general nonlinear models, it may
happen that ŷt|t−1(θ) is difficult to compute. To circumvent this issue, it is possible
to directly parameterize the model in terms of ŷt|t−1(θ) [59]. We notice that the
direct parametrization of ŷt|t−1(θ) can be seen as a nonlinear output error model,
introduced in Example 1.3.

Asymptotic analysis

An important question regarding identification methods is their consistency, i.e., if
the identification method can retrieve the model in M describing the true dynamics
of the system as N → ∞. Furthermore, we want to know if E{θ̂N} = θ0, with

θ0 ∈ Θ defined as the parameter describing the true system. An estimator θ̂N
satisfying E{θ̂N} = θ0 is said to be unbiased.

On the other hand, we want to know the accuracy associated with the iden-
tification method, i.e., the size of the variation of the identified model around its
expected value. In this subsection we briefly discuss the consistency and accuracy
of the parameter estimates θ̂N as N → ∞. To start the analysis, we require the
following result [15, 59]:

Lemma 1.1 (Cramér-Rao bound) Let θ̂N be an unbiased estimator of θ. Assume
that pθ0(y1:N) (the pdf of y1:N) is defined for all θ0 ∈ Θ, and that for all the values
of y1:N where pθ(y1:N) > 0, we have that

∂

∂θ
log pθ(y1:N) , (1.24)

exists, and that ∣∣∣∣
∂

∂θi
log pθ(y1:N)

∣∣∣∣ (1.25)

is bounded above by an integrable function over the set defined for y1:N , for all
i ∈ {1, . . . , nθ}. In addition, suppose that y1:N may take values in a set whose
boundaries do not depend on θ. Then

E
[
θ̂N − θ0

] [
θ̂N − θ0

]⊤
� {IeF }−1 , (1.26)

10 CHAPTER 1. INTRODUCTION

where

IeF := E

{
∂

∂θ
log pθ(y1:N)

∣∣∣∣
θ=θ0

∂

∂θ⊤ log pθ(y1:N)

∣∣∣∣
θ=θ0

∣∣∣∣∣u1:N

}

= −E

{
∂2

∂θ∂θ⊤ log pθ(y1:N)

∣∣∣∣
θ=θ0

∣∣∣∣∣u1:N

}
. (1.27)

The result introduced in Lemma 1.1 states that the covariance of any unbiased
estimator θ̂N cannot be smaller than the inverse of IeF , known as the Fisher infor-
mation matrix. We notice that the computation of IeF requires the knowledge of
θ0 ∈ Θ, which implies that the exact value of IeF might not be available.

Remark 1.3 The quantity

S(θ) :=
∂

∂θ
log pθ(y1:N) (1.28)

is usually known as the score function. The score function will be employed in
Chapter 4 to compute the Fisher information matrix for nonlinear state space mod-
els.

To continue, we introduce the following definition:

Definition 1.1 (Efficient and Asymptotically efficient estimators) An estimator

θ̂N is said to be efficient if expression (1.26) holds with equality for all N . If the ex-

pression (1.26) holds with equality for N → ∞, then θ̂N is said to be asymptotically
efficient.

The estimators obtained by the ML method and PEM (for a particular ℓ and
Gaussian innovations) are asymptotically efficient. From this perspective, it is

interesting to analyze how the estimator θ̂N behave as N → ∞. The key result in
this area was introduced in [15, 97] for the asymptotic distribution of maximum
likelihood estimators obtained from independent observations:

Lemma 1.2 (Consistency and asymptotic distribution of ML estimators) Suppose
that the random variables z1:N := {zt}Nt=1 are independent and identically dis-
tributed. Suppose also that the distribution of z1:N is given by pθ0 for some value

θ0 ∈ Θ. Then, as N → ∞, the random variable θ̂N tends to θ0 with probability one,

and the random variable
√
N
(
θ̂N − θ0

)
converges in distribution to

√
N
(
θ̂N − θ0

)
∈ AsN (0, {IeF }−1) , (1.29)

where IeF is given in Lemma 1.1.

1.2. INPUT DESIGN 11

The result introduced in Lemma 1.2 shows that, as N → ∞, the distribution of
the random variable

√
N(θ̂N−θ0) tends to be normal with zero mean and covariance

matrix given by the Cramér-Rao bound. We notice that the result in Lemma 1.2
is also true when the ML method is applied to dynamical systems under some
mild conditions. Moreover, under technical conditions, the result in Lemma 1.2
still holds for the estimator given by PEM when the white noise sequence {et} is
Gaussian and ℓ is a quadratic function [59].

Remark 1.4 The asymptotic distribution given in Lemma 1.2 does not necessarily
imply that

Cov(
√
Nθ̂N) := N E

{
(θ̂N − E{θ̂N})(θ̂N − E{θ̂N})⊤

}
→ {IeF }−1 as N → ∞ .

(1.30)
The result (1.30) requires more technical conditions on the stochastic processes act-
ing on the system [59, Appendix 9B]. In this thesis we assume that those conditions
are fulfilled, which allows us to write

Cov(θ̂N) ≈ 1

N
{IeF }−1 . (1.31)

As we can see in (1.31), the covariance matrix of an unbiased and asymptotically
efficient estimator can be expressed in terms of the Cramér-Rao bound. One ques-
tion that can arise at this point is if it is possible to shape the covariance matrix of
θ̂N to improve the accuracy of the estimates. Indeed, since the Fisher information
matrix (1.27) is conditioned on the input sequence u1:N , it is possible to shape the

covariance matrix of θ̂N by designing u1:N , which is the main objective of input
design, described in the next section.

1.2 Input design

Optimal input design concerns the design of an excitation that maximizes the in-
formation obtained in the data set ZN [14, 23, 33]. The maximization is usually
performed by optimizing a cost function related to the intended model applica-
tion. Another standard choice for the cost function is a scalar number associated
with the Fisher information matrix IeF [33, 45, 59]. We denote this cost function
h : Rnθ×nθ → R. To obtain convex optimization problems for the input design
techniques introduced in this thesis, h must satisfy the following definition [5]:

Definition 1.2 (Matrix concave function) A function f : Rr×r → R is called
matrix concave if and only if, for every two matrices X, Y ∈ Rr×r in the positive
semidefinite cone, and for all λ ∈ [0, 1],

f(λX + (1 − λ)Y) ≥ λf(X) + (1 − λ)f(Y) . (1.32)

12 CHAPTER 1. INTRODUCTION

Table 1.1: Typical choices of h.

Optimality criterium h

A-optimality −tr
{

(·)−1
}

D-optimality log det(·)
E-optimality λmin(·)
L-optimality −tr

{
W (·)−1

}

According to Definition 1.2, some suitable choices for h are h = log det (D-
criterion), h = −tr

{
(·)−1

}
(A-criterion), and h = λmin (E-criterion), among others.

Table 1.1 summarizes the definitions commonly used for the cost function h [49].
By designing an optimal input sequence for identification we mean that, for a

given data length N , we optimize the accuracy for the parameter estimates in a
prescribed sense. Since the cost function is associated with IeF , then by Remark 1.4
we conclude that the maximization of IeF implies a reduction in the covariance

matrix of θ̂N . In practical applications, input design allows to reduce the time
associated with the experiment to obtain a prescribed accuracy. To see this, we note
that equation (1.31) implies that the covariance matrix of the parameter estimates
decays as N−1. Furthermore, if IeF is optimized, then from equation (1.31) we
conclude that we can reduce the number of samples required to achieve the desired
accuracy for θ̂N .

To illustrate the importance of input design, we consider the following example:

Example 1.8 (Fisher information matrix for an FIR model) Consider the finite
impulse response (FIR) model

yt = θ1ut + θ2ut−1 + et , (1.33)

where θ =
[
θ1 θ2

]⊤ ∈ R2, and {et} is Gaussian white noise with zero mean and
variance λe. We are interested in identifying θ ∈ R2 by performing an experiment
with N = 2 samples and ut ∈ {1, 0}. The Fisher information matrix IeF for the
model (1.33) is (assuming u0 6= 0)

IeF =
1

λe

u2
1 + u2

2 u2 u1 + u1 u0

u2 u1 + u1 u0 u2
1 + u2

0

 . (1.34)

From (1.34) we see that IeF depends on the input samples {u0, u1, u2}. Therefore,
the choice of the input for the experiment is crucial to identify θ. For example, if
u1 = u2 = 1 and u0 = 1, the matrix IeF becomes

IeF =
1

λe

[
2 2
2 2

]
, (1.35)

1.2. INPUT DESIGN 13

which is singular. This implies that the parameter θ cannot be fully identified.
Indeed, if we let the number of samples N → ∞, a constant input signal can only
be employed to identify the DC gain of the model (1.33), which is the sum of the
parameters. However, if in the previous case we choose u1 = 0, then IeF results in

IeF =
1

λe

[
1 0
0 1

]
, (1.36)

which is a nonsingular matrix. In conclusion, the design of {u1, u2} to identify the
model (1.33) is an important step to obtain the desired results.

The optimal input design problem has been widely analyzed in the literature,
with numerous results available. In the next subsection we provide a literature
review with the main results in input design.

Literature review on input design

Most results in input design for dynamical systems have been developed for linear
models [59]. The assumption of a linear model structure allows to use convex
optimization tools to solve the input design problem [32, 45, 57, 59, 74]. Several
methods to design inputs for identification of linear systems have been reported
in the literature. In [74] the problem of input design for identification of linear
systems is addressed. The input sequence in [74] is designed by optimizing the
experiment for the worst case scenario defined by the model parameters, which
are assumed to lie in a given compact set. The optimal input design in [74] also
considers energy (or power) constraints for the input sequence. Moreover, [74]
shows a convex optimization algorithm that can be employed to solve a discretized
approximation to the design problem. Another possibility to solve the optimal
input design problem is to employ linear matrix inequalities (LMI) to characterize
autocovariance functions associated with a feasible input spectrum [45, 57, 75, 96].
In [45] the input design problem is solved in the frequency domain, where the input
spectrum is designed. To this end, [45] parameterizes the input spectrum using
rational basis functions. This allows to obtain a convex problem in the decision
variables, where quality constraints on the identified model, and power constraints
on the input signal can be included. A D-optimal multisine excitation is designed
in [75], where the signal is employed to model physiological or electrochemical
phenomena from spectroscopy measurements. In [96] the optimal input design is
presented for finite impulse response (FIR) models, minimizing the uncertainty of
the identified model while the variance of the input is kept as small as possible.
A Markov chain approach is presented in [6, 7] to design inputs with amplitude
constraints. The input sequence is assumed to be the output of a Markov chain,
where the transition probability matrix is designed to maximize the information
retrieved from the experiment. However, the resulting problem is non-convex and
numerical optimization tools must be employed. We find the same problem for

14 CHAPTER 1. INTRODUCTION

time domain gradient-based schemes [32, 83], where only the convergence to local
optima can be guaranteed.

In recent years, the interest on input design has been extended from linear to
nonlinear systems. The main issue here is that most of the tools used for input
design for linear systems based on frequency domain techniques are no longer valid
for the nonlinear case. One approach to input design for nonlinear systems is in-
troduced in [42], where a linear systems perspective is considered. Based on a
particular nonlinear system, [42] raises the issue of obtaining a parametrization for
the input sequence that results in a tractable optimization. The main message in
[42] is that it is possible to reuse some of the parameterizations of input sequences
for linear models to the nonlinear case. Thus, it is possible to parameterize the
input sequence in terms of a probability density function describing a stationary
stochastic process, but it is not straightforward to parameterize the input sequence
in terms of its autocovariance function. In addition, [42] shows that it is possible
to use the sum-of-squares method to relax the input design problem for nonlinear
models. Extensions to a class of FIR type systems is developed in [54], where a
characterization of probability density functions is employed. The assumption in
[54] is that the input sequence is a realization of a stationary process with finite
memory. Taking into account the structure of nonlinear FIR models, in [54] it is
shown that the requirement of stationary process for the input can be combined
with the model structure to obtain a convex optimization problem. Input design
for structured nonlinear identification is introduced in [94, 95], where the system is
assumed to be an interconnection of linear systems and static nonlinearities. The
objective in [94, 95] is to minimize the variance of the experiment, while achieving
the desired accuracy in the parameter estimates. It is shown in [94, 95] that the
optimization problem can be expressed in terms of the probability mass function
characterizing the input sequence. Moreover, [94, 95] shows that the resulting opti-
mization problem is convex in the decision variables. Once the optimal probability
mass function is obtained, [94, 95] generate an input realization using elements
from graph theory. An input design method for nonlinear state space models is
presented in [34], where a particle filter is used to approximate the cost function
associated with the input design problem, which is optimized over a particular class
of input vectors using stochastic approximation. In [34] it is assumed that the input
sequence is an autoregressive process filtering a white noise process with prescribed
variance, and the parameters of this process are optimized numerically. The meth-
ods previously mentioned [34, 42, 54, 94, 95] are in general highly complex (usually
non-convex problems, e.g., [34]) and are restricted to particular model structures
(e.g., [42, 54, 94, 95]) or particular classes of input signals (e.g., white noise fil-
tered through an ARX filter [34]). Moreover, except for the results in [6, 7, 54],
the methods introduced cannot handle input design with amplitude constraints.
Amplitude constraints can arise due to safety reasons or physical limitations in the
system. Therefore, input design with amplitude constraints even for linear systems
also requires further study.

1.3. THESIS OUTLINE AND MAIN CONTRIBUTIONS 15

1.3 Thesis outline and main contributions

In this thesis we present a novel approach to input design for nonlinear systems.
The approach considers the design of input sequences for models with additive
white noise at the output, and nonlinear state space models, extending the class of
nonlinear systems considered in [54]. The input is constrained to be a stationary
process with a finite set of possible values, and the associated probability mass
function (pmf) to have finite memory, i.e., a Markov chain of fixed order. There-
fore, the problem is to find the pmf that maximizes the information obtained from
the experiment, quantified as a scalar function of the information matrix. By using
notions of graph theory, we can express the feasible set of pmfs as a convex combi-
nation of the pmfs of the so-called prime cycles describing the vertices of the set.
Since the prime cycles can be explicitly computed by known algorithms [46, 100],
the optimization problem becomes easy to pose. Furthermore, for standard choices
of the cost function, the problem is convex even for nonlinear systems, which re-
duces the computational complexity compared with the Markov chain approach in
[6, 7]. Finally, since the input is restricted to a finite set of possible values, the
method naturally incorporates amplitude constraints.

The proposed input design method has proven to be an interesting solution to
practical problems arising in the identification and estimation literature. As an
illustration of the practical relevance of the proposed method, this thesis includes
two practical applications. First, we employ the input design technique for channel
estimation with quantized output data. In this problem the quantized output data
introduces nonlinear behavior, which restricts the techniques that can be employed
to design an input sequence. Second, the proposed input design method is used
in closed-loop systems, where an external excitation is designed by minimizing the
experimental cost, subject to probabilistic constrains on the input and output of
the plant, and simultaneously achieving a prescribed accuracy for the identified
model. In this case, the cost function differs from the one employed in the previous
discussion, since we aim to minimize the experimental cost instead of maximizing
the information in the experiment. However, the accuracy for the identified model
appears as a constraint, which guarantees the desired results in the solutions of the
optimization problem.

This thesis is organized in seven chapters, and 3 appendices. The chapters are
structured into two parts. In the first part, we discuss the theory employed by the
input design method, and the proposed solution to the problem of input design for
nonlinear model structures. The second part describes the applications where the
method has been employed to improve the accuracy of the identified parameters.

The contents in each chapter are as follows:

Chapter 2: This chapter introduces notions from graph theory and their relations
to stationary processes. We show how the class of so-called de Bruijn graphs
can be employed to describe the set of stationary processes with finite memory
and finite alphabet. The contents in this chapter are partially based on

16 CHAPTER 1. INTRODUCTION

P.E. Valenzuela, C.R. Rojas, and H. Hjalmarsson. A graph theoreti-
cal approach to input design for identification of nonlinear dynamical
models. Accepted for publication, Automatica, 2014.

P.E. Valenzuela, C.R. Rojas, and H. Hjalmarsson. Optimal input design
for dynamic systems: a graph theory approach. In proceedings of the
52nd Conference on Decision and Control (CDC), Florence, Italy, 2013.

Chapter 3: In this chapter a method for input design for nonlinear output error
models is presented. The method considers the design of an input sequence as
a realization of a stationary process with finite memory and finite alphabet,
which allows us to use the theory introduced in Chapter 2 to obtain a tractable
problem. The results in this chapter are based on

P.E. Valenzuela, C.R. Rojas, and H. Hjalmarsson. A graph theoreti-
cal approach to input design for identification of nonlinear dynamical
models. Accepted for publication, Automatica, 2014.

P.E. Valenzuela, C.R. Rojas, and H. Hjalmarsson. Optimal input design
for dynamic systems: a graph theory approach. In proceedings of the
52nd Conference on Decision and Control (CDC), Florence, Italy, 2013.

Chapter 4: In this chapter an extension of the input design method to nonlinear
state space models is presented. The method considers the approach intro-
duced in Chapter 2. In this chapter the information matrix is computed as the
sample covariance of the score function, which is approximated using particle
methods. The results in this chapter are based on

P.E. Valenzuela, J. Dahlin, C.R. Rojas, and T.B. Schön. A graph/particle-
based method for experiment design in nonlinear systems. In proceedings
of the 19th IFAC World Congress, Cape Town, South Africa, 2014.

Chapter 5: In this chapter we discuss an application of the input design method
to channel estimation with quantized output measurements. Using an avail-
able expression for the information matrix of systems with quantized output,
we use the input design method based on graph theory to design an input
sequence to identify the model. The results in this chapter are based on

B.I. Godoy, P.E. Valenzuela, C.R. Rojas, J.C. Agüero, and B. Ninness. A
novel input design approach for systems with quantized output data. In
proceedings of the 13th European Control Conference (ECC), Strasbourg,
France, 2014.

Chapter 6: In this chapter an application of the input design method to closed-
loop identification is presented. The objective is to design an input sequence
as a realization of a stationary process to identify a system operating in closed
loop. The designed input sequence satisfies requirements on the information
retrieved from the experiment, and probabilistic bounds on the input and

1.3. THESIS OUTLINE AND MAIN CONTRIBUTIONS 17

output of the system. Using the proposed input design method, the resulting
problem is convex in the decision variables. The results in this chapter are
based on

A. Ebadat, P.E. Valenzuela, C.R. Rojas, H. Hjalmarsson, and B. Wahlberg.
Applications oriented input design for closed-loop system identification:
a graph-theory approach. Accepted for publication in the 53rd Confer-
ence on Decision and Control (CDC), Los Angeles, United States, 2014.

Chapter 7: This chapter presents the conclusion of the thesis and future work on
the subject.

As a complement to the discussion in the chapters, 3 appendices are included:

Appendix A: We provide algorithms to compute the elementary cycles of a given
graph.

Appendix B: We provide the proof of the convergence for the approximation of
the Fisher information matrix employed in Chapter 3.

Appendix C: We review the expectation-maximization algorithm, and derive some
identities that are useful in this thesis.

Part I

Theory

19

Chapter 2

Graph theory and stationary

processes

The results presented in this thesis rely on the connection between stochastic pro-
cesses and graph theory. Therefore, the relation between these two concepts must
be clarified before presenting the results in the coming chapters.

In this chapter, we introduce the elements from graph theory required to under-
stand the discussions in the next chapters. We also define de Bruijn graphs, and
how they can be associated with stationary processes of finite memory. For this
purpose, we describe the set of stationary processes of a given memory as a convex
combination of the measures associated with the prime cycles of a de Bruijn graph
[100].

Given an element in the set of stationary processes with finite memory, we want
to sample a realization with the prescribed distribution. In this chapter, we also
provide a novel method to obtain samples from a given probability measure that
describes the stationary distribution of a Markov chain.

2.1 Graph theory: basic concepts

In this section we provide a number of definitions for the graph theory concepts
employed in the next chapters. Our notation follows that of [46, pp. 77].

Definition 2.1 (Directed graph) A directed graph GV = (V , E) is a pair consisting
of a nonempty and finite set of vertices (called nodes) V and a set E of ordered
pairs (vi, vj) of vertices vi, vj ∈ V called edges.

Remark 2.1 We note that Definition 2.1 does not impose restrictions over the set
of vertices V. This allows to define V according to the requirement of the user.

Definition 2.2 (Path) A path in GV is a sequence of vertices

pvu = (v1 = v, v2, . . . , vk = u) ,

21

22 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

such that (vi, vi+1) ∈ E for all i ∈ {1, . . . , k − 1}.

Definition 2.3 (Cycle and elementary cycle) A cycle is a path in which the first
and last vertices are identical. A cycle is elementary if no vertex except the first
and last appears twice.

Definition 2.4 (Cyclic permutation) Consider two cycles puu and pvv in GV . We
say that pvv is a cyclic permutation of puu if and only if there exists paths puv,
and pvu such that pvv = (pvu, puv), where the first element in puv is removed, and
puu = (puv, pvu), where the first element in pvu is removed.

Definition 2.5 (Distinct elementary cycles) Two elementary cycles are distinct if
one is not a cyclic permutation of the other.

De Bruijn graphs

The results in this thesis are based on the class of directed graphs, called de Bruijn
graphs [17]. Their definition is given below.

Definition 2.6 (de Bruijn graph) An n-dimensional de Bruijn graph of m symbols
C = {s1, . . . , sm} is a directed graph whose set of vertices V is given by

V = Cn = {v1 = (s1, . . . , s1, s1), v2 = (s1, . . . , s1, s2), . . . ,

vm = (s1, . . . , s1, sm), vm+1 = (s1, . . . , s2, s1), . . . ,

vmn = (sm, . . . , sm, sm)} , (2.1)

and whose set of directed edges E is

E = {((v1, r1, . . . , rn−1), (r1, r2, . . . , rn)) : v1, r1, . . . , rn ∈ C} . (2.2)

Remark 2.2 According to Definition 2.6, an n-dimensional de Bruijn graph of m
symbols is a directed graph representing overlaps between sequences of symbols. It
has mn vertices, consisting of all possible sequences of length n derived from the
given symbols of length n. The same symbol can appear multiple times in a sequence.
Moreover, if one of the vertices can be expressed as another vertex by shifting all
its symbols one place to the left and adding a new symbol at the end, then the latter
has a directed edge to the former vertex.

To illustrate Definition 2.6 we consider the following example:

Example 2.1 Consider a sequence {ut} with alphabet C = {0, 1}. We are in-
terested in deriving the de Bruijn graph associated with the possible transitions of
(ut−1, ut) among its states in C2. In other words, we want to derive the possible
transitions when we move from (uk−1, uk) to (uk, uk+1). Table 2.1 contains all
the possible transitions between the elements in C2. We notice that the number of
possible values of (uk, uk+1) for a given (uk−1, uk) is two, which is the number of

2.2. DE BRUIJN GRAPHS AND STATIONARY PROCESSES 23

(ut−1, ut)
(1, 1)

(ut−1, ut)
(0, 0)

(ut−1, ut)
(1, 0)

(ut−1, ut)
(0, 1)

Figure 2.1: The de Bruijn graph derived from C2, with C = {0, 1}.

(ut−1, ut) (ut, ut+1)
(0, 0) {(0, 0), (0, 1)}
(0, 1) {(1, 0), (1, 1)}
(1, 0) {(0, 0), (0, 1)}
(1, 1) {(1, 0), (1, 1)}

Table 2.1: Transitions from (ut−1, ut) to (ut, ut+1), Example 2.1.

elements in C. This is due to the fact that the new element uk+1 belongs to C. The
resulting de Bruijn graph is depicted in Figure 2.1. We notice that the nodes are
given by the elements of C2, and the edges correspond to the transitions presented
in Table 2.1.

Remark 2.3 We use GCn to denote the n-dimensional de Bruijn graph derived
from Cn.

2.2 De Bruijn graphs and stationary processes

In this section, we establish the connection between de Bruijn graphs and stationary
processes. Before proceeding, we introduce the following definitions:

Definition 2.7 (Cumulative distribution function) A function P : Cnm → R is a
cumulative distribution function (cdf) if and only if P (x1, . . . , xnm

) = P{X1 ≤
x1, . . . , Xnm

≤ xnm
}, where {Xi}nm

i=1 are random variables, and P is a probability
measure.

24 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

Definition 2.8 (Stationary process) Consider the stochastic process {ut}. We say
that the process {ut} is stationary if and only if the cumulative distribution func-
tions P associated with {ut} satisfy P (ui:i+k) = P (uj:j+k) for all integers i, j,
k.

As we can see from Definition 2.8, a stationary process requires that all its
marginal cumulative distribution functions (cdfs) are time invariant. The same
definition can be restricted to the case of vectors:

Definition 2.9 (Stationary vectors) Consider the vector u1:nm
. We say that the

vector u1:nm
is stationary if and only if the cdf associated with u1:nm

satisfy

P (ui:i+k) = P (uj:j+k)

for all positive integers i, j, k satisfying 1 ≤ i ≤ j ≤ nm − k.

Stationary vectors

The concepts introduced in Section 2.1 can be employed to describe the set of
stationary processes. To this end, we consider the sequence {ut}, where ut ∈ C.
Before continuing, we introduce the following definition:

Definition 2.10 (Probability mass function) A probability mass function (pmf) p
is a probability measure whose support is a set with finite cardinality.

In this thesis we are interested in the case where {ut} is a stationary process.
The description of {ut} is given in terms of the probability mass function (pmf),
denoted by p. However, the description of {ut} as stationary process is intractable
since we need to define an infinite number of cumulative distribution functions (cf.
Definition 2.8). To solve this issue, we use the following definitions:

Definition 2.11 (Extension of the cdf) Consider the cdf P (u1:nm
). The exten-

sion of the cdf P (u1:nm
) is defined as a Markov process {ut} of order nm, whose

stationary distribution is given by P (u1:nm
).

Definition 2.12 (nm-dimensional projection [100, Theorem 1]) Consider the cdf
P (u1:nm

). An nm-dimensional projection P (u1:nm
) of P (u1:nseq) (nseq ≥ nm) is a

cdf P (u1:nm
) associated with the stationary vector u1:nm

, which can be extended to
the stationary vector u1:nseq to define P (u1:nseq).

Based on Definitions 2.11-2.12, we assume the following:

Assumption 2.1 The stationary process {ut} is an extension of the stationary
cumulative distribution function P (u1:nm

).

2.2. DE BRUIJN GRAPHS AND STATIONARY PROCESSES 25

Assumption 2.1 restricts the set of stationary processes {ut} to those that can be
obtained as an extension of pdfs with a finite number of elements. This means that
P (u1:nseq) can be completely described by its nm-dimensional projection P (u1:nm

)
for any nseq ≥ nm [100].

Given the restriction to the family of stationary processes we are interested in,
we need to find a description for the set of pdfs associated with stationary processes
of finite memory. For this end, we introduce the following result in terms of the cdf
(whose proof follows from [100]):

Lemma 2.1 (Shift invariant property) Consider a stationary vector u1:nm
. A cdf

P : Rnm → R is a valid cdf for u1:nm
if and only if, for all z ∈ Rnm−1,

∫

v∈R

dP
([
v, z

])
=

∫

v∈R

dP
([

z, v
])
. (2.3)

Proof We know that P is a valid cdf for the stationary vector u1:nm
if and only if

ui:i+k
d∼ uj:j+k, for all positive integers i, j, k satisfying 1 ≤ i ≤ j ≤ nm −k. Here,

d∼ denotes equal in distribution.
First we assume that P is a valid cdf for the stationary vector u1:nm

. This

implies that u1:nm−1
d∼ u2:nm

, which is equivalent to the condition written in (2.3).

To prove the converse, we assume that (2.3) is true. Therefore, u1:nm−1
d∼ u2:nm

is
satisfied. Then for any k < nm, and by successive shifts, the marginal cdf P (u1:k)
obtained from P (u1:nm

) satisfies

u1:k
d∼ u2:k+1

d∼ u3:k+2 . . .
d∼ unm−k+1:nm

, (2.4)

which implies that u1:nm
has a stationary distribution. �

Lemma 2.1 states that a cdf P is associated with a stationary vector u1:nm
if

and only if the cdf obtained by marginalizing over unm
is equivalent to the one

obtained by marginalizing over u1. If a cdf P satisfies this property, then we say
that P is shift invariant.

The result introduced in Lemma 2.1 allows us to characterize the set of cdfs
associated with stationary vectors u1:nm

as

P :=

{
P : Rnm → R|P (x) ≥ 0, ∀x ∈ Rnm ;

P is monotone nondecreasing ;

lim
xi→∞

i∈{1, ..., nm}
P (x1, . . . , xnm

) = 1,

∫

v∈R

dP
([
v, z

])
=

∫

v∈R

dP
([

z, v
])
, ∀z ∈ Rnm−1

}
. (2.5)

26 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

We notice in (2.5) that the first three properties define a valid cdf. Introducing
shift invariance as the fourth property in the set P , we obtain the projection of the
cdfs of stationary sequences into the set of stationary vectors of length nm [100].

To exploit the relation between de Bruijn graphs and stationary vectors, we
assume the following:

Assumption 2.2 The alphabet C is a finite set with cardinality nC.

In this thesis we restrict the analysis to the case when Assumption 2.2 is satisfied.
Therefore, the set defined in Equation 2.5 will be restricted to the case of pmfs.
Thus, the set we employ here is given by

PC := {p : Cnm → R| p(x) ≥ 0, ∀x ∈ Cnm ;
∑

x∈Cnm

p(x) = 1;

∑

v∈C
p
([
v, z

])
=
∑

v∈C
p
([

z, v
])
, ∀z ∈ Cnm−1

}
. (2.6)

Remark 2.4 The cdfs associated with the elements in PC define a proper subset of
P.

We need to parameterize the elements of PC in a tractable manner. This issue is
relevant since in the next chapters we will optimize cost functions defined in terms
of a stationary vector {ut}nseq

t=1 , which are described as an extension of the pmfs
p(u1:nm

) ∈ PC , where nm < nseq. A natural approach is to parameterize p(u1:nseq)
in terms of a finite number of elements of PC , i.e., projections of stationary pmfs,
since these elements can be extended to a full stationary pmf p(u1:nseq). Such a
parameterization is described in the next subsection.

Parameterization of PC

To parameterize the elements of PC , we first notice that PC is a convex set, and,
in particular, a polyhedron [72, pp. 170], since it is described by a finite number
of linear equalities and inequalities. Hence, any element of PC can be described as
a convex combination of its extreme points [72, Corollaries 18.3.1 and 19.1.1]. In
other words, if we define VPC

:= {wi, i = 1, ..., nV} as the set of all the extreme
points of PC, then for all f ∈ PC we have

f =

nV∑

i=1

αiwi , (2.7)

2.2. DE BRUIJN GRAPHS AND STATIONARY PROCESSES 27

where αi ≥ 0, i ∈ {1, . . . , nV}, and

nV∑

i=1

αi = 1 . (2.8)

The set VPC
can be characterized in a graph-theoretical manner. Since we have

restricted ut to belong to a finite alphabet C with nC elements (see Assumption 2.2),
we notice that the set of possible values for (ut−nm+1, . . . , ut), Cnm , is composed of
nnm

C elements, which can be viewed as nodes in a graph. In addition, the transitions
between the elements in Cnm , as described by a stationary process of memory nm,
are given by the possible values of ut+1 when we move from (ut−nm+1, . . . , ut) to
(ut−nm+2, . . . , ut+1), for all integers t ≥ 0. The edges between the elements in
Cnm denote the possible transitions between the states, represented by the nodes
of the graph. The resulting graph corresponds to a de Bruijn graph. To illustrate
the transition among the nodes in the equivalent de Bruijn graph, we present the
following example:

Example 2.2 (Stationary vectors and de Bruijn graphs) Consider the de Bruijn
graph depicted in Figure 2.1 in page 23, where nm = 2, and C = {0, 1}. From this
figure we can see that, if we are at node (0, 1) at time t, then we can only transit
to node (1, 0) or (1, 1) at time t+ 1 (cf. Table 2.1 in page 23).

In order to describe the elements of VPC
, the set of extreme points of PC , we

need the concept of prime cycles, whose definition is introduced below [100, pp.
678]:

Definition 2.13 (Prime cycle) A prime cycle in a directed graph GV is an elemen-
tary cycle whose set of nodes do not have a proper subset which is an elementary
cycle.

The definition of prime cycle is illustrated in the next example.

Example 2.3 (Prime cycles and de Bruijn graphs) Consider again the de Bruijn
graph depicted in Figure 2.1 in page 23. According to Definition 2.13, the cy-
cle {(0, 1), (1, 1), (1, 0), (0, 1)} is not prime since it contains the elementary cycle
{(0, 1), (1, 0), (0, 1)} in it. On the other hand, the elementary cycle {(0, 1), (1, 0), (0, 1)}
is a prime cycle since it does not contain another elementary cycle.

To introduce the next theorem, we need the definition below.

Definition 2.14 (Descendants of an node in a de Bruijn graph) Consider a de
Bruijn graph GCn . For any x ∈ Cn, the set of descendants of x is defined as

Dx := {v ∈ Cn : (x, v) ∈ E} . (2.9)

We have the following result [100, Theorem 6]:

28 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

Theorem 2.1 The prime cycles of the de Bruijn graph of a Markov process of
memory nm are in one-to-one correspondence with the elements of VPC

, the set
of extreme points of PC. In particular, each wi ∈ VPC

corresponds to a uniform
distribution whose support is the set of elements of a prime cycle.

Proof As an induction hypothesis, we assume that all measures in PC with less
than k support points are mixtures of prime cycle measures. To start the induction,
it is enough that the hypothesis is true when k = 1.

Let p ∈ PC have k points in its support. By Lemma 2.1, for any x ∈ supp(p),
where supp(p) is the support of p, we have

0 < p(x) ≤
∑

v∈C
p(v, x2, . . . , xnm

) =
∑

v∈C
p(x2, . . . , xnm

, v) =
∑

y∈Dx

p(y) . (2.10)

Equation (2.10) shows that for every x ∈ supp(p), there exists a y ∈ supp(p) for
which y ∈ Dx. Because supp(p) is a finite set, this implies the existence of a cycle
and hence a prime cycle in supp(p).

Let a := {a1, . . . , ae} be one such cycle, so that ai ∈ supp(p) for i ∈ {1, 2 . . . , e}.
Define

α := min
i∈{1, 2 ..., e}

e p(ai) . (2.11)

By definition 0 < α ≤ 1. If α = 1 then p = pa, where pa is a measure assigning
equal probability to the elements in a, and the induction is over. If α < 1, define
the measure

p′ :=
p− αpa

1 − α
. (2.12)

It is possible to verify that p′ is a probability measure. Moreover, p′ has at most
k − 1 support points, because

(1 − α)p′(ai) = p(ai) − αpa(ai) = p(ai) − min
i∈{1, 2 ..., e}

e p(ai)
1

e
, (2.13)

which implies that p′(ai) = 0 for some i ∈ {1, 2 . . . , e}. Finally, p′ ∈ PC because
p′ is a linear combination of the stationary measures p, and pa.

By the induction hypothesis, p′ is a mixture of prime cycle measures, and

p = α pa + (1 − α) p′ . (2.14)

This shows that any p ∈ PC is a mixture of prime cycle measures. It only remains
to show that all prime cycle measures are extreme points.

Let pa be a prime cycle measure. If pa is a mixture of stationary measures, by
what has just been shown, pa is a mixture of prime cycle measures. For any pb in
that mixture, defined for a prime cycle b, we have supp(pb) ⊂ supp(pa). But a is
prime cycle, so the only cycle contained in a is itself, and hence b = a. This shows
that pa is an extreme point. �

2.2. DE BRUIJN GRAPHS AND STATIONARY PROCESSES 29

Theorem 2.1 says that we can describe all the elements in VPC
by finding all the

prime cycles associated with the de Bruijn graph GCnm drawn from Cnm . To find
all the prime cycles in GCnm , the de Bruijn graph with vertices in Cnm , we use the
following lemma.

Lemma 2.2 All the prime cycles associated with GCnm can be derived from the
elementary cycles of GCnm−1 .

Proof For x, y ∈ Cnm−1 such that

(x2, . . . , xnm−1) = (y1, . . . , ynm−2) , (2.15)

define < x, y >∈ Cnm by

< x, y >:= (x1, x2, . . . , xnm−1, ynm−1) = (x1, y1, . . . , ynm−2, ynm−1) . (2.16)

For a cycle a := {a1, . . . , ae}, with ai ∈ Cnm−1 for all i ∈ {1, . . . , e}, we create a
cycle a′ with elements in Cnm by defining

a′ := {< a1, a2 >, < a2, a3 >, . . . , < ae, a1 >} . (2.17)

Finally, we have that a′ in (2.17) is a prime cycle if and only if:

• < aj , aj+1 >∈ D<ai, ai+1> ⇔ i+ 1 = j,

• ai+1 = aj ⇔ i+ 1 = j,

• a is an elementary cycle.

Therefore, all the prime cycles in de Bruijn graph GCnm can be found by computing
the elementary cycles in the de Bruijn graph GCnm−1 . �

Lemma 2.2 states that finding all the prime cycles in GCnm is equivalent to
finding all the elementary cycles in GCnm−1 , which can be determined using standard
graph algorithms (for the examples in the next chapters, we have used the algorithm
presented in [46, pp. 79–80] complemented with the one proposed in [84, pp.
157]. Appendix A presents the pseudo-codes of the algorithms employed in this
thesis). To illustrate this procedure, consider the graph depicted in Figure 2.2.
One elementary cycle for the graph in Figure 2.2 is given by {0, 1, 0}. Using
Lemma 2.2, the elements of one prime cycle for the graph GC2 are obtained as a
concatenation of the elements in the elementary cycle {0, 1, 0}. Hence, the prime
cycle in GC2 associated with this elementary cycle is {(0, 1), (1, 0), (0, 1)}.

Once all the prime cycles of GCnm are found, the set VPC
is fully determined.

Then, for each wi ∈ VPC
we can generate a corresponding realization by running the

corresponding prime cycle. This property will be useful in the input design method
discussed in the next chapters, where numerical approximations are needed for
expressions depending on the probability measure of each prime cycle.

30 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

ut = 0 ut = 1

Figure 2.2: The de Bruijn graph derived from Cnm , with nm = 1, and C = {0, 1}.

Example 2.4 (Generation of a sequence from a prime cycle) Consider the de
Bruijn graph depicted in Figure 2.1 in page 23. From Example 2.3, we know that
one prime cycle for this graph is given by {(0, 1), (1, 0), (0, 1)}. Therefore, a re-
alization {ut}Nsim

t=1 associated with this prime cycle is computed by taking the last
element of each node, i.e., {ut}Nsim

t=1 = {1, 0, 1, 0, . . . , ((−1)Nsim−1 + 1)/2}. We
notice that there is some degree of freedom on choosing from which node to start.
In this example we start at node (0, 1) at time t = 1.

Remark 2.5 The computational cost associated with the approach discussed in
this thesis is mostly dominated by the effort required to compute the elementary
cycles, and the Fisher information matrix for these cycles. A time bound for the
computation of elementary cycles for the method presented in Appendix A is given
by O(nnm

C (nC + 1)(ce + 1)), where ce is the number of elementary cycles given by
[46, p. 77]

ce := nC +

nnm−1
C

−1∑

i=1

(
nnm−1

C
nnm−1

C − i+ 1

)(
nnm−1

C − i
)
! . (2.18)

For example, for a ternary signal (nC = 3), and memory length nm = 2, we have
ce = 8, and a time bound of order O(324).

2.3 Generation of stationary sequences

In Section 2.2, we discussed a parametrization of PC to obtain a computationally
tractable description of the pmfs associated with stationary vectors u1:nm

. However,
a remaining issue must be addressed: given a pmf p ∈ PC , we want to obtain an
input vector u1:nseq , where each ut is sampled from p, for t ∈ {1, . . . , nseq}.

In this section we develop a procedure to generate an input sequence u1:nseq

from a given pmf p(u1:nm
). To this end, notice that we can associate GCnm with

the discrete-time Markov chain [21]

πk+1 = Aπk , (2.19)

where A ∈ RCnm ×Cnm
is a transition probability matrix1, and πk ∈ RCnm

is the

1Given a set X with finite cardinality, we denote by RX×X the matrices with real entries,
with dimensions given by the cardinality of X.

2.3. GENERATION OF STATIONARY SEQUENCES 31

state vector.2 In this case, there is a one-to-one correspondence between each entry
of πk ∈ RCnm

and an element of Cnm .
Based on this association, p(u1:nm

) corresponds to the stationary distribution
of a Markov chain (2.19), defined as Πs ∈ RCnm

. Therefore, in order to generate an
input sequence u1:nseq from p(u1:nm

), we can design a Markov chain having p(u1:nm
)

as its stationary distribution, and simulate this Markov chain to generate u1:nseq

from its samples.
To continue, we denote by Arl ∈ R the (r, l)-entry of A. We notice that the

indices of A are not numerical, but belong to Cnm . Based on the previous notation,
a valid A for the Markov chain (2.19) must satisfy

Arl ≥ 0 , for all r, l ∈ Cnm , (2.20)
∑

r∈Cnm

Arl = 1 , for all l ∈ Cnm , (2.21)

Arl = 0 , if (l, r) /∈ E . (2.22)

It can be proven that a matrix A satisfying (2.20)-(2.21) has 1 as an eigenvalue
[43]. Furthermore, if the Markov chain is ergodic, the unique eigenvector Πs ∈ RCnm

associated with this eigenvalue is the unique stationary pmf of Cnm (up to a scaling
factor), satisfying

Πs = AΠs . (2.23)

The task is to design a transition probability matrix satisfying (2.20)-(2.23).
There is an extensive literature on how to optimize the mixing time of the resulting
Markov chain (i.e., the time required to obtain samples distributed according to
the stationary measure of the Markov chain, see, e.g., [4, 36] and the references
therein). However, these works assume that the graph is undirected or reversible,
which implies that A must have a particular structure (e.g., A a symmetric matrix).
Since the structure of the graph GCnm does not satisfy in general the required
properties, most existing methods cannot be applied here.

Below, we develop a method to design a transition probability matrix for the de
Bruijn graph GCnm . The idea is that if we parameterize the transition probabilities
of a Markov chain of memory n in terms of the stationary probabilities of a Markov
chain of memory n+ 1, we obtain a computationally tractable description of PC , as
discussed in Section 2.2. Given the optimal stationary probabilities, the proposed
algorithm gives a unique mapping between the optimized stationary probabilities
and the transition matrix with memory n using that

P{ut|ut−1, . . . , ut−n} =
P{(ut, . . . , ut−n)}∑
ut∈C P{(ut, . . . , ut−n)} , (2.24)

where P denotes the stationary probability measure of the Markov chain (i.e., de-
fined by the entries of Πs), and P{·|·} denotes the conditional probability measure.

2Note that equation (2.19) is not in standard Markov chain notation (defined as the transpose
of (2.19)).

32 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

Algorithm 2.1 Design of a transition probability matrix

Inputs: A pmf p, its memory nm, and the alphabet C.
Output: A transition probability matrix A with stationary distribution p.

1: For each r ∈ Cnm , define

Ar := {l ∈ Cnm : (l, r) ∈ E} . (2.26)

In other words, Ar is the set of ancestors of r.
2: For each r, l ∈ Cnm , let

Arl =

P{r}∑
k∈Ar

P{k}
, if l ∈ Ar and

∑
k∈Ar

P{k} 6= 0 ,

1
#Ar

, if l ∈ Ar and
∑

k∈Ar

P{k} = 0 ,

0 , otherwise.

(2.27)

To continue, we need the following result:

Lemma 2.3 The stationary probability measure P, corresponding to p(u1:nm
), sat-

isfies
cseq∑

r=1

P{(v1, . . . , vnm−1, sr)} =

cseq∑

r=1

P{(sr, v1, . . . , vnm−1)} , (2.25)

for all (v1, . . . , vnm−1) ∈ Cnm−1.

Lemma 2.3 follows since p(u1:nm
) is the projection of a stationary distribution,

cf. Lemma 2.1. Based on this fact, we can design a transition probability matrix
A for GCnm as described in Algorithm 2.1.

Algorithm 2.1 introduces a method to design valid transition probability matri-
ces when Πs satisfies Lemma 2.3. For an element r ∈ Cnm with nonzero probability,
Algorithm 2.1 assigns nonzero transition probability only to those elements in the
set of ancestors of r. If an element v ∈ Cnm has zero probability, the algorithm
assigns equal probability to those elements in the set of ancestors of v.

The next theorem establishes the correctness of the algorithm.

Theorem 2.2 Given a stationary probability measure P satisfying Lemma 2.3,
then the matrix A ∈ RCnm ×Cnm

designed by Algorithm 2.1 is a transition probability
matrix satisfying (2.20)-(2.23).

Proof Properties (2.20) and (2.22) are trivially satisfied by the construction of A.
To establish (2.21) and (2.23), we need to analyze the structure of the transition
probability matrix A associated with a de Bruijn graph. From the definition of E

2.3. GENERATION OF STATIONARY SEQUENCES 33

(cf. (2.2)), we have that

∑

l∈Ar

P{l} =

nC∑

l=1

P{(sl, r(1), . . . , r(nm − 1))} . (2.28)

To proceed, we need the set of descendants of r, denoted by Dr. From the definition
of E in equation (2.2), we have that #Dr = #Ar = nC.

First, we prove (2.21). Consider first an l ∈ Cnm such that
∑
k∈Ar

P{k} 6= 0
for all r ∈ Dl. Then,

Dl = {(l(2), . . . , l(nm), s1), . . . , (l(2), . . . , l(nm), scseq)} . (2.29)

In addition, for any r ∈ Dl,

Ar = {(s1, l(2), . . . , l(nm)), . . . , (scseq , l(2), . . . , l(nm))} . (2.30)

Equation (2.30) shows that the sets Ar are equal for all r ∈ Dl. Therefore, the
sums

∑
k∈Ar

P{k} are equal (and nonzero) for all r ∈ Dl, hence

∑

r∈Cnm

Arl =
∑

r∈Dl

P{r}∑
k∈Ar

P{k} =

∑
r∈Dl

P{r}∑
k∈Ar̃

P{k} , (2.31)

for any fixed r̃ ∈ Dl. Furthermore, in the light of (2.29)-(2.30), we can rewrite
(2.31) as

∑

r∈Cnm

Arl =

∑nC

r=1 P{(l(2), . . . , l(nm), sr)}∑nC

k=1 P{sk, l(2), . . . , l(nm)} = 1, (2.32)

where the last equality follows from Lemma 2.3.
On the other hand, if l ∈ Cnm is such that

∑
k∈Ar

P{k} = 0 for all r ∈ Cnm , we
write ∑

r∈Cnm

Arl =
∑

r∈Dl

1

#Ar
=
∑

r∈Dl

1

#Dl
= 1 . (2.33)

The results presented in (2.32)-(2.33) establish (2.21).
Now we prove (2.23). For each r ∈ Cnm such that

∑
k∈Ar

P{k} 6= 0, we have
that the r-th element of the product AΠs (denoted by πsr) is given by

πsr =
P{r}∑
l∈Ar

P{l}
∑

k∈Ar

P{k} = P{r} . (2.34)

On the other hand, for each r ∈ Cnm such that
∑

k∈Ar
P{k} = 0, we can consider

an l ∈ Cnm such that r ∈ Dl. According to (2.29), (2.30), and using Lemma 2.3,
we can conclude that ∑

r̃∈Dl

P{r̃} =
∑

k∈Ar

P{k} = 0 , (2.35)

34 CHAPTER 2. GRAPH THEORY AND STATIONARY PROCESSES

which implies that
P{k} = 0 (2.36)

for all k ∈ Dl, and in particular, for k = r. Since l ∈ Cnm is arbitrary, (2.36)
is true for all l ∈ Cnm such that r ∈ Dl. Hence, (2.34) is also satisfied for each
r ∈ Cnm such that

∑
k∈Ar

P{k} = 0, which establishes (2.23). This concludes the
proof. �

The transition probability matrix designed using Algorithm 2.1 has the following
property:

Theorem 2.3 The transition probability matrix A ∈ RCnm ×Cnm

designed by Algo-
rithm 2.1 has all its eigenvalues in the region D := {z ∈ C : |z| ≤ 1}. In addition,
A has at most nnm−1

C nonzero eigenvalues in D.

Proof The first statement follows since A is a transition probability matrix [43],
according to Theorem 2.2.

To establish the second statement, notice that, from (2.29)-(2.30), for each l ∈
Cnm we have that Ar is the same for all r ∈ Dl, which means that the columns
of A can be partitioned into nnm−1

C groups of nC identical columns. Therefore, the
number of nonzero eigenvalues of A in D is at most nnm−1

C , since there are at most
nnm−1

C linear independent columns in A. This concludes the proof. �

Remark 2.6 There are, in general, several transition matrices having a given P
as stationary probability measure, subject to a graph constraint (a prescribed set of
edges). Algorithm 2.1 provides only one such choice based on the constraint that A
corresponds to a Markov chain of order n instead of n+ 1. Among those transition
matrices, it would be preferable to select the one with the fastest mixing time, i.e.,
for which the Markov chain reaches the stationary distribution as quickly as possible.
The most common criterion to define mixing time is the second largest eigenvalue
modulus (SLEM). A Monte Carlo study, for nC = 2 and nm = 2, based on uniform
sampling from the set of transition matrices giving a specific P (which can be shown
to be a polytope) has empirically shown that the A matrix given by Algorithm 2.1
is within the 7 % with lowest SLEM, which suggests that Algorithm 2.1 gives a
reasonable (but improvable) mixing time. One way to further reduce the SLEM of
A is by performing gradient descent over the transition probabilities in A, starting
from the matrix designed in Algorithm 2.1. Another option to reduce the SLEM is
by exploiting the full memory of the Markov chain when designing the transition
probability matrix; this is part of the future work on the subject.

Remark 2.7 For simplicity, the results introduced in this thesis are discussed for
scalar sequences. However, an immediate extension of this technique to the case
of sequences of vectors can be done. In the case of sequences of vectors with nu
entries, the states associated with each node in the de Bruijn graph are the possible
values of an nu × nm matrix, where the i-th row describes the feasible states for

2.4. CONCLUSION 35

the stationary process in the i-th entry. With this modification, the method can be
directly employed to solve input design for MIMO models.

2.4 Conclusion

In this chapter, we introduced the elements from graph theory and stationary pro-
cesses employed in the thesis. We presented how de Bruijn graphs can be employed
to describe the set of stationary processes with finite memory. In particular, it was
shown that the set of stationary processes with finite memory and finite alphabet
can be described as the convex hull of the probability measures associated with the
prime cycles of the equivalent de Bruijn graph.

We are interested in obtaining realizations from a given pmf in the set of station-
ary processes. To obtain a realization with the desired distribution, we consider
the samples as the output of a Markov chain with stationary distribution given
by the desired pmf. To obtain the associated transition probability matrix, this
chapter introduced an algorithm to build the transition probabilities resulting in a
Markov chain with the desired pmf as stationary distribution. However, the algo-
rithm does not guarantee that the resulting transition probability matrix has the
optimal mixing time, but it could be possible to improve this property by using
numerical optimization techniques, which will be addressed in future work.

Chapter 3

Optimal input design for nonlinear

output-error models

In Chapter 2, we discussed the connection between stationary processes with finite
alphabet and memory, and de Bruijn graphs. The results introduced there will
now be employed for developing methods designing input sequences for nonlinear
models.

As mentioned in Chapter 1, the main difficulty when designing input sequences
to identify nonlinear models is that frequency domain techniques cannot be em-
ployed. Therefore, most of the results in input design for linear models cannot be
extended to the nonlinear case. In addition, most of the existing results on input
design cannot handle amplitude constraints, which could arise due to physical or
safety considerations.

This chapter introduces an approach for designing input sequences to identify
nonlinear output-error (NOE) models. The method considers the design of an
input sequence as a realization of a stationary process with finite memory and finite
alphabet. The optimal stationary process is obtained by maximizing a scalar cost
function of the Fisher information matrix. By parameterizing the set of stationary
processes in terms of its extreme points, we employ de Bruijn graphs to obtain the
probability measures associated with the extreme points, and then approximate the
corresponding Fisher information matrix for each extreme point. Consequently, the
problem becomes convex also for nonlinear models. Numerical examples show that
the technique discussed in this chapter is consistent with existing results in the
literature, and that it is an attractive alternative for designing input sequences for
identification of nonlinear models.

The present chapter can be seen as an extension of the results in [54] and
[6, 7]. The main difference with [6, 7] is that we optimize over the stationary pmf
associated with the Markov chain, instead of directly optimizing over the transi-
tion probabilities. This approach results in a convex problem (which cannot be
achieved in [6, 7], where optimization techniques guaranteeing local optima must

37

38 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

zt

et

G0
ut yt

Figure 3.1: Block diagram of a (possibly nonlinear) system.

be employed). In [54] a similar approach to the one presented in this chapter is
discussed, but restricted to the analysis to nonlinear FIR systems. By using the
finite memory property of nonlinear FIR models, the input design problem in [54]
is solved in terms of an input realization of finite length. However, the results in
[54] cannot be employed to design input sequences for identification of more general
nonlinear output-error models, since the models will generally depend on the entire
past input sequence. In this line, the present chapter extends the analysis to more
general nonlinear model structures, which includes nonlinear FIR systems.

3.1 Problem formulation

Consider the single input, single output (SISO) time invariant system depicted in
Figure 3.1. Here, G0 is a dynamical system (possibly nonlinear), defined for t ≥ 1
as

G0(ut) :=

xt+1 = f0(xt, ut) ,
zt = h0(xt, ut) ,
x1 = µ ,

(3.1)

where {et} is white noise sequence with zero mean and finite variance λe, ut ∈ R

is the input, xt ∈ Rnx are the internal states of G0 with initial condition µ ∈ Rnx ,
and yt ∈ R is the measured output. We assume that we have a model structure G,
defined for any θ ∈ Θ ⊂ Rnθ as

G(ut; θ) :=

xt+1 = f(xt, ut; θ) ,
zt = h(xt, ut; θ) ,
x1 = µ .

(3.2)

We assume that there exists a θ0 ∈ Θ such that G(ut; θ0) = G0(ut) [59], i.e., there
is no undermodelling. Notice that the noise, et, is assumed to enter only at the
output. To continue, we introduce the following definition:

Definition 3.1 Consider a bounded signal {ut}, |ut| ≤ K (K > 0), and a non-
linear system yt = G0(ut). We say that G0 is exponentially stable if and only if
there are constants C > 0 (depending possibly on K), 0 < δ < 1, such that for all
t, s ∈ Z,

|G0(ut) −G0(ust)| < Cδt−s , (3.3)

3.1. PROBLEM FORMULATION 39

where

usk =

{
uk, k > s,

0, otherwise.
(3.4)

We notice that Definition 3.1 differs from that given by [58] since it considers
deterministic systems, and it is not defined in terms of moments of order 4.

The objective in this chapter is to design an input signal u1:nseq = (u1, . . . , unseq)
as a realization of a stationary process, such that the system (3.1) can be estimated
with maximum accuracy as defined by a scalar function of the Fisher information
matrix IeF [59]. IeF can be computed using Lemma 1.1 as1

IeF =
1

λe
Ee

{nseq∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤

∣∣∣∣∣ u1:nseq

}
, (3.5)

where

ψθ0
t (ut) :=

d ŷt(ut, θ)

dθ

∣∣∣∣
θ=θ0

, (3.6a)

ŷt(ut, θ) := G(ut; θ) , (3.6b)

and θ, θ0 ∈ Θ. Since we are interested in computing u1:nseq as a realization from
a stationary process, we need to quantify the Fisher information matrix in terms
of its expected value with respect to u1:nseq . We define the result of this expected
value as the per-sample Fisher information matrix, which is computed as

IF := Eu1:nseq
{IeF }

=
1

λe
Eu1:nseq , e

{nseq∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤
}
. (3.7)

Equation (3.6b) does not depend on the noise realization. Therefore, we can
rewrite (3.7) as

IF =
1

λe

∫

u1:nseq ∈R
nseq

nseq∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤ dP (u1:nseq) , (3.8)

where P (u1:nseq) is the cdf of u1:nseq .
We note that (3.8) depends on P (u1:nseq). Therefore, the input design problem

we will consider is to find a cdf, P opt(unseq), which maximizes a scalar function of
(3.8). We define this function as h : Rnθ×nθ → R. As it is customary in input
design [33, 45, 59], h is assumed to be a concave, nondecreasing, matrix function [5,
pp. 108]. The assumption of h being nondecreasing function is to guarantee that, for

1In this section we add a subscript to the expected value to emphasize the process with respect
to which the expectation is taken.

40 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

any two matrices X and Y in the positive semidefinite cone, we have h(X) ≥ h(Y)
when X � Y . Several choices of h have been proposed in the literature [74]. In
this chapter, we leave the selection of h open to the user.

Since P (u1:nseq) has to be a stationary cdf, the optimization must be constrained
to the set

Pnseq :=

{
P : Rnseq → R|P (x) ≥ 0, ∀x ∈ Rnseq ;

P is monotone nondecreasing ;

lim
xi→∞

P (x1, . . . , xnseq) = 1, for i = 1, . . . , nseq

∫

v∈R

dP ([v, z]) =

∫

v∈R

dP ([z, v]) , ∀z ∈ Rnseq−1

}
. (3.9)

As mentioned in Chapter 2, the last condition in (3.9) guarantees that P ∈ Pnseq

is the projection of the cdf of a stationary sequence [100].
Based on Definition 3.1, we impose the following assumption over ψθ0

t (ut)ψ
θ0
t (ut)

⊤:

Assumption 3.1 ψθ0
t (ut)ψ

θ0
t (ut)

⊤ is exponentially stable with constants Cψ > 0,

0 < δψ < 1, where ψθ0
t (ut) defined in (3.6).

Remark 3.1 Assumption 3.1 is satisfied for the systems considered in this chapter,
since the system in equation (3.1) is required to be stable in order to design an input
sequence.

The input design problem can be summarized as:

Problem 3.1 (Input design for nonlinear output-error models) Design an optimal
input signal uopt

1:nseq
∈ Rnseq as a realization from the cdf P opt(u1:nseq), given by

P opt(u1:nseq) = arg max
P∈Pnseq

h(IF (P)) , (3.10)

where h : Rnθ×nθ → R is a concave, nondecreasing, matrix function,

IF (P) =
1

λe

∫

u1:nseq ∈R
nseq

nseq∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤ dP (u1:nseq) , (3.11)

and where ψθ0
t (ut) ∈ Rnθ is defined as in (3.6), satisfying Assumption 3.1.

Problem 3.1 is difficult to solve. Indeed, since nseq can be large, the input design
problem potentially involves dealing with a very high dimensional integral (3.8),
which can be computationally intractable. To address this issue, we can restrict
the input signal ut to be a stationary process of finite memory, i.e., ut can be

3.1. PROBLEM FORMULATION 41

assumed to be a Markov process of order nm. This means that P (u1:nseq) can be
completely described by the nm-dimensional projection P (u1:nm

) [100].
As it was discussed for P (u1:nseq), P (u1:nm

) is also restricted to be the projection
of a stationary cdf. Therefore, the optimization must be constrained to the set

P =

{
P : Rnm → R|P (x) ≥ 0, ∀x ∈ Rnm ;

P is monotone nondecreasing ;

lim
xi→∞

P (x1, . . . , xnm
) = 1, for i = 1, . . . , nm

∫

v∈R

dP ([v, z]) =

∫

v∈R

dP ([z, v]) , ∀z ∈ Rnm−1

}
. (3.12)

For computational tractability, we further constrain ut to belong to a finite
alphabet C with cardinality nC . With this assumption, it is convenient to work
with the pmf, p(u1:nm

) (cf. Definition 2.10), rather than the cdf P (u1:nm
). In

addition, we can define the constraint set of p(u1:nm
) as:

PC = {p : Cnm → R| p(x) ≥ 0, ∀x ∈ Cnm ;
∑

x∈Cnm

p(x) = 1;

∑

v∈C
p ([v, z]) =

∑

v∈C
p ([z, v]) , ∀z ∈ Cnm−1

}
. (3.13)

Finally, the relaxed input design problem can be summarized as:

Problem 3.2 (Input design for nonlinear output-error models, relaxed problem)
Design an optimal input signal uopt

1:nseq
∈ Cnseq as a realization from the projected

pmf popt(u1:nm
), given by

popt(u1:nm
) = arg max

p∈PC

h(IF (p)) , (3.14)

where h : Rnθ×nθ → R is a concave, nondecreasing, matrix function,

IF (p) =
1

λe

∑

u1:nseq ∈Cnseq

nseq∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤ p(u1:nseq) , (3.15)

and where ψθ0
t (ut) ∈ Rnθ is defined as in (3.6), satisfying Assumption 3.1.

Remark 3.2 Problem 3.2 assumes the existence of prior information regarding
the model parameter θ ∈ Θ. In this chapter we assume that there exists a prior
estimate θ̂N that can be used to solve Problem 3.2. This difficulty can be overcome by
implementing a robust experiment design scheme [74] or via an adaptive procedure,

42 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

where the input signal is redesigned as more information is being collected from
the system [29, 73]. This issue goes beyond the scope of this thesis, and will be
addressed in a future work.

An approach to solve Problem 3.2 is discussed in the next section.

3.2 Input design via graph theory

To solve Problem 3.2, we need to parameterize the set PC in a computationally
tractable manner. To this end, we will use the results introduced in Section 2.2 to
describe any element in PC as a convex combination of its extreme points. In this
section we follow the notation introduced in Section 2.2, and we denote by VPC

the
set of extreme points of PC .

By Theorem 2.1 and Lemma 2.2, we know how to compute the probability
measures associated with the elements In VPC

. Indeed, Theorem 2.1 states that the
prime cycles in the de Bruijn graph GCnm are in one-to-one correspondence with the
elements in VP (the set of extreme points of Cnm), with uniform distribution whose
support are the elements in the prime cycle. Furthermore, Lemma 2.2 states that
the prime cycles in the de Bruijn graph GCnm are derived from the elementary cycles
in the de Bruijn graph GCnm−1 . Therefore, we can define the Fisher information
matrix corresponding to the i-th prime cycle and element wi ∈ VPC

as

I(i)
F :=

1

λe

∑

u1:nm ∈Cnm

nm∑

t=1

ψθ0
t (uit)ψ

θ0
t (uit)

⊤ wi(u1:nm
) , (3.16)

for all i ∈ {1, . . . , nV}. Notice that each I(i)
F is associated with the i-th prime cycle.

The explicit computation of I(i)
F for the nonlinear model (3.2) is often intractable,

since it requires the computation of expected values of nonlinear functions of uit.
Therefore, a numerical approximation of (3.16) is needed. To this end, instead of

approximating I(i)
F as an average over different realizations of the input sequence

u1:nseq , we consider an approximation of I(i)
F as an average over one realization of

length Nsim, which can be written as

I(i)
F ≈ 1

λeNsim

Nsim∑

t=1

ψθ0
t (uit)ψ

θ0
t (uit)

⊤ , (3.17)

where Nsim is sufficiently large. The approximation (3.17) converges to I(i)
F as

Nsim → ∞ since ψθ0
t (ut)ψ

θ0
t (ut)

⊤ satisfies Assumption 3.1 (see Appendix B for a
proof of this statement). The approximation error incurred when (3.17) is employed

to compute I(i)
F is of order δNsim

ψ .

To illustrate how to generate {uit}Nsim
t=1 for a particular wi, we recall Example 2.4

in page 30, and the graph depicted in Figure 2.1. One prime cycle for that graph

3.2. INPUT DESIGN VIA GRAPH THEORY 43

is given by {(0, 1), (1, 0), (0, 1)}. Therefore, the sequence {uit}Nsim
t=1 is obtained by

taking the last element of each node, i.e.,

{uit}Nsim
t=1 = {1, 0, 1, 0, . . . , ((−1)Nsim+1 + 1)/2} .

Once the approximation (3.17) is made for all the elements in VPC
, we can

compute an approximation of the information matrix, IF (p), associated with the

elements in PC as a convex combination of the I(i)
F ’s, i ∈ {1, . . . , nV}. If we define

α := {α1, . . . , αnV
} ∈ RnV , we can write

Iapp
F (γ) :=

nV∑

i=1

αi I(i)
F , (3.18a)

nV∑

i=1

αi = 1 , (3.18b)

αi ≥ 0 , for all i ∈ {1, . . . , nV} , (3.18c)

where Iapp
F (γ) is the approximation of the information matrix IF (p) associated

with the elements of PC .
To summarize, the proposed method for the design of input signals in Cnm can

be described as follows:

1. Compute all the elementary cycles of GC(nm−1) using Algorithm A.2-A.3 in
Appendix A.

2. Compute all the prime cycles of GCnm from the elementary cycles of GCnm−1

as explained in Lemma 2.2 in page 29.

3. Generate the input signals {uit}Nsim
t=1 from the prime cycles of GCnm , for each

i ∈ {1, . . . , nV}.

4. For each i ∈ {1, . . . , nV}, approximate I(i)
F using (3.17).

5. Define α = {α1, . . . , αnV
} ∈ RnV . Find αopt := {αopt

1 , . . . , αopt
nV

} by solving
the following approximation of Problem 3.2:

αopt = arg max
α∈R

nV

h(Iapp
F (α)) , (3.19)

where h : Rnθ×nθ → R is a concave, nondecreasing matrix function,

Iapp
F (γ) =

nV∑

i=1

αi I(i)
F , (3.20a)

nV∑

i=1

αi = 1 , (3.20b)

αi ≥ 0 , for all i ∈ {1, . . . , nV} , (3.20c)

and I(i)
F is given by (3.17).

44 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

6. Compute the optimal pmf popt as

popt =

nV∑

i=1

αopt
i wi . (3.21)

7. Generate uopt
1:nseq

using Algorithm 2.1 in page 32, with popt as stationary dis-
tribution of the Markov chain.

The procedure mentioned above computes uopt
1:nseq

as a realization from the op-

timal pmf, popt(u1:nm
), obtained by solving (3.19). Notice that Iapp

F (γ) in (3.20a)
is linear in the decision variables. Therefore, problem (3.19)-(3.20) is convex.

Remark 3.3 Steps (1) to (3) are independent of the system for which the input is
designed. Therefore, once the steps (1) to (3) are computed, they can be re-used for
input design in different model structures and systems.

Remark 3.4 The approximate solution to Problem 3.2 given by (3.19) may be
nonunique. In that case, (3.19) will return the weighting vector associated with one
optimal pmf. Moreover, even if the optimal pmf popt(u1:nm

) is unique, the optimal
input sequence u1:nseq is not. Indeed, u1:nseq is a realization of a Markov chain with
stationary distribution popt(u1:nm

).

3.3 Reducible Markov chains

When the optimization (3.19) is solved, it might occur that the resulting popt is
associated to a reducible Markov chain. The last means that there exists at least
two sets of vertices in the Markov chain, such that each set of vertices cannot
be accessed from the others. This is an issue of the proposed approach, since
Algorithm 2.1 cannot be employed to generate samples from popt if it is the pmf of
a reducible Markov chain.

One possibility to overcome this issue is to perturb the optimal pmf popt in order
to achieve an irreducible Markov chain, and then use Algorithm 2.1 to generate
samples from the perturbed pmf. In this case, the samples will be distributed
according to a suboptimal pmf. The problem of optimal pmfs popt resulting in
reducible Markov chains is a topic for future research.

3.4 Numerical examples

In this section, we will introduce numerical examples to illustrate the proposed
input design method.

Example 3.1 (Input design for nonlinear FIR models) In this example we will
solve the input design problem for the system in Figure 3.1 in page 38, with

G0(ut) = G1(q, θ)ut +G2(q, θ)u2
t , (3.22)

3.4. NUMERICAL EXAMPLES 45

−1 0 1

−1

0

1

ut

u
t
−

1

Figure 3.2: Plot with the stationary probabilities for the optimal input signal of
Example 3.1. The radius of each disc is proportional to the probability of the state
(ut, ut−1).

where

G1(q, θ) = θ1 + θ2 q
−1 , (3.23)

G2(q, θ) = θ3 + θ4 q
−1 . (3.24)

We assume that {et} is Gaussian white noise with variance λe = 1. This system
has been introduced as an example in [54].

We will solve Problem 3.2 by considering h(·) = log det(·), and a ternary se-
quence (nC = 3) of length nm = 2. For this example, we take C = {−1, 0, 1}.

To solve (3.19)-(3.20) we consider Nsim = 5 ·103 in (3.17). The implementation
of (3.19)-(3.20) was made in Matlab using the cvx toolbox [35].

The simulation results give an optimal cost2 log det(Iapp
F) = −1.717. Figure 3.2

shows the optimal stationary probabilities for each state (ut, ut−1) (cf. Figure 4(a)
in [54]). The results presented here show that the proposed method is consistent
with the results in [54].

Example 3.1 shows that this method is equivalent to the method introduced in
[54] when G0 has a nonlinear FIR-type structure.

The results in this chapter can also be employed for linear systems when ampli-
tude constraints are considered in the input sequence by forcing ut to belong to a
finite alphabet. The next example shows an application in that direction.

2cf. log det(P −1) = −1.715 for the same example in [54].

46 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

Example 3.2 (Input design with amplitude constraints) In this example we con-
sider the mass-spring-damper system introduced in [7]. The input, u, is the force
applied to the mass and the output, y, is the mass position. The continuous-time
system is described by the transfer function

G0(s) =
1
m

s2 + c
m s+ k

m

, (3.25)

with m = 100 [Kg], k = 10 [N/m], and c = 6.3246 [Ns/m]. This choice results in
the natural frequency ωn = 0.3162 [rad/s] and damping ξ = 0.1. The noise {et}
is white with zero mean and variance λe = 10−4. The system (3.25) is sampled by
using a zero-order-hold with sampling period Ts = 1 [s]. This gives the discrete-time
system

G0(ut) =
4.86 · 10−3 q−1 + 4.75 · 10−3q−2

1 − 1.84 q−1 + 0.94q−2
ut . (3.26)

As a model, we define

G(ut; θ) =
θ1 q

−1 + θ2q
−2

1 + θ3 q−1 + θ4q−2
ut , (3.27)

where

θ =
[
θ1 θ2 θ3 θ4

]⊤
. (3.28)

We will solve Problem 3.2 for two cost functions: h(·) = − tr{(·)−1} and h(·) =
log det(·), subject to a binary sequence (nC = 2) of length nm = 2. In this example,
we define C = {−1, 1}, and Nsim = 5 · 103.

The solution of Problem 3.2 for this example gives tr{(Iapp
F)−1} = 0.1108 and

log det(Iapp
F) = 28.22. Figure 3.3 and 3.4 present the stationary probabilities of

the optimal input signal for both cost functions. We can see that the stationary
probabilities depend on the cost function h. However, both cost functions assign
higher stationary probabilities to the states (−1, −1) and (1, 1).

We can compare the performance of our approach with the method introduced
in [7]. For this purpose, we generate an input sequence of length Nsim by running
the Markov chain associated to the stationary distribution in Figure 3.3, and the
4-states Markov chain presented in [7]. To guarantee that the input is a realization
of a stationary process, we discard the first 106 realizations of the Markov chain.
The results for the sampled information matrix are tr{I−1

F } = 1.8233 · 10−4 for
the 4-states Markov chain presented in [7], and tr{I−1

F } = 1.6525 · 10−4 for our
method (we note that our results are consistent with those reported in [7], since
the scaling factor Nsim is not considered here). Therefore, based on the variance of
the parameter estimates, we conclude that the approach in this chapter gives better
results for the example introduced in [7].

To have an idea of the computation time required for this example, the opti-
mization was solved in a laptop Dell Latitude E6430, equipped with Intel Core i7

3.4. NUMERICAL EXAMPLES 47

−1 1

−1

1

ut

u
t
−

1

Figure 3.3: Plot with the stationary probabilities for the optimal input signal in
Example 3.2 as in Figure 3.2. h(·) = − tr{(·)−1}.

−1 1

−1

1

ut

u
t
−

1

Figure 3.4: Plot with the stationary probabilities for the optimal input signal in
Example 3.2 as in Figure 3.2. h(·) = log det(·).

2.6 [GHz] processor, and 8 [Gb] of RAM memory. The time required for the com-
putation of elementary cycles to the computation of stationary probabilities is 1.9
seconds.

48 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

The results presented in the previous examples show that the method intro-
duced in this chapter retrieves (or improves) the results in the literature. The next
examples show an application of the input design method to a model structure not
covered by existing techniques.

Example 3.3 (Input design for nonlinear output-error models) Consider the block
diagram depicted in Figure 3.1, where {et} is Gaussian white noise sequence with
zero mean and variance λe = 1. The system is described by

G0(ut) =

xt+1 =
1

θ0
1 + x2

t

+ ut ,

zt = θ0
2 x

2
t ,

x1 = 0 ,

(3.29)

where θ0 =
[
θ0

1 θ0
2

]⊤
=
[
0.8 2

]⊤
. Notice that the system (3.29) cannot be de-

scribed as a Wiener-Hammerstein system, since the state equation is nonlinear in
the state xt.

To apply our method, we consider the model

G(ut; θ) =

xt+1 =
1

θ1 + x2
t

+ ut ,

zt = θ2 x
2
t ,

x1 = 0 ,

(3.30)

with θ =
[
θ1 θ2

]⊤
= θ0.

We design an input of nseq = 104 samples as a realization of the pmf obtained by
solving Problem 3.2, with nm = 1, and C = {−1, 0, 1}. Problem 3.2 will be solved
for h(·) = log det(·).

The stationary probabilities P{l} obtained as the solution of Problem 3.2 are
presented in Figure 3.5. In this figure, we notice that the stationary probabilities
cannot be associated with samples obtained from a uniform distribution among the
states.

Given the stationary probabilities in Figure 3.5, we can use Algorithm 2.1 to
design a transition matrix to generate samples with the desired distribution. The
resulting transition matrix is given by

A =

0 0 0
0.47 0.47 0.47
0.53 0.53 0.53

 , (3.31)

3.4. NUMERICAL EXAMPLES 49

(−1) (0) (1)
0

0.2

0.4

0.6

P
{
l}

Figure 3.5: Plot with the stationary probabilities for the optimal input signal in
Example 3.3.

Table 3.1: Numerical results for the cost function in Example 3.3.

h(IF) Graph Uniform Normal Binary
log{det(IF)} 3.67 2.77 3.12 3.47

where the rows and columns of A are indexed in the order (−1), (0), (1).

The second largest eigenvalue modulus (SLEM) for A defined in (3.31) is 0, and
the number of nonzero eigenvalues is 1, as expected by Theorem 2.3 in page 34.

Finally, we generate the input signal by running the Markov chain with tran-
sition matrix (3.31) with random initial state in {0, 1}, and recording the first
nseq = 104 samples. This is possible since the SLEM associated with the transition
probability matrix (3.31) is zero, which implies that the chain will start in the sta-
tionary distribution. To compare the result of the new method with those of standard
input signals, in Table 3.1 we present the results obtained for the cost function when
the input is designed with the proposed method (log{det(IF)} = 3.67 in Graph),
and when the input sequence is a realization of a sequence of independent and uni-
formly distributed random variables with support [−1, 1] (log{det(IF)} = 2.77 in
Uniform). The results show that the proposed method for input design outperforms
the experiment result based on uniform samples. In addition, we can also compare
our result with those obtained with the input being Gaussian distributed white noise,
with zero mean and variance 1 (log{det(IF)} = 3.12 for Normal in Table 3.1), and
when the input is a realization of a binary white noise process with values −1 and 1
(log{det(IF)} = 3.47 for Binary in Table 3.1). In this case, the results obtained by
the Gaussian and the Binary distributed inputs are closer to the ones obtained by
the proposed input design method. However, our method still performs better than
the input sequence based on random samples.

As an additional exercise, we can also compute the results obtained when the
input is designed for the following cases:

Case 1: nm = 2, C = {−1, 0, 1} , (3.32)

50 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

0.79 0.8 0.81

1.98

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02

θ̂1

θ̂
2

Figure 3.6: Plot with the 95 % confidence ellipsoids for input sequences of length
nseq = 104, and the estimated parameters, Example 3.3. Blue, dashed line: Con-
fidence ellipsoid for a binary input sequence (realizations marked with ∗). Red,
continuous line: Confidence ellipsoid for the optimal input sequence, Case 2 (real-
izations marked with circles).

Table 3.2: Numerical results for the cost function in Example 3.3, Cases 1-3.

h(IF) Case 1 Case 2 Case 3
log{det(IF)} 3.82 4.50 4.48

Case 2: nm = 1, C = {−1, −1/3, 1/3, 1} , (3.33)

Case 3: nm = 1, C = {−1, −0.5, 0, 0.5, 1} . (3.34)

Table 3.2 presents the results when the Markov chain associated with the Cases 1-3
is employed to generate nseq = 104 samples. From these results we conclude that
we can increase the information obtained from the input if we extend the memory
of the stationary process generating the input sequence. Moreover, the results are
significantly better when we only extend the set C, which can be seen by comparing
the value of h of Case 1 with Cases 2 and 3 in Table 3.2. On the other hand, we
observe an interesting result in Table 3.2. In contrast to what we might expect,
an increase of the magnitude of the elements in C does not necessarily imply an
increase of log{det(IF)}. This phenomenon can be explained by the structure of
the system (3.29), where we see that an increase in the amplitude of ut does not
necessarily imply that we obtain more information from the system. Since xt+1

depends on x−2
t , then the future state will be small if the present state has a large

3.4. NUMERICAL EXAMPLES 51

value. Indeed, by comparing the value of h obtained in Case 2 and Case 3 in
Table 3.2, we see that increasing the magnitude of the possible values for the input
does not imply an increase in the value of h.

To analyze the accuracy of the method, we present in Figure 3.6 the 95 % confi-
dence ellipsoids for the input sequence generated from a random binary distribution,
and from an optimal input obtained by solving Case 2. In addition, we also plot
102 estimated parameters computed using the data set generated with both input
sequences. The results in the figure show that the proposed input design technique
decreases the uncertainty region for the estimated parameters, compared to a random
input sequence of length nseq. This conclusion is also confirmed by the numerical
estimates of θ0, which obey the distribution given by the theoretical bounds. There-
fore, the proposed technique is an attractive alternative to increase the accuracy of
the parameter estimates over the one obtained with random samples.

Example 3.4 (Input design for nonlinear output-error models revisited) Consider
the problem introduced in Example 3.3. As before, we will design an input of nseq =
104 samples as a realization of the pmf obtained by solving Problem 3.2, for Case
2 and Case 3 in Example 3.3. Problem 3.2 is solved for h(·) = − tr{(·)−1}.

Table 3.3: Numerical results for the cost function in Example 3.4.

h(IsF) Case 2 Case 3 Unif. Normal Binary

− tr{IsF−1} −0.49 −0.45 −1.21 −0.96 −0.83

The results obtained by different input sequences of length nseq = 104 are pre-
sented in Table 3.3, where Unif., Normal and Binary represent the results obtained
with the random samples defined in Example 3.3. The results show that the pro-
posed input design technique (Case 2 and Case 3 in Table 3.3) outperforms the
inputs based on white noise samples.

To analyze the accuracy in this example, Figure 3.7 presents the 95 % confidence
ellipsoids for the input sequence generated from a random binary distribution, and
from an optimal input obtained by solving Case 3. In addition, we also plot 102

estimated parameters computed by using the data set generated with both input
sequences. In the same line as Figure 3.6, we see that the accuracy of the estimated
parameters is improved for the confidence sets, when we compare the optimal input
sequence with a white noise realization from a binary distribution. Therefore, the
method presented in this chapter is an effective approach to design input sequences
to identify the system (3.29).

Remark 3.5 The input design method presented in this chapter is close to the
techniques introduced in [18, 26]. In those approaches, the input is restricted to the
set PC introduced in Chapter 2. However, the results in [18, 26] do not exploit the

52 CHAPTER 3. INPUT DESIGN FOR NOE MODELS

0.79 0.8 0.81

1.98

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02

θ̂1

θ̂
2

Figure 3.7: Plot with the 95 % confidence ellipsoids for input sequences of length
nseq = 104, and the estimated parameters, Example 3.4. Blue, dashed line: Con-
fidence ellipsoid for a binary input sequence (realizations marked with ∗). Red,
continuous line: Confidence ellipsoid for the optimal input sequence, Case 2 (real-
izations marked with circles).

connection between de Bruijn graphs and stationary processes, as it is presented in
this thesis, which allows to generate an input realization from an element in PC.

3.5 Conclusion

In this chapter, a new input design technique for identification of nonlinear output-
error models has been described. The method considers the design of an input
sequence as a realization of a stationary process, which is obtained by maximizing
a scalar cost function of the information matrix.

To obtain a computationally tractable problem, we parameterize the set of sta-
tionary process in terms of convex combinations of the extreme points of the set.
By assuming that the stationary process has finite memory and finite alphabet,
the probability measures associated with the extreme points are computed as the
set of prime cycles associated with the equivalent de Bruijn graph. Therefore, the
information matrix associated with any element in the set of stationary processes
can be computed as a convex combination of the information matrices obtained for
each extreme point. Due to the complexity of nonlinear model structures, the infor-
mation matrices for each extreme point are obtained by numerical approximations.
The main advantage of this approach is that the input design problem becomes
convex even for nonlinear model structures.

3.5. CONCLUSION 53

Finally, this chapter introduced numerical examples to illustrate the effective-
ness of the proposed input design approach. The numerical examples show that the
input design method improves existing results in the literature. In addition, the
proposed method can be employed to design input sequences to identify nonlinear
model structures that are not covered by previous approaches.

Chapter 4

Optimal input design for nonlinear

state space models

In Chapter 3 a new method for input design for identification of nonlinear models
was introduced. In that chapter, the discussion was restricted to nonlinear output-
error models. The assumption on the model structure was introduced to simplify
the approximation of the Fisher information matrix, which is based on numerical
approximations. However, the method in Chapter 3 does not cover the case where
the noise process also affects the internal states of the model. In these models, the
approximation of the Fisher information matrix given in Chapter 3 is no longer
valid. Therefore, new approximation methods must be considered to extend the
results in Chapter 3 to more general nonlinear model structures.

In this chapter we provide an extension of the input design method introduced
in Chapter 3 to nonlinear state space models. As in Chapter 3, we use a graph
theoretical approach to design an input sequence as a realization of a stationary
process, which maximizes a scalar cost function of the Fisher information matrix.
To estimate the Fisher information matrices for the extreme points in the set of
stationary processes, we use particle methods to obtain the required estimations as
the sample covariance matrix of the score function. Then the optimization is solved
for different realizations of the sample covariance matrix of the score function, and
the optimal pdf is obtained as the sample mean over the solutions obtained for
the different data realizations. Numerical examples show that the method is an
attractive approach to design input sequences for identification of nonlinear state
space models.

55

56 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

4.1 Problem formulation

In this section1 we introduce an extension of the optimal input design formulation
presented in Chapter 3 to nonlinear state space models. The discussion in this part
follows the same lines as Section 3.1, with the difference that here we formulate the
problem to cover nonlinear state space models.

As in Chapter 3, the objective is to design an input signal u1:nseq = (u1, . . . , unseq),
as a realization of a stationary process. This is done so that a state space model
(SSM) can be identified with maximum accuracy as defined by a scalar function of
the Fisher information matrix IF [59]. An SSM with states x0:T = (x0, . . . , xT),
inputs u1:T and measurements y1:T is given by

x0 ∼ µ(x0), (4.1a)

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (4.1b)

yt|xt ∼ gθ(yt|xt, ut). (4.1c)

Here, fθ(·) and gθ(·) denote known probability distributions parametrized by θ ∈
Θ ⊂ Rnθ . In the sequel, we make the rather restrictive albeit standard assumption
that there exists θ0 ∈ Θ such that the model (4.1) describes the system to be
identified when θ = θ0, i.e., there is no undermodeling. This assumption is necessary
in order to quantify the information retrieved from the experiment as a function of
the Fisher information matrix.

We notice that we can write the joint distribution of states and measurements
for (4.1) as

pθ(x1:T , y1:T |u1:T) = µ(x0)

T∏

t=1

fθ(xt|xt−1, ut−1)gθ(yt|xt, ut). (4.2)

This quantity is used in the sequel for estimating IF by

IF = E
{

S(θ0)S⊤(θ0)
}
, (4.3a)

S(θ0) = ∇θ log pθ(y1:nseq)
∣∣
θ=θ0

, (4.3b)

where pθ(y1:nseq) and S(θ) denote the likelihood function and the score function,
respectively. Note that the expected value in (4.3a) is with respect to the probability
distribution pθ(x0:T |y1:T) and the realizations of u1:nseq .

We note that (4.3a) depends on the cumulative distribution function of u1:nseq ,
Pu(u1:nseq). Therefore, the input design problem is to find a cdf P opt

u (u1:nseq)
which maximizes a scalar function of (4.3a). We define this scalar function as
h : Rnθ×nθ → R. To obtain the desired results, h must be a concave, nondecreas-
ing, matrix function [5, pp. 108] (cf. Section 3.1). In this chapter we leave the
selection of h to the user.

1Throughout this chapter we introduce a subindex in the cdfs and pdfs to emphasize the
random variables considered in the distribution.

4.2. A REVIEW ON SMC METHODS 57

Since P opt
u (u1:nseq) is assumed to describe a stationary Markov process with

memory nseq, the optimization must be constrained to the set

P = {Pu : Rnseq → R|Pu(x) ≥ 0, ∀x ∈ Rnseq ;

Pu is monotone nondecreasing ;

lim
xi→∞

i={1, ..., nseq}
x=(x1, ..., xnseq)

Pu(x) = 1;

∫

v∈R

dPu ([v, z]) =

∫

v∈R

dPu ([z, v]) , ∀z ∈ Rnseq−1

}
. (4.4)

As in Chapter 3, here we restrict our problem to ut belonging to an alphabet
with finite cardinality nC . Thus, the set of pmfs associated with these processes is

PC = {pu : Cnseq → R| pu(x) ≥ 0, ∀x ∈ Cnseq ;
∑

x∈Cnseq

pu(x) = 1;

∑

v∈C
pu ([v, z]) =

∑

v∈C
pu ([z, v]) , ∀z ∈ C(nseq−1)

}
. (4.5)

Finally, the discussion in this section can be summarized as

Problem 4.1 Design an optimal input signal u1:nseq ∈ Cnseq as a realization from
popt
u (u1:nseq), where

popt
u := arg max

pu∈PC

h(IF (pu)) , (4.6)

with h : Rnθ×nθ → R a concave, nondecreasing, matrix function, and IF ∈ Rnθ×nθ

defined as in (4.3).

Before introducing the input design method, we review some material on sequential
Monte Carlo (SMC) methods.

4.2 A review on sequential Monte Carlo methods

SMC methods are a family of techniques that can be used, e.g., to estimate the
filtering and smoothing distributions in SSMs. Here we describe the idea behind
SMC methods, and we introduce the required material to understand the estimation
algorithms employed in this chapter. The material in this section is based on
[19, 22, 76].

58 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

SMC methods: main idea

The objective of SMC methods is to sample sequentially from target probability
densities {p(x1:k)}k≥1 of increasing dimension, where xk ∈ X , and each distribution
p(x1:k) is defined on the product space X k. Writing

p(x1:k) =
γk(x1:k)

Zk
, (4.7)

it is only required that γk : X k → R+ is known pointwise; the normalizing constant

Zk =

∫

X k

γk(x1:k)dx1:k , (4.8)

might be unknown if γk is known pointwise. SMC provides an approximation of
p1(x1) and an estimate of Z1 at time 1, then an approximation of p2(x1:2), and an
estimate of Z2 at time 2, and so on.

Monte Carlo methods

Consider initially approximating a generic probability distribution p(x1:T) for some

fixed T . If we sample N independent random vectors {x(i)
1:T }Ni=1 from p(x1:T), then

the Monte Carlo method approximates functions of p(x1:T) in the mean square
sense by using

p̂(x1:T) =
1

N

N∑

i=1

δ
(
x1:T − x

(i)
1:T

)
, (4.9)

where δ(x) denoted the Dirac delta function located at x = 0. Based on this
approximation, it is possible to approximate any marginal p(xk) by

p̂(xk) =
1

N

N∑

i=1

δ
(
xk − x

(i)
k

)
, (4.10)

and the expectation of any measurable function ϕT : X T → R, given by

E {ϕT (x1:T)} =

∫

X T

ϕT (x1:T)p(x1:T) dx1:T , (4.11)

is estimated as

ÊMC {ϕT (x1:T)} :=

∫

X T

ϕT (x1:T)p̂(x1:T) dx1:T =
1

N

N∑

i=1

ϕT

(
x

(i)
1:T

)
. (4.12)

It is easy to check that (4.12) is an unbiased estimate of (4.11), and that its variance
is given by

Cov
{

ÊMC {ϕT (x1:T)}
}

=
1

N

{∫

X T

ϕ2
T (x1:T)p(x1:T) dx1:T − E {ϕT (x1:T)}

}
.

(4.13)

4.2. A REVIEW ON SMC METHODS 59

The main advantage of Monte Carlo methods over standard approximation tech-
niques is that the variance of the approximation error decreases at a rate of O(1/N)
regardless of the dimension of the space X T . However, there are at least two main
problems with this idea:

(i) If p(x1:T) is a complex high-dimensional probability distribution, then we
cannot sample directly from it due to computational limitations.

(ii) Even if we knew how to sample exactly from p(x1:T), the computational com-
plexity of such a sampling scheme is typically at least linear in the number of
variables T . Therefore, an algorithm sampling exactly from p(x1:T), sequen-
tially for each value of T , would have a computational complexity increasing
at least linearly with T .

Importance sampling

In this part we address Problem (i) using the importance sampling (IS) method.
IS relies on the introduction of an importance density pI(x1:T) such that

p(x1:T) > 0 ⇒ pI(x1:T) > 0 ,

i.e., the distributions satisfy supp(pI) ⊆ supp(p). In this case, we have from (4.7)-
(4.8) the following identities:

p(x1:T) =
wT (x1:T)pI(x1:T)

ZT
, (4.14)

ZT =

∫

X T

wT (x1:T)pI(x1:T) dx1:T , (4.15)

where wT (x1:T) is the unnormalized weight function

wT (x1:T) =
γT (x1:T)

pI(x1:T)
. (4.16)

In particular, we can select an importance density pI(x1:T) from which it is easy to
draw samples, e.g., the normal distribution, if this is consistent with the support
of p.

If we assume we draw N independent samples {x(i)
1:T }Ni=1 from pI(x1:T), then by

inserting the Monte Carlo approximation of pI(x1:T) (the empirical distribution of

the samples {x(i)
1:T }Ni=1) into (4.14)-(4.15), we have

p̂(x1:T) =

N∑

i=1

w
(i)
T δ

(
x1:T − x

(i)
1:T

)
, (4.17)

ẐT =
1

N

N∑

i=1

wT

(
x

(i)
1:T

)
, (4.18)

60 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

where

w
(i)
T =

wT

(
x

(i)
1:T

)

∑N
j=1 wT

(
x

(j)
1:T

) , (4.19)

denotes the normalized weights.
Based on the estimate (4.17), we can compute an estimate of (4.11) as

ÊIS {ϕT (x1:T)} :=

∫

X T

ϕT (x1:T)p̂(x1:T) dx1:T =

N∑

i=1

w
(i)
T ϕT

(
x

(i)
1:T

)
. (4.20)

Unlike the estimate ÊMC {ϕT (x1:T)}, the expression (4.20) is in general biased for
finite N . However, (4.20) is consistent in the number of samples N . The expression
for the asymptotic bias is given by

lim
N→∞

N
(

ÊIS {ϕT (x1:T)} − E {ϕT (x1:T)}
)

=

−
∫

X T

p2(x1:T)

pI(x1:T)
(ϕT (x1:T) − E {ϕT (x1:T)}) d x1:T . (4.21)

Furthermore, ÊIS {ϕT (x1:T)} satisfies

√
N
(

ÊIS {ϕT (x1:T)} − E {ϕT (x1:T)}
)

∈ As N (0, M) , (4.22)

where

M :=

∫

X T

p2(x1:T)

pI(x1:T)
(ϕT (x1:T) − E {ϕT (x1:T)})

2
d x1:T . (4.23)

As we can see from (4.21)-(4.23), both the bias and the variance for this method
are of order O(1/N).

The next sampling method addresses the issue related with the increasing com-
putational complexity in the sample length T .

Sequential importance sampling

Sequential importance sampling (SIS) is a method that admits a fixed computa-
tional complexity at each time step, and thus addresses Problem (ii). This method
considers an importance distribution which has the following structure:

pI(x1:T) = pI(x1:T−1)pI(xT |x1:T−1)

= pI(x1)

T∏

t=2

pI(xt|x1:t−1) . (4.24)

From a practical perspective, Equation (4.24) means that to obtain particles x
(i)
1:T

distributed according to pI(x1:T) at time T , we sample x
(i)
1 from pI(x1) at time 1,

4.2. A REVIEW ON SMC METHODS 61

then x
(i)
t is sampled from pI(xt|xi1:t−1) at time t, for t ∈ {2, . . . , T}. The associated

unnormalized weights can be computed recursively using the decomposition

wT (x1:T) =
γT (x1:T)

pI(x1:T)

=
γT−1(x1:T−1)

pI(x1:T−1)
· γT (x1:T)

γT−1(x1:T−1)pI(xT |x1:T−1)
, (4.25)

which can be written in the form

wT (x1:T) = wT−1(x1:T−1) · α(x1:T)

= w1(x1)
T∏

k=2

α(x1:k) , (4.26)

where the incremental importance weight function α(x1:T) is given by

α(x1:T) :=
γT (x1:T)

γT−1(x1:T−1)pI(xT |x1:T−1)
. (4.27)

The SIS method is summarized in Algorithm 4.1.
Algorithm 4.1 provides the estimates p̂(x1:t) and Ẑt (equations (4.17)-(4.18)) of

p(x1:t) and Zt at any time t. In this framework, it seems that the only degree of
freedom the user has at time t is the choice of pI(xt|x1:t−1) (the number of samples
N is also a degree of freedom, but it is fixed before executing the algorithm). A
sensible strategy consists of selecting it so as to minimize the variance of wt(x1:t).
This is achieved by selecting

popt
I (xt|x1:t−1) = p(xt|x1:t−1) , (4.31)

as in this case the variance of wt(x1:t) conditional upon x1:t−1 is zero, and the
associated incremental weight is given by

αopt(x1:t) =
γt(x1:t−1)

γt−1(x1:t−1)
=

∫
X γt(x1:t) dxt

γt−1(x1:t−1)
. (4.32)

We note that it is not always possible to sample from p(xt|x1:t−1), and nor is
it always possible to compute αopt(x1:t). In these cases, we need to employ an
approximation of popt

I (xt|x1:t−1) for pI(xt|x1:t−1).
In those scenarios in which the time required to sample from pI(xt|x1:t−1) and

to compute α(x1:t) is independent of t (which is the case if pI is chosen carefully and
one is concerned with a problem such as filtering), it appears that SIS provides a
solution for Problem (ii). However, the SIS method suffers from severe drawbacks.
Even for standard IS, the variance of the resulting estimates increases exponentially
with t [51]. A method to overcome this difficulty is presented in the next section.

62 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

Algorithm 4.1 Sequential importance sampling

Inputs: N (number of samples), pI(x1:T) (importance distribution), and γT (x1:T) (un-
normalized pdf).

Output: {x
(i)
1:T }N

i=1 (realizations), and {w(i)}N
i=1 (normalized weights).

1: Sample x
(i)
1 from pI(x1) for i = 1 to N .

2: Compute the weights w1(x
(i)
1) = pI(x1), and

w
(i)
1 =

w1(x
(i)
1)∑N

j=1
w1(x

(i)
1)

, (4.28)

for i = 1 to N .
3: for t = 2 to T do

4: Sample x
(i)
t from pI(xt|x

(i)
1:t−1) for i = 1 to N .

5: Compute the weights

wt(x
(i)
1:t) = wt−1(x

(i)
1:t−1) · α(x

(i)
1:t) , (4.29)

where α given in (4.32), and

w
(i)
t =

wt(x
(i)
1:t)∑N

j=1
wt(x

(i)
1:t)

, (4.30)

for i = 1 to N .
6: end for

Resampling

We have seen that IS (and therefore SIS) provides estimates whose variance in-
creases with t. Resampling techniques are a key ingredient of SMC methods which
(partially) solve this problem in some important scenarios.

Resampling is an intuitive idea with major practical and theoretical benefits.
We consider first an IS approximation p̂(x1:T) of the target distribution p(x1:T).
This approximation is based on weighted samples from pI(x1:T), and does not pro-
vide samples approximately distributed according to p(x1:T). To obtain approxi-
mate samples from p(x1:T), we can simply draw samples from its IS approximation

p̂(x1:T), where p̂(x1:T) is defined in (4.17), with normalized weights {w(i)
T }Ni=1. Then

we select x
(i)
1:T with probability w

(i)
T . This operation is called resampling as it cor-

responds to sampling from an approximation p̂(x1:T) which was itself obtained by
sampling. If we are interested in obtaining N samples from p̂(x1:T), then we can
resample N times from p̂(x1:T): This is equivalent to associating a number of off-

springs N
(i)
T with each sample x

(i)
1:T in such a way that N

(1:N)
T :=

(
N

(1)
T , . . . , N

(N)
T

)

follow a multinomial distribution with parameter vector (N, w
(1:N)
T), and associ-

ating a weight of 1/N with each offspring. Thus, we approximate p̂(x1:T) by the

4.2. A REVIEW ON SMC METHODS 63

Algorithm 4.2 Systematic resampling

Inputs: {x
(i)
1:T }N

i=1 (realizations), and {w
(i)
T }N

i=1 (normalized weights).

Output: {x
(i)
1:T }N

i=1 (realizations), and {N
(i)
T /N}N

i=1 (resampled weights).

1: Sample U(1) from a uniform distribution defined on [0, 1/N].
2: Define U(i) := U(1) + (i − 1)/N for i ∈ {2, . . . , N}.
3: for i = 1 to N do

4: Set N
(i)
T =

∣∣∣
{

U(j) :
∑i−1

k=1
w

(k)
T ≤ U(j) ≤

∑i

k=1
w

(k)
T

}∣∣∣, where
∑0

k=1
µk := 0.

5: end for

resampled empirical measure

p(x1:T) =
N∑

i=1

N
(i)
T

N
δ
(
x1:T − x

(i)
1:T

)
, (4.33)

where E
{
N

(i)
T

∣∣∣w(1:N)
T

}
= Nw

(i)
T . Hence p(x1:T) is an unbiased approximation of

p̂(x1:T).
Many resampling schemes have been proposed in the literature [22]. One of

the most popular algorithms is systematic resampling, which is described in Algo-
rithm 4.2. It can be shown that systematic resampling gives an unbiased estimate
of the distribution p(x1:T).

We clarify that resampling retrieves an estimate of E {ϕT (x1:T)} with higher
variance than the one obtained by using p̂(x1:T). However, by resampling we remove
samples with low weights with a high probability, which is useful when working with
sequential techniques. If samples with low weights are preserved, then the approx-
imation p̂(x1:T) will lose accuracy as we increase the path length T . This problem
is known as particle degeneracy, which is discussed in more detail in page 65.

Remark 4.1 The notion of offspring is not only important when talking about
resampling, but it is also important for some of the particle methods discussed in

the next sections. For future reference, we introduce the ancestor index a
(i)
t . Given

a set of particles at time t, {x(k)
t }Nk=1, we denote by a

(i)
t the index of the particle

at time t − 1 from which x
(i)
t was generated. Figure 4.1 illustrates this idea. In

Figure 4.1, the directed edges between two nodes at different time instants express
which particles at time t− 1 generate which particles at time t.

Particle filterig

The name particle filter (PF) is a SMC method referring to the techniques em-
ployed to obtain estimates of the sequence of target densities {p(x1:t|y1:t)}Tt=1 or its
marginal {p(xt|y1:t)}Tt=1. Here we assume that the underlying process is described
for all t ≥ 1 by equation (4.1).

64 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

.

.

.

x
a

(2)
t

t−1

x
a

(1)
t

t−1

x
a

(N)
t

t−1

x
(N)
t

x
(2)
t

x
(1)
t

.

.

.

Figure 4.1: Illustration of the ancestor index a
(i)
t .

The basic idea is to leverage SIS and resampling to propagate a collection of

N weighted random samples {x(i)
t , w

(i)
t }Ni=1 forward in time. These samples (com-

monly referred to as particles) constitute an empirical approximation that converges
asymptotically to the underlying target density p(xt|y1:t) as N → ∞.

The particle filter can be viewed as a framework to sequentially approximate
the filtering densities {p(xt|y1:t)}Tt=1. The resulting approximation is an empirical
distribution of the form

p̂(xt|y1:t) =

N∑

i=1

w
(i)
t δ(xt − x

(i)
t) . (4.34)

Intuitively speaking, each particle x
(i)
t can be understood as a possible state of the

underlying system, where the corresponding weight w
(i)
t contains information about

how probable that particular state is.
In this subsection we introduce the method that will prove to be useful for the

results presented in this chapter: the auxiliary particle filter (APF).

The auxiliary particle filter

The auxiliary particle filter (APF) [70] is a method which can be used to include the
information available in the current observation yt not only for proposing the new
state xt (as it is done in the PF method2), but also when proposing the ancestor
index at (recall that at is the ancestor index of the particles at time t). Thus, we
increase the probability of resampling particles at time t − 1 that agree with the
current observation yt when compared with the PF approach.

2We refer to [22, 76] for more details of the particle filter algorithm.

4.2. A REVIEW ON SMC METHODS 65

To continue, we define a function ν : X × Y → R, such that for each particle i,
i ∈ {1, . . . , N} we compute the factors

ν
(i)
t−1 := ν(x

(i)
t−1, yt) , (4.35)

referred to as adjustment multipliers. The adjustment multipliers are user defined
functions, which are employed to adjust the empirical distributions to sample and
propagate the particles. We note that (4.35) depends only on the previous particles
and on the current observation, which are available in the resampling step at time
t. The adjustment multipliers are then used to define a proposal distribution for
the ancestor index at according to

P

{
at = i

∣∣∣∣
{
x

(j)
t−1, w

(j)
t−1

}N
j=1

}
=

w
(i)
t−1ν

(i)
t−1∑N

l=1 w
(l)
t−1ν

(l)
t−1

. (4.36)

Once the ancestor indices are generated, we propagate the particles to time t by

simulating x
(i)
t ∼ pprop(xt|x(i)

t−1, yt) for i ∈ {1, . . . , N}, where pprop(xt|xt−1, yt) is

the proposal distribution, and x
(i)
t−1 = x

(at)
t−1 .

In addition to the elements introduced in this part, the APF needs the definition

of a weight function from which w
(i)
t are generated. For the APF, the weight

function w : X 2 × Y → R is defined as3

w(xt−1, xt, yt) =
g(yt|xt) f(xt|xt−1)

ν(xt−1, yt) pprop(xt|xt−1, yt)
. (4.37)

Algorithm 4.3 summarizes the auxiliary particle filter method. We notice that, at
time t, the APF performs three steps: (i) resampling of the particles at time t− 1,
(ii) propagation of the particles from time t − 1 to time t, and (iii) normalized
weighting of the set of particles at time t. These steps are a common framework of
particle filter methods [76].

Particle degeneracy

In principle, the SMC can be used to obtain an approximation of a sequence of
densities {p(x1:t|y1:t)}t≥1 of growing dimension, where the approximations tends to
the true distributions asymptotically in the number of particles N , i.e., as N → ∞.
However, the task of approximating {p̂(x1:t|y1:t)}t≥1 is inherently impossible to
solve using a finite number of particles N . To illustrate this, assume that we
employ a particle filter to target the joint smooth density p(x1:t|y1:t). At time

s we generate N unique4 particles {x(i)
s }Ni=1 from the proposal density, and we

append these to the existing particle trajectories {x(i)
1:s−1}Ni=1. Therefore, we have a

3We note that the PF is obtained from the APF when ν(xt−1, yt) = 1 [76].
4By unique we mean that each particle x

(i)
s is a different realization from the proposal density,

for i ∈ {1, . . . , N}.

66 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

Algorithm 4.3 Auxiliary particle filter (APF)

1: Initialization (t = 1):

2: Sample x
(i)
1 ∼ pprop(x1|y1).

3: Compute the importance weights w̃
(i)
1 = g(y1|x(i)

1)µ(x
(i)
1)/pprop(x

(i)
1 |y1), and

normalize w
(i)
1 = w̃

(i)
1 /

∑N
j=1 w̃

(j)
1 .

4: for t = 2 to T do
5: Compute the adjustment multipliers ν

(i)
t−1 = ν(x

(i)
t−1, yt).

6: Resampling: Resample {x(i)
t−1}Ni=1 with probabilities proportional to

{w(i)
t−1ν

(i)
t−1}Ni=1 to generate the equally weighted particle system {x(i)

t−1, 1/N}Ni=1.

7: Propagation: Sample x
(i)
t ∼ pprop(xt|x(i)

t−1, yt).

8: Weighting: Compute w̃
(i)
t = w(x

(i)
t−1, x

(i)
t , yt) and normalize:

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

.

9: end for

weighted particle system {x(i)
1:s, w

(i)
s }Ni=1 approximating the joint smoothing density

at time s. If we assume that the particle trajectories are resampled, then we obtain

the particle system {x(i)
1:s, 1/N}Ni=1. We recall that the purpose of resampling is

to remove particles with small weights, and duplicate particles with large weights.
Thus, the resampling step has the effect of reducing the number of unique particles.
In consequence, over time each consecutive resampling of the particle trajectories
will reduce the number of unique particles at time s. Eventually the particle system
at time s will collapse into a single trajectory. This problem is referred to as particle
degeneracy. In other words, the resampling step inevitable results in that for any
time s there exists t > s such that the PF approximation p̂(x1:t|y1:t) consists of a
single particle at time s.

A relevant question is to consider if it is possible (at least partly) to “undo” the
particle degeneracy. One idea is to investigate if it is possible to initiate a backwards
sweep starting from the particle filter representation of p(xt|y1:t), and reintroduce
diversity among the particles by some form of backwards computation. This ques-
tion5 is addressed by a family of algorithms referred to as particle smoothers, which
are introduced in the next subsection.

5Other solutions to the particle degeneracy problem involves increasing the number of particles
N , or the fully-adapted PF [76].

4.3. NEW INPUT DESIGN METHOD 67

Particle smoothing

As previously mentioned, if we only use the particle filter to compute the sequence
of densities {p(x1:t|y1:t)}t≥1, then the approximations {p̂(x1:t|y1:t)}t≥1 will have the
particle degeneracy problem. To overcome this issue, we employ particle smoothers
to compute the joint distribution. In this subsection, we introduce the fixed-lag
smoother.

The fixed-lag smoother

The fixed-lag (FL) smoother [50] is an algorithm employed to estimate the smooth-
ing densities, which decreases the particle degeneracy problem experienced with
the particle filter. The fixed-lag smoother is used to approximate functionals in
additive form. This means that, provided F : X T → R is a functional dependent on
x1:T , we can use the fixed-lag smoother to approximate expected values dependent
on F if and only if F can be written as

F(x1:T) =

T−1∑

t=1

st(xt:t+1) , (4.38)

where {st}t≥1 is a sequence of measurable functions (which may depend on the
observed data y1:T) [68].

The key assumption in the fixed-lag smoother is that the pdf pθ(xt|y1:T) can
be approximated by pθ(xt|y1:κt

), for κt = min(t + ∆, T) with some fixed-lag ∆,
0 ≤ ∆ ≤ T . Therefore, the fixed-lag smoother assumes that the mixing properties
of the process (4.1) are such that all the measurements {yk}k>∆ have a negligible
effect on the conditional pdf of xt given y1:T , denoted by p(xt|y1:T).

The FL smoother employs the same algorithm as the APF (presented in Algo-
rithm 4.3). However, the FL smoother approximates the two-step filtering distri-
bution by

p̂ (xt−1:t) =

T−1∑

t=1

N∑

i=1

w(i)
κt
δ

(
xt−1:t − (x

a
(i)
κt,t

t−1 , x
a

(i)
κt,t−1

t)

)
, (4.39)

where a
(i)
κt,t denotes the particle at time t which is the ancestor of particle i at time

κt.
It can be shown that, under some strict mixing assumptions, the variance and

the bias of the FL smoother are of order O(T log{T }/
√
N) and O(T log{T }/N)

respectively. We refer to [68] for more details.

4.3 New input design method

In this section we will introduce a new input design method for nonlinear state
space models.

68 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

Graph theoretical input design

Problem 4.1 will be solved using the graph theoretical approach presented in Chap-
ter 3. To this end, we will consider u1:nseq as a realization of a Markov process
with memory nm, where nm < nseq. Thus, we obtain a tractable description of the
polytope PC in term of its extreme points. Following the notation introduced in
Chapter 2, we will refer to VPC

= {v1, . . . , vnV
} as the set of the extreme points of

PC .
To find all the elements in VPC

, we will make use of the results introduced in
Section 2.2 in page 23. Indeed, we know that the set VPC

can be described in terms
of the set of prime cycles in the equivalent de Bruijn graph GCnm (cf. Figure 2.1
in page 23). Moreover, the set of prime cycles in GCnm can be computed from
the set of elementary cycles in GCnm−1 (Lemma 2.2 in page 29). Finally, by using
Theorem 2.1 in page 28, we have that the probability measures associated with the
elements in VPC

are known once the set of prime cycles in GCnm is obtained.
Since we know the prime cycles in GCnm , it is possible to generate an input

sequence {ujt}Tt=0 from vj , which will be referred to as the basis inputs. We refer
to Example 2.4 in page 30 for an illustration on how to obtain an input sequence
from a given prime cycle.

Given {ujt}Tt=0, we can use it to obtain the corresponding information matrix

for vj ∈ VPC
, say I(j)

F . However, in general the matrix I(j)
F cannot be computed

explicitly. To overcome this problem, we use SMC methods to approximate I(j)
F ,

as discussed in the next subsection.

Estimation of the score function

Consider (4.3). If samples of the score function were available we could approximate
the Fisher information matrix (4.3) as the sample covariance matrix of the score
function. However, the samples of the score function are not available. Therefore,
we need to compute estimates associated with the score function. To this end, we
will use SMC methods to estimate the score function, in particular we will use ideas
from particle filter and fixed-lag particle smoothers.

As discussed in Section 4.2, the particle system is sequentially computed using
two steps: (i) sampling/propagation and (ii) weighting. The first step can be seen
as sampling from a proposal kernel,

{a(i)
t , x

(i)
t } ∼ w̃at

t−1∑N
k=1 w̃

(k)
t−1

Rθ,t(xt|xat

t−1, ut−1), (4.40)

where we append the sampled particle to the trajectory by x
(i)
1:t = {x(i)

1:t−1, x
(i)
t }.

Here, Rθ,t(·) denotes the propagation kernel6 and the ancestor index a
(i)
t denotes

6For the purpose of this subsection, the propagation kernel can be seen as the product
ν(xt−1, yt) pprop(xt|xt−1, yt) in equation (4.37).

4.3. NEW INPUT DESIGN METHOD 69

the index of the ancestor at time t − 1 of particle x
(i)
t . In the second step, we

calculate the (unnormalized) importance weights,

w̃
(i)
t ,

gθ(yt|x(i)
t , ut)fθ(xt|x(i)

t−1, ut−1)

Rθ,t(xt|x(i)
t−1, ut−1)

. (4.41)

We make use of Fisher’s identity7 [8, 25] to rewrite the score function (4.3b)
into a form that can be used in combination with SMC methods. This results in
that we can write

∇θ log pθ(y1:T |u1:T) = E
{

∇θ log pθ(x1:T , y1:T |u1:T)
∣∣y1:T , u1:T

}
. (4.42)

By using (4.2) into (4.42), and writing out the expected value, we obtain

∇θ log pθ(y1:T |u1:T) =

T∑

t=1

∫

X 2

ξθ(xt−1:t, ut)pθ(xt−1:t|y1:T) dxt−1:t, (4.43)

with

ξθ(xt−1:t, ut) = ∇θ

[
log fθ(xt|xt−1, ut−1) + log gθ(yt|xt, ut)

]
,

which depends on the two-step marginal smoothing densities. We notice that the
sum in (4.43) appears since the logarithm function transforms the product (4.2)
into a sum. The APF can be used to estimate these quantities but this leads to
poor estimates with high variance, due to problems with particle degeneracy.

Instead, we use an FL-smoother to estimate the smoothing densities, which
reduces the variance of the score estimates [68]. We refer to [16] for more details
about the FL-smoother and its use for score estimation. Based on the estimates
for the target distributions obtained from Algorithm 4.3, the estimate of the score
function is given by

Ŝ(θ) :=
T∑

t=1

N∑

i=1

w(i)
κt
ξθ

(
x
a

(i)
κt,t

t , x
a

(i)

κt,t−1

t−1 , ut

)
, (4.44)

where a
(i)
κt,t denotes the particle at time t which is the ancestor of particle i at time

κt.
In the SMC literature, the Fisher information matrix is often estimated by

the use of Louis’ identity8 [8, 62]. However, this approach does not guarantee
that the information matrix estimate is positive semidefinite. Based on numerical
experience, this standard approach also leads to poor accuracy.

Instead, we make use of the fact that the information matrix can be expressed
as (4.3), i.e., the covariance matrix of the score function. Hence, a straightforward

7We refer the reader to Appendix C for a derivation of the Fisher’s identity.
8We refer the reader to Appendix C for a derivation of Louis’ identity.

70 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

method for estimating the information matrix is to use the Monte Carlo covariance

estimator over some realizations of the system, given by {y(m)
1:T }Mm=1. If we denote

each Monte Carlo estimate of the score function by Ŝm(θ), the information matrix
can be estimated using

ÎF =
1

M − 1

M∑

m=1

Ŝm(θ)Ŝ⊤
m(θ), (4.45)

where M denotes the number of score estimates. Note that this is an estimate of the
Fisher information matrix as the Monte Carlo estimator averages over the system
realizations. The estimate is positive semidefinite by construction but inherits some
bias from the FL-smoother, see [68] for more information. This problem can be
handled by using a more computationally costly particle smoother. In Section 4.4
we present results indicating that this bias does not affect the resulting input signal
to any large extent.

Solution to the optimization problem

As in Chapter 3, we associate {I(j)
F }nV

j=1 with the elements in VPC
, the set of extreme

points of PC. By defining α := {α1, . . . , αnV
} ∈ RnV , we introduce Iapp

F (α) as the
information matrix associated with one element in PC for a given α such that
αj ≥ 0, j ∈ {1, . . . , nV},

∑nV

j=1 αj = 1. Therefore, finding the optimal Iapp
F (α) is

equivalent to determining the optimal weighting vector α.
Hence, we can rewrite Problem 4.1 as

αopt = arg max
α∈R

nV

h(Iapp
F (α)) , (4.46a)

s.t. Iapp
F (α) =

nV∑

j=1

αj I(j)
F , (4.46b)

nV∑

j=1

αj = 1 , (4.46c)

αj ≥ 0 , for all j ∈ {1, . . . , nV} , (4.46d)

To solve the optimization problem (4.46), we need to estimate the information
matrix for each basis input.

The information matrix estimate in (4.45) can be used to estimate the Fisher
information matrix for each basis input. A simple solution is therefore to plug-in the
estimates and solve the convex optimization problem (4.46) using some standard
solver. However, by doing this we neglect the stochastic nature of the estimates
and disregard the uncertainty. In practice, this leads to bad estimates of α.

Instead, we propose the use of a Monte Carlo method which involves two dif-
ferent steps over K iterations. In step (a), we compute the information matrix

4.4. NUMERICAL EXAMPLES 71

Algorithm 4.4 Optimal input design using SMC methods

Inputs: Algorithm 4.3, K (no. MC runs) and M (size of each batch).
Output: α⋆ (estimate of the optimal weighting of the basis inputs).

1: for k = 1 to K do

2: Generate M samples using Algorithm 4.3 for each basis input.
3: Estimate the information matrix by (4.45) for each basis input.
4: Solve the problem in (4.46).
5: Set α(k) as the weighting factors obtained from the solver.
6: end for

7: Compute the sample mean of α = {α(1), . . . , α(K)}, denote it as α⋆.

estimates I(j)
F for each input using (4.45). In step (b), we solve the optimization

problem in (4.46) using the estimates {Î(j)
F }nV

j=1 to obtain the optimal weights α(k)

at iteration k. The estimate of the optimal weighting vector α⋆ is computed as the
sample mean of α = {α(1), . . . , α(K)}, which can be complemented with a confidence
interval. The outline of the complete procedure is presented in Algorithm 4.4.

Summary of the method

The proposed method for designing input signals in Cnm considers the approach
presented in Chapter 3, page 43, with the difference that the approximation of
the Fisher information matrix in step 4 is performed using Algorithm 4.3, and the
optimization is solved using Algorithm 4.4.

4.4 Numerical examples

The following examples present some applications of the proposed input design
method.

Example 4.1 Consider the linear Gaussian state space (LGSS) system with pa-

rameters θ =
[
θ1 θ2

]⊤
,

xt+1 = θ1xt + ut + vt, vt ∼ N (0, θ2
2),

yt = xt + et, et ∼ N (0, 0.12),

where the true parameters are θ0 =
[
0.5 0.1

]⊤
. We design experiments to iden-

tify θ with nseq = 5 · 103 time steps, memory length nm = 2, and an input as-
suming values C = {−1, 0, 1}. The optimal experiments maximize h(Iapp

F (α)) =
log det(Iapp

F (α)), and h(Iapp
F (α)) = − tr

{
(Iapp
F (α))−1

}
.

We generate {ujt}Tt=0 for each vj ∈ VPC
, j ∈ {1, . . . , 8} (T = 102) to compute the

approximation (4.45) for each I(j)
F . Finally, the optimal input u1:nseq is computed

by running a Markov chain with popt
u (u1:nm

) as stationary pmf, where we discard

72 CHAPTER 4. INPUT DESIGN FOR NONLINEAR SSM

Table 4.1: h(ÎF), Example 4.1.

Input / h(ÎF) log det(ÎF) − tr
{

(ÎF)−1
}

Optimal (log det) 20.67(0.01) −1.51 · 10−4(5.18 · 10−7)
Optimal (tr) 20.82(0.01) −1.32 · 10−4(4.45 · 10−7)

Binary 20.91(0.01) −1.21 · 10−4(4.51 · 10−7)
Uniform 19.38(0.01) −5.32 · 10−4(2.12 · 10−6)

the first 2 · 106 samples and keep the last nseq = 5 · 103 ones. In addition, we
consider K = 100, M = 5 · 103 and N = 103. As a benchmark, we generate nseq

input samples from uniformly distributed white noise with support [−1, 1], and the
same amount of samples from binary white noise with values {−1, 1}. These input
samples are employed to compute an approximation of IF via (4.45).

Table 4.1 condenses the results obtained for each input sequence, where Optimal
(log det) and Optimal (tr) represent the results for the input sequences obtained
from optimizing log det(Iapp

F (α)), and − tr
{

(Iapp
F (α))−1

}
, respectively. The 95%

confidence intervals are given as ± the value in the parentheses. From the data
we conclude that, for this particular example, the binary white noise seems to be
the best input sequence. Indeed, the proposed input design method tries to mimic
the binary white noise excitation, which is clear from the numbers in Table 4.1.
In this example, the results obtained with the proposed input design technique are
degraded due to the variability in the optimization problem, which can be reduced
by increasing the number of particles N in the estimation of the score function, by
increasing the number of realizations M for the score function, and by increasing
the number of iterations K.

Example 4.2 In this example we consider the system in [34, Section 6], given by

xt+1 = θ1xt +
xt

θ2 + x2
t

+ ut + vt, vt ∼ N (0, 0.12),

yt =
1

2
xt +

2

5
x2
t + et, et ∼ N (0, 0.12),

where θ =
[
θ1 θ2

]⊤
denotes the parameters with true values θ0 =

[
0.7 0.6

]⊤
. We

design an experiment with the same settings as in Example 4.1 maximizing

h(Iapp
F (α)) = log det(Iapp

F (α)) .

A typical input realization obtained from the proposed input design method is pre-
sented in Figure 4.2.

Table 4.2 presents the results obtained for each input sequence, where Optimal
represents the result for the input sequence obtained from optimizing log det(Iapp

F (α)).
The 95% confidence intervals are given as ± the value in the parentheses. From
these data we conclude that the extended input design method improves the experi-
ment results obtained for binary and uniformly distributed samples.

4.5. CONCLUSION 73

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

t

u
t

Figure 4.2: Input realization, Example 4.2.

Table 4.2: h(ÎF), Example 4.2.

Input / h(ÎF) log det(ÎF)
Optimal 25.34(0.01)
Binary 24.75(0.01)

Uniform 24.38(0.01)

4.5 Conclusion

In this chapter we discussed an extension of the input design method considered in
Chapter 3. The extension considers a more general model structure in the form of a
nonlinear state space description. Based on the approach introduced in Chapter 3,
we design the input sequence by maximizing a scalar cost function of the Fisher
information matrix over the set of stationary processes with finite memory and
finite alphabet.

The main difficulty in this chapter is associated with the computation of the
Fisher information matrix for the set of basis inputs. Since we assume a more
general nonlinear model structure, the Monte Carlo approximation described in
Chapter 3 cannot be employed here. To overcome this issue, we use particle methods
to approximate the Fisher information matrices for the set of basis inputs. Since
the method is based on numerical approximations, the resulting optimization is
performed several times over different realizations, and the final result is the sample
mean over the different realizations. Numerical examples show that the proposed
technique can be employed for designing input sequences to identify nonlinear state
space models.

As it might be expected, the computational complexity of this approach is not
only related to the computation of the basis inputs, but it is also connected with
the number of particles and the length of the input employed to estimate the score
function. Future work in this subject will be related with the reduction of the
computational complexity associated with the estimation of the score function.

Part II

Applications

75

Chapter 5

Input design for systems with

quantized data

In this chapter, we present one application of the proposed input design method to
identify systems subject to quantized measurements. This problem is of relevance
because of the many applications where quantized measurements are used. For ex-
ample, quantized measurements are widely used in networked control and wireless
communications, due to the noise immunity of digital communication channels. In
fact, due to constraints on the communication channels, such as noise and limited
bandwidth, it is impossible to transmit data with infinite precision. Thus, quan-
tization is an effective way to reduce use of the transmission resource, and meet
the bandwidth constraint of a communication channel. However, quantization is a
lossy compression method, hence the validity or performance of parameter identi-
fication may be affected by quantization. This could also result in the deteriorated
performance of adaptive control techniques.

In wireless communications, for example, quantized system identification is cru-
cial for echo cancellation and blind communication channel estimation, see [31] and
the references therein. This means that quantized system identification is very im-
portant as the use of wireless technologies is now extensive in many areas of society,
and it is expected to increase.

A particular type of quantized system is where the quantizer can take only 2 pos-
sible values (binary signals). This kind of configuration has attracted considerable
attention [13, 48, 56]. In fact, binary-valued (or quantized) sensors are commonly
used in practical systems. They are exemplified by switching sensors for exhaust
gas oxygen, photoelectric sensors for position, Hall-effect sensors for speed and ac-
celeration, gas content sensors in the gas and oil industry, and distributed one-bit
wireless sensors [63, 71, 99]. In particular, for any remotely controlled system, sig-
nal quantization is mandatory. Compared to regular sensors, binary-valued sensors
are usually far more cost effective. However, they provide very limited information
on the process.

77

78 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

FIR
xt Qut

wt

yt

Figure 5.1: FIR system with quantized output.

The problem of input design for quantized systems has been treated in previous
works [10, 11, 12, 98]. In [98] conditions under which consistent estimates can be
obtained are presented. In particular, [98] recommends the use of periodic signals.
Even though periodic inputs have shown to asymptotically achieve the Cramér-Rao
lower bound (CRLB), their use may be inadequate for tracking control applications,
since the output will not follow the desired trajectory [65].

In [12], the input design problem is carried out within a worst case framework,
based on the set membership paradigm of uncertainty representation. There, the
authors assume uncertainty in the parameters, and extend the previous work [11]
from binary sensors to multilevel sensor thresholds.

The work [65] asserts that the input assuring strong consistency of the estimates
is a persistently exciting signal of certain order r, as long as the quantizer is optimal
in the sense of minimizing the error between the measurement and the input to the
quantizer. However, the design of this signal is not carried out.

To use the input design technique proposed in previous chapters for identifica-
tion of model structures with quantized output, we need an estimate of the Fisher
information matrix (FIM) obtained when using the set of basis inputs. In this
chapter an estimate of the FIM is given, based on the so-called Fisher’s identity
(cf. Subsection C.2 [66]). A numerical example shows that the proposed technique
is suitable for solving the input design problem for identification of models with
quantized outputs.

5.1 Input design problem

We focus on the problem of input design for quantized output systems. In partic-
ular, we have a system as in Figure 5.1, where noise enters between the linear FIR
system and the quantizer. The noise, wt, is assumed to be zero-mean Gaussian
with variance σ2. We also assume that σ2 is known.

Remark 5.1 Note that the assumption about the noise variance being known is
only necessary for the experiment design, and not for the estimation problem. As
shown in [31], the noise variance can also be estimated.

5.1. INPUT DESIGN PROBLEM 79

The system can be described by

xt = ϕ⊤
t θ0 + wt, wt ∼ N (0, σ2)

yt = Q[xt],
(5.1)

where xt is a scalar, the parameter vector θ0 is of dimension nθ, ϕt is a vector of
dimension nθ, and σ2 ∈ R is the noise variance. Q : R → V represents a quantizer,
which is a map from R the set of a scalars to the finite set V = {v1, v2, · · · , vM} of
real numbers, i.e.,

Q[x] =

v1, if x ∈ Ω1,
...

vM , if x ∈ ΩM ,

(5.2)

where Ωi, i ∈ {1, . . . ,M} conform a partition of R.
Since the system is described by (5.3), we consider the model set

M =

{
xt = ϕ⊤

t θ + wt, wt ∼ N (0, σ2)

yt = Q[xt],

∣∣∣∣∣ θ ∈ Θ

}
. (5.3)

The problem of interest is to design the input u1:nseq = (u1, u2, . . . , unseq)
such that the parameter θ0 is better estimated compared to any other input signal.
From (5.1) we see that the output yt contains information about the parameter θ0.
Moreover, the information available in yt depends on the vector ϕt, which depends
on the input ut. Therefore, the input sequence u1:nseq can be designed to maximize
the information about θ0 available in yt.

To formulate the input design problem, consider the FIM (recall Lemma 1.1 in
page 9)

IeF = E

{
∂lθ(y1:nseq)

∂θ

∣∣∣∣
θ=θ0

∂lθ(y1:nseq)

∂θ⊤

∣∣∣∣
θ=θ0

}
∈ Rnθ×nθ , (5.4)

where
lθ(y1:nseq) = log pθ(y1:nseq) (5.5)

is the log-likelihood function, with pθ(y1:nseq) being the probability distribution of
the data, y1:nseq , given the parameter θ. The FIM defines the maximal accuracy
that an unbiased estimator of θ0 can achieve, due to the Cramér-Rao bound (cf.
Lemma 1.1 in page 9):

Cov(θ̂) � {IeF }−1, (5.6)

where θ̂ denotes the estimator of θ0.
Given a concave matrix non-decreasing function h : Snθ

+ → R, where Snθ

+ corre-
sponds to the space of symmetric and positive-semidefinite matrices of dimension
nθ × nθ, an input design problem can be posed as

80 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

Problem 5.1 Design an input sequence uopt
1:nseq

for the quantized system (5.1) such
that

uopt
1:nseq

= arg max
u1:nseq

h(IeF)

s. t. |ut| ≤ umax, for all t ∈ {1, . . . , nseq} ,
(5.7)

where umax > 0 is a prescribed upper bound on the input amplitude.

Problem 5.1 is difficult to solve. The main issue is that the optimization of h(IeF)
as a function of u1:nseq is typically non-convex, which gives place to numerical diffi-
culties (e.g., local optima and initialization). However, if we relax the requirements
on u1:nseq to be a realization of a stochastic process with memory nm ≤ nseq and
finite alphabet C, then we can use the method described in Chapter 3 to solve a
suboptimal approximation of Problem 5.1. By a suitable definition of C, the con-
straint in the input design problem can be implicitly considered. However, to use
the results in Chapter 3, we need an expression for IF to compute by numerical
simulations the required matrices to set up the optimization. The next sections are
focused on providing such expression for IF when the system is described according
to Equation (5.1).

5.2 Background on maximum likelihood estimation with

quantized output data

The maximum likelihood (ML) estimation problem can be posed as:

θ̂nseq = arg max
θ
lθ(y1:nseq), (5.8)

where the log-likelihood function lθ(y1:nseq) is given by (5.5). For the problem of
interest in this chapter, we can write (5.5) as

lθ(y1:nseq) =

nseq∑

t=1

lt(θ), lt(θ) = log pθ(yt|y1:t−1). (5.9)

Assumption 5.1 The input u1:nseq = {ut}nseq

t=1 is an exogenous signal, and the FIR
system is in open loop.

Remark 5.2 Notice that the system (of interest) is FIR, thus,

lt(θ) = log pθ(yt|y1:t−1) = log pθ(yt) .

Before introducing the next assumption, we need the following definitions [59]:

5.2. BACKGROUND ON ML ESTIMATION 81

Definition 5.1 (Uniformly stable filters) Consider the family of filters

H = {Gβ(q) =
∞∑

k=1

gβ, kq
−k |β ∈ B} . (5.10)

The family of filters H is uniformly stable if and only if

|gβ, k| ≤ gk, for all β ∈ B , (5.11)

where {gk}∞
k=1 satisfies

∞∑

k=1

gk < ∞ . (5.12)

Definition 5.2 (Quasi-stationary signal) A signal {st} is said to be quasi-stationary
if and only if, for all integers t, r, and τ ,

E{st} = ms(t) , (5.13)

E{st sr} = Rs(t, r) , (5.14)

lim
nseq→∞

1

nseq

nseq∑

i=1

Rs(i, i− τ) = R′
s(τ) , (5.15)

where the functions ms, Rs, satisfy |ms(t)| ≤ C, |Rs(t, r)| ≤ C, for some finite
C ≥ 0.

Definition 5.3 (Informative enough data sets) A quasi-stationary data set {yt, ut}
is informative enough with respect to the model set M if and only if, for two
optimal one-step ahead prediction filters W1(q) and W2(q), derived from any two
models in the model set M, the expression

lim
nseq→∞

1

nseq

nseq∑

t=1

E[(W1(q) −W2(q)) zt]
2 = 0 , (5.16)

implies that W1(eiω) = W2(eiω) for almost all ω, where zt :=
[
y⊤
t u⊤

t

]⊤
.

Assumption 5.2 The vector of parameters θ, the input ut and the noise wt satisfy
the following regularity conditions [59, Theorem 8.3]:

• The data set {yt, ut} is such that for some filters {d(i)
t, k},

xt =

∞∑

k=1

d
(1)
t, kut−k +

∞∑

k=1

d
(2)
t, kwt−k,

yt = Q[xt].

(5.17)

82 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

• {ut} is a bounded, external input sequence.

• {wt} is a sequence of independent random variables with zero mean values,
and bounded moments of order 4 + δ for some δ > 0.

• The family of filters {d(i)
t, k}∞

k=1, i ∈ {1, 2}, t ≥ 1 is uniformly stable.

• The signals {yt}, {ut} are jointly quasi-stationary.

• There exists a θ0, such that yt is described by (5.1) when θ = θ0 (no under-
modeling).

• The data set {yt, ut} is informative enough with respect to the model structure
(5.1).

The conditions presented in Assumption 5.2 guarantee that the solution θ̂nseq of the
optimization problem in (5.8) converges (in probability or a.s.) to the true solution
θ0 as nseq → ∞ [58].

The maximum likelihood estimation (5.8) requires the computation of the log-
likelihood function associated to a model in the set (5.3), which is difficult to handle
due to the quantizer in (5.1). To overcome this issue, we use the expectation max-
imization (EM) algorithm to solve maximum likelihood problem (5.8). Moreover,
the intermediate results of the EM algorithm are used to compute the Fisher infor-
mation matrix of the system (5.1), as it is shown in Section 5.3.

The EM algorithm [20, 66] is an iterative procedure that at the k-th step seeks

a value θ̂nseq,k such that the likelihood is increased in that log pθ̂nseq,k
(y1:nseq) >

log pθ̂nseq,k−1
(y1:nseq).

The main idea of the EM algorithm is the postulation of a missing data set
x1:nseq . In this chapter, the missing data x1:nseq will be understood as the state
sequence {xt} in the model structure (5.1), but other choices are possible, and it
can be considered as a design variable. This approach assumes that maximizing the
joint log-likelihood log pθ(x1:nseq , y1:nseq) is easier than maximizing the marginal one
log pθ(y1:nseq). We refer to Appendix C for more details about the EM algorithm.

The EM algorithm consists of two steps: (i) the calculation of an auxiliary
function (E-step) and, (ii) the optimization of this auxiliary function (M-step).

The E-step is obtained by calculating the function Q(θ, θ̂nseq,i):

Q(θ, θ̂nseq,i) :=

∫

R
nseq

log[pθ(x1:nseq , y1:nseq)] pθ̂nseq,i
(x1:nseq |y1:nseq)dx1:nseq . (5.18)

The M-step is then given by

θ̂nseq,i+1 = arg max
θ

Q(θ, θ̂nseq,i). (5.19)

Before introducing one of the main results in this section, we need the following
lemma [31, Lemma 5]:

5.2. BACKGROUND ON ML ESTIMATION 83

Lemma 5.1 The joint log-likelihood log pθ(x1:nseq , y1:nseq), and the conditional pdf

pθ̂nseq,i
(x1:nseq |y1:nseq)

are given by

log pθ(x1:nseq , y1:nseq) =

{∑nseq

t=1 log pθ(xt), xt ∈ Q−1[yt] ,

0, otherwise,
(5.20)

pθ̂nseq,i
(x1:nseq |y1:nseq) =

nseq∏

t=1

pθ̂nseq,i
(xt|yt) , (5.21)

with pθ̂nseq,i
(xt|yt) given by

pθ̂nseq,i
(xt|yt) =

1√
2πσ2

∫

St

exp

{
− 1

2σ2
(xt − ϕ⊤

t θ)
2

}
dxt . (5.22)

Also, the E-step in the EM algorithm is given by

Q(θ, θ̂nseq,i) = −1

2

nseq∑

t=1

[
log{2πσ2} +

1

σ2

∫

St

(xt − ϕ⊤
t θ)

2pθ̂nseq,i
(xt|yt)dxt

]
,

(5.23)
where St = {x̃t : Q[xt] = yt}.

Proof The expression of the joint log-likelihood can be obtained as

pθ(x1:nseq , y1:nseq) =

nseq∏

t=1

pθ(xt, yt|x1:t−1, y1:t−1)

=

nseq∏

t=1

pθ(xt, yt) , (5.24)

with pθ(xt, yt) defined by

pθ(xt, yt) =

{
pθ(xt), xt ∈ Q−1[yt] ,

0, otherwise,
(5.25)

and from [33, p. 210] we know that

xt ∼ N (ϕ⊤
t θ, σ

2) . (5.26)

Hence,

log pθ(x1:nseq , y1:nseq) =

nseq∑

t=1

log pθ(xt, yt) , (5.27)

84 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

and (5.20) follows from (5.25). Also, from (5.24) and

pθ(y1:nseq) =

nseq∏

t=1

pθ(yt|y1:t−1) =

nseq∏

t=1

pθ(yt) , (5.28)

we have that

pθ̂nseq,i
(x1:nseq |y1:nseq) =

pθ̂nseq,i
(x1:nseq , y1:nseq)

pθ̂nseq,i
(y1:nseq)

=

nseq∏

t=1

pθ̂nseq,i
(xt, yt)

pθ̂nseq,i
(yt)

=

nseq∏

t=1

pθ̂nseq,i
(xt|yt) . (5.29)

In the view of (5.18), to compute the E-step we need the expressions for the joint log-
likelihood log pθ(x1:nseq , y1:nseq), and the conditional pdf pθ̂nseq,i

(xt|yt). Combining

(5.18) with (5.27) and (5.29) we have that

Q(θ, θ̂nseq,i) =

∫

R
nseq

nseq∑

t=1

log[pθ(xt, yt)]

nseq∏

s=1

pθ̂nseq,i
(xs|ys)dx1:nseq (5.30)

=

nseq∑

t=1

∫

R

log[pθ(xt, yt)] pθ̂nseq,i
(xt|yt)dxt , (5.31)

and (5.23) follows from (5.26) and (5.25). �

In [31], it was shown that under the stated assumptions, a parameter estimate

θ̂nseq can be found using the EM algorithm. This algorithm is summarized in the
following theorem:

Theorem 5.1 Consider the system given in (5.1), Assumptions 5.1 and 5.2, and
the maximization problem stated in (5.19). Then the M-step of the EM algorithm
is given by:

θ̂nseq,i+1 =

[
N∑

t=1

ϕtϕ
⊤
t

]−1 N∑

t=1

ϕtx̂t, (5.32)

where

x̂t = ϕ⊤
t θ̂nseq,i + σ

I
(1)
t

I
(0)
t

, (5.33)

with I
(0)
t ∈ R, I

(1)
t ∈ R given by

I
(0)
t =

1√
2π

∫

S̃t

exp

{
−1

2
x̃2
t

}
dx̃t, (5.34)

I
(1)
t =

1√
2π

∫

S̃t

x̃t exp

{
−1

2
x̃2
t

}
dx̃t, (5.35)

and S̃t = {x̃t : Q[σx̃t + ϕ⊤
t θ̂nseq,i] = yt}.

5.2. BACKGROUND ON ML ESTIMATION 85

Proof The maximization of (5.19) with respect to θ can be found by taking the
derivative in (5.23) with respect to θ, and using the definition for St. Thus,

−2
∂Q(θ, θ̂nseq,i)

∂θ
=

∂

∂θ

(nseq∑

t=1

[
log{2πσ2} +

1

σ2

∫

St

(xt − ϕ⊤
t θ)

2pθ̂nseq,i
(xt|yt)dxt

])

=

nseq∑

t=1

[
1

σ2

∫

St

∂

∂θ
(xt − ϕ⊤

t θ)
2pθ̂nseq,i

(xt|yt)dxt
]

=

nseq∑

t=1

[
− 2

σ2

∫

St

ϕt(xt − ϕ⊤
t θ)pθ̂nseq,i

(xt|yt)dxt
]
. (5.36)

Setting (5.36) equal to zero we have that

θ̂nseq,i+1 =

[nseq∑

t=1

ϕtϕ
⊤
t

]−1 nseq∑

t=1

ϕtx̂t , (5.37)

where

x̂t =

∫

St

xt pθ̂nseq,i
(xt|yt) dxt . (5.38)

From (5.38) we have

x̂t =

∫

R

xt
pθ̂nseq,i

(xt, yt)

pθ̂nseq,i
(yt)

dxt =
1

pθ̂nseq,i
(yt)

∫

St

xtpθ̂nseq,i
(xt) dxt

=
1

pθ̂nseq,i
(yt)

∫

St

xt√
2πσ2

exp

{
− 1

2σ2
(xt − ϕ⊤

t θ̂nseq,i)
2

}
dxt . (5.39)

Making the change of variables x̃t = σ−1(xt − ϕ⊤
t θ̂nseq,i), we have

x̂t =
1

pθ̂nseq,i
(yt)

∫

S̃t

(σx̃t + ϕ⊤
t θ̂nseq,i)√

2πσ2
e− 1

2 x̃
2
t dx̃t

=
1

pθ̂nseq,i
(yt)

[∫

S̃t

σx̃t√
2πσ2

e− 1
2 x̃

2
t dx̃t + ϕ⊤

t θ̂nseq,i

∫

S̃t

1√
2πσ2

e− 1
2 x̃

2
t dx̃t

]

=
1

pθ̂nseq,i
(yt)

[
σI

(1)
t + ϕ⊤

t θ̂nseq,iI
(0)
t

]
. (5.40)

Also,

pθ̂nseq,i
(yt) =

∫

R

pθ̂nseq,i
(xt, yt) dxt =

∫

St

pθ̂nseq,i
(xt) dxt

=

∫

S̃t

1√
2πσ2

exp

{
−1

2
x̃2
t

}
σ dx̃t

86 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

= I
(0)
t . (5.41)

Finally, the expression for x̂t follows from (5.40) and (5.41). �

Developing further the expressions for the integrals I
(0)
t , I

(1)
t , we can obtain:

I
(0)
t = 0.5 erf(S̃t/

√
2), I

(1)
t = −e−x2/2

√
2π

∣∣∣∣∣
x∈S̃t

, (5.42)

where f(x)|x∈S̃t
denotes the function f evaluated at the maximum and minimum

values of the interval S̃t = {x̃t : Q[σx̃t + ϕ⊤
t θ] = yt}, and

erf(A) :=
2√
π

∫

A
e−u2

du

is a modified error function, defined for sets.

5.3 Fisher information matrix for systems with quantized

output

To use the technique developed in this thesis, we need an expression for the Fisher
information matrix IF . Before introducing the main result, we need the following
lemma [31]:

Lemma 5.2 The partial derivative of Q(θ, θi) with respect to θ can be expressed
as

∂Q(θ, θi)

∂θ
=

nseq∑

t=1

(
1

σ2
ϕtϕ

⊤
t [θi − θ] +

1

σ

I
(1)
t

I
(0)
t

)
. (5.43)

Proof We start from (5.36) to write

∂Q(θ, θi)

∂θ
=

nseq∑

t=1

[
1

σ2

∫

St

ϕt(xt − ϕ⊤
t θ)pθ̂nseq,i

(xt|yt)dxt
]

=

nseq∑

t=1

ϕt
σ2

[
x̂t − ϕ⊤

t θ

∫

St

pθi
(xt|yt)dxt

]
, (5.44)

where x̂t is defined according to Theorem 5.1. Moreover, since pθi
(xt|yt) is nonzero

only in St, we have ∫

St

pθi
(xt|yt)dxt = 1 . (5.45)

Finally, using (5.33) and (5.45) into (5.44) we obtain (5.43). �

The expression for IF for the system described in equation (5.1) is provided in
the following lemma:

5.3. INFORMATION MATRIX COMPUTATION 87

Lemma 5.3 (Fisher information matrix for models with quantized output) For
systems with quantized output data of the form (5.1), the FIM is given a.s. by the
following expression:

IF = lim
Nsim→∞

2

πσ2Nsim

Nsim∑

t=1

(
e−x2/2|x∈S̃t

erf(S̃t/
√

2)

)2

ϕtϕ
⊤
t , a.s. , (5.46)

where f(x)|x∈S̃t
denotes the function f evaluated at the maximum and minimum

values of the interval S̃t = {x̃t : Q[σx̃t + ϕ⊤
t θ] = yt}.

Proof We start by using the Fisher’s identity1 [66, p.80]

∂lθ(y1:nseq)

∂θ

∣∣∣∣
θ=θ0

=
∂Q(θ, θ0)

∂θ

∣∣∣∣
θ=θ0

(5.47)

where Q(θ, θ0) is the auxiliary function arising from the EM algorithm.
From Lemma 5.2 we have that

∂Q(θ, θ0)

∂θ

∣∣∣∣
θ=θ0

=
1

σ

nseq∑

t=1

ϕt
I

(1)
t

I
(0)
t

. (5.48)

For the SISO case, the quotient I
(1)
t /I

(0)
t can be expressed as:

I
(1)
t

I
(0)
t

= −
√

2√
π

e−x2/2
∣∣∣
x∈S̃t

erf(S̃t/
√

2)
. (5.49)

Thus, we can write the FIM as

IF = E

{
∂lθ(y1:nseq)

∂θ

∣∣∣∣
θ=θ0

∂lθ(y1:nseq)

∂θ⊤

∣∣∣∣
θ=θ0

}

=
2

πσ2
E

(
e−x2/2|x∈S̃t

erf(S̃t/
√

2)

)2

ϕtϕ
⊤
t

 . (5.50)

Since xt and ϕt are asymptotically jointly stationary processes, asymptotically un-
correlated (for sufficiently large lags), by the Birkhoff-Khinchin ergodic theorem [79,
Lemma B.1], we can write (5.50) as:

IF = lim
Nsim→∞

2

πσ2Nsim

Nsim∑

t=1

(
e−x2/2|S̃t

erf(x/
√

2)|S̃t

)2

ϕtϕ
⊤
t , a.s. (5.51)

which is the expression in (5.46). �

1We refer to Appendix C, page 126 for the derivation of Fisher’s identity.

88 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

Remark 5.3 Notice that a more general case can be developed considering incom-
plete data (e.g., the output yt is missed for some t). In particular, missing data is
a common type of incomplete data, and to calculate the FIM we still can use the
Fisher’s identity, but we need to consider that the expectations in (5.18) are now
taken with respect to a different set of observations. However, one important as-
sumption to consider is that the missing data mechanism is somehow independent
of the stochastic processes in the system, see e.g. [1].

Lemma 5.3 provides a numerical approximation of IF , which is based on the
results introduced in [31]. Therefore, Lemma 5.3 can be employed to approximate
numerically the Fisher information matrices associated with the set of extreme
points of stationary processes with memory nm and alphabet C, which are employed
to solve Problem 5.1 in page 80. To this end, we use the steps for the input design
method presented in page 43.

5.4 Numerical example

To illustrate the results in this chapter, we consider the following example:

Example 5.1 Consider a SISO FIR system, defined as

xt = ϕ⊤
t θ0 + wt,

yt = Q[xt],
(5.52)

where Q is a 2-bit quantizer, ϕt =
[
ut−1 ut−2

]⊤
, θ0 =

[
0.4 1

]⊤
, and the noise

variance is σ2 = 1. The extreme values for Q are −7.5 and 7.5, with equally spaced
output values on [−7.5, 7.5]. Thus, the quantizer is given by

Q[x] =

7.5, if x > 2.5,
2.5, if x ∈ (0, 2.5],

−2.5, if x ∈ [−2.5, 0],
−7.5, if x < −2.5.

(5.53)

We use the method presented in Section 3.2 in page 42 to design an experiment
for identifying θ0 in (5.52). For this purpose, we consider an input with maximum
amplitude 5, and different scenarios, composed by memory length nm ∈ {2, 3}, and
nC ∈ {2, 4}. We solve (3.19) for h(·) = −tr{W (·)−1}, where

W =

[
4 3
3 4

]
. (5.54)

The approximation of each I(i)
F in (3.20a) is obtained using an approximation of

(5.46) with Nsim = 5 · 105. The problem is solved in Matlab using the cvx toolbox
[35].

5.4. NUMERICAL EXAMPLE 89

0 50 100 150
−5

0
5

u
t

0 50 100 150
−5

0
5

t

u
t

Figure 5.2: Input realizations for memory length nm = 2. Top: nC = 2. Bottom:
nC = 4.

Table 5.1: h(IF) for different values of nC and memory length (of the Markov chain
input).

memory length � nC 2 4
2 −3.12 −1.58
3 −3.08 −1.58

Once the problem (3.19) is solved, we generate an input signal of length nseq =
106 from the optimal pmf by running a Markov chain based on (2.27). Typical
input realizations for memory length 2 are presented in Figure 5.2. To compare the
results, we compute h(IF) for each optimal input signal using (5.46).

The results obtained for the different scenarios are presented in Table 5.1. The
results show that the value of h is increased when we increase the number of possible
values for the input. However, there is no significant improvement when we increase
the memory length of the stationary process, which says that a memory length equal
to nθ might be optimal for this example.

As a benchmark, we generate a binary white noise input of length nseq and
amplitude 5, and we compute h(IF) for this input using (5.46). The value we
obtain is h(IF) = −3.75, which is 16.8% worse than the worst result presented in
Table 2.1. Therefore, for this example the proposed input design method outperforms
the result obtained with binary white noise.

90 CHAPTER 5. INPUT DESIGN FOR QUANTIZED SYSTEMS

5.5 Conclusion

In this chapter we introduce an application of the input design method presented
in previous chapters. The goal is to design an input sequence as a realization of
a stationary process, maximizing the information retrieved from the experiment
resulting of applying the input sequence to a system with quantized output. The
main difficulty when using the proposed technique on these systems is that the
computation of the Fisher information matrix becomes difficult since the output
measurements are quantized. To solve this issue, this chapter provides an estimate
of the Fisher information matrix based on Fisher’s identity. The estimate is com-
puted by numerical approximations, which are employed to estimate the Fisher
information matrices associated with the probability measures describing the set of
stationary processes. The numerical example illustrates that the proposed method
can be employed to design input sequences for systems with quantized output. Fu-
ture work in the subject will consider more complex model structures, which implies
that new expressions to approximate the Fisher information matrix will be needed.

Chapter 6

Application oriented closed-loop

input design

In previous chapters we have discussed the problem of input design for identification
of systems in open-loop operation. However, in many industrial applications the
data collected for identification comes from systems working in closed-loop [59, 89,
92].

In practical applications, many systems can only work in closed-loop settings
due to stability issues, production restrictions, economic considerations or inherent
feedback mechanisms. On the other hand, it is sometimes required to update the
existing control laws or design a new controller. Since most of the methods for
designing controllers require the knowledge of the system to be controlled, closed-
loop system identification is a building block in this process. The main burden
in closed-loop identification is the correlation between the measurement noise and
input signal, which is imposed on the experiment by the feedback loop. There exists
quite a rich literature on closed-loop identification with three main approaches:
direct methods (the model is identified as if the system were operating in open-loop),
indirect methods (the model is obtained from the identified closed-loop structure),
and joint input-output methods (an augmented model is identified, where the input
and output of the system are considered as the new outputs, and the reference and
noise as new inputs), see, e.g., [27, 59, 79, 91] and the references therein.

One crucial question that arises in any identification process is how to generate
data efficiently. This question is addressed by input design methods, where the
objective is to generate an input signal that maximizes the information retrieved
from an experiment [3, 33]. In this area, application oriented input design is one
approach to formulate the optimal input design problem. The main idea is to
guarantee a certain control performance for the identified model with the least
possible experimental effort. The same idea has been used in identification for
control and least costly identification, see, e.g., [3, 30, 39, 52, 53, 55].

For closed-loop models, the input design problem is often translated to the

91

92 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

design of the spectrum of an additive external excitation. There exists a vast liter-
ature on closed-loop experiment design, where the controller can also be designed
(provided it is a design variable). In this line, [37] designs an identification exper-
iment minimizing the uncertainty region for the identified model. The experiment
design is performed in the frequency domain, where the input spectrum is design
to minimize the uncertainty region for the identified model, while satisfying power
contraints. In [38] the design of an optimal experiment for parametric prediction
error system identification of linear time-invariant systems is considered, where the
system is assumed to operate in closed loop. To this end, [38] parameterizes the
set of admissible controller-external input pairs by a finite set of matrix valued
trigonometric moments. In [41, 44] the problem of experiment design for closed
loop system identification is analyzed. In this case, [41, 44] use a finite dimensional
parameterization of the input spectrum and the Youla-Kucera parameterization to
recast the problem as a semidefinite program. However, the main limitation on
the existing methods is that they cannot be employed in closed-loop systems with
nonlinear feedback. In addition, they cannot handle probabilistic constraints on
the input and output, which arise for safety or practical limitations.

In this chapter we present a new approach for application oriented experiment
design for closed-loop systems. We consider a linear time-invariant system being
controlled by a known controller (either linear or nonlinear), where the main goal is
reference tracking. Due to a performance degradation (e.g., a change in the process
dynamics producing a degradation in the quality of reference tracking), we want to
update the current controller or design another one, and thus a plant model needs
to be identified. Since the controller is known we will employ indirect identification,
where the model is identified by adding an external stationary input. The input
design is then formulated as an optimization problem, where we design the external
excitation achieving minimum experimental effort, while we are also taking care of
the tracking performance of the existing controller.

The designed input sequence must guarantee that the estimated parameters
satisfies a prescribed accuracy. Since the covariance matrix of the asymptotic dis-
tribution of the parameter estimates depends on the Fisher information matrix,
it is reasonable to impose a constraint as a function of this matrix to guarantee
a prescribed accuracy in the estimated parameters. Thus, to guarantee that the
model parameters are estimated with the desired accuracy, we add a constraint on
the quality of the estimated model in terms of the Fisher information matrix [59],
to obtain an input signal guaranteeing that the estimated model is in the set of
models that satisfy the desired control specifications, with a given probability.

In practice we also have bounds on the input and output signals, which should
be taken into account during the experiment design. However, the measured output
of the system is usually corrupted by an unknown disturbance, which is modeled
as stochastic process. Moreover, since the system is operating in closed loop, the
input of the system will be also affected by the unknown disturbance. Therefore,
any bounds on the input and output must be given in terms of probability measures.
Consequently, the proposed optimization also considers probabilistic bounds for the

6.1. PRELIMINARIES 93

input and output of the system.
The obtained optimization problem is nonconvex due to the constraints, and

thus it is difficult to handle. This issue is relaxed by extending the method intro-
duced in this thesis and [87] to closed-loop and constrained system identification.
By assuming that the external excitation is a realization from a stationary pro-
cess with finite memory and finite alphabet, we can characterize the stationary
process describing the external excitation as a convex combination of the basis in-
puts. Since the basis inputs are known, we can estimate the Fisher information
matrix, the probabilities, and the cost function associated with each basis input by
using numerical methods. Therefore, the resulting optimization problem needs to
find the optimal convex combination of the basis inputs minimizing the cost func-
tion, while satisfying the probabilistic and accuracy constraints. Consequently, the
optimization problem is convex in the decision variables, which makes it tractable.

6.1 Preliminaries

Consider the discrete time, linear, time-invariant system

xt+1 = A(θ0)xt +B(θ0)ut,

yt = C(θ0)xt + νt.
(6.1)

where ut ∈ Rnu and yt ∈ Rny are the input and output vectors. νt ∈ Rne is a
coloured noise sequence with νt = H(q; θ0)et, where H is a rational noise filter
in terms of the time shift operator q, and {et} is white noise sequence with zero
mean and covariance matrix Λe ∈ Rne×ne . In addition, we assume that H is stable,
inversely stable, and satisfies limq→∞ H(q; θ) = I.

System identification

In system identification, we aim to find a model of the system (6.1). The model is
parameterized by an unknown parameter vector θ ∈ Rnθ , that is,

xt+1 = A(θ)xt +B(θ)ut ,

yt = C(θ)xt + νt ,
(6.2)

where νt = H(q; θ)et. The model coincides with (6.1) when θ = θ0 [59]. To obtain
the desired results, we assume the following:

Assumption 6.1 The model structure (6.2) is globally identifiable at θ0.

We employ the prediction error method (PEM) with quadratic cost to calculate
an approximation of the unknown parameters θ ∈ Rnθ , based on N available sam-
ples of input-output, i.e., data {ut, yt, t = 1, . . . , N} (cf. Chapter 1). An important
asymptotic (in the sample size N) property of PEM, is that

√
N(θ̂N − θ0) ∈ AsN (0, {IeF }−1), (6.3)

94 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

where IeF quantifies the information regarding the unknown parameters in the ob-
servations of the output signal (cf. Lemma 1.1 in page 9). Thus, for sufficiently
large samples N , we get that with a certain probability α the estimated parameters
belong to an identification set (see [61]) defined as

ΘSI(α) =
{
θ : (θ − θ0)

⊤ IeF (θ − θ0) ≤ χ2
α(nθ)

}
, (6.4)

where χ2
α(n) is the α-percentile of the χ2-distribution with n degrees of freedom,

which in turn implies that θ̂N ∈ ΘSI(α) with probability α for sufficiently large
samples N .

Application oriented input design

In application oriented input design, the main focus is to design an input signal to
be used in an identification experiment such that an acceptable control performance
can be guaranteed when the estimated model is used in the control design. This re-
quires that θ̂N ∈ Θ(γ) with high probability, where Θ(γ), also known as application
set, is the set of all acceptable parameters from a control’s point of view, and γ is a
user-defined positive constant which imposes an upper bound on the performance
degradation. One way to ensure this is to require

ΘSI(α) ⊆ Θ(γ). (6.5)

Using (6.5), the input design problem can be formulated as a constrained opti-
mization problem with (6.5) as the constraint. Thus, a natural objective in the
input design is to minimize an experimental cost, such as input power or energy,
or experimental time, while (6.5) is fulfilled, i.e.,

min
input

Experimental Cost

s.t. ΘSI(α) ⊆ Θ(γ).
(6.6)

In order to relate the control performance degradation to the plant-model mismatch,
we use the concept of application cost function, where a scalar function of θ is
considered as the application cost, denoted by Vapp(θ). We choose the cost function
such that its minimum value occurs at θ = θ0. In particular, if Vapp(θ) is twice
differentiable in a neighbourhood of θ0, we assume without loss of generality:

Vapp(θ0) = 0, ∇θVapp(θ)|θ=θ0
= 0 and ∇2

θVapp(θ)
∣∣
θ=θ0

� 0.

We notice that the previous properties are always possible. Indeed, if Vapp(θ0) 6= 0,
then it is possible to define a new cost function V ′

app(θ) := Vapp(θ)−Vapp(θ0), where
V ′

app(θ) satisfies the expressions given above.
There are many possible choices of application cost functions with these prop-

erties, see, e.g., [52]. The set of all acceptable parameters, namely the application

6.1. PRELIMINARIES 95

set, is defined as

Θ(γ) =

{
θ : Vapp(θ) ≤ 1

γ

}
. (6.7)

To proceed, we employ the following local approximation of Θ(γ) invoking the
Taylor expansion of Vapp(θ) around θ0:

Vapp(θ) ≈ Vapp(θ0) + ∇θVapp(θ)|⊤θ=θ0
[θ − θ0]

+ 0.5[θ − θ0]⊤ ∇2
θVapp(θ)

∣∣
θ=θ0

(θ0)[θ − θ0]

= 0 + 0 + 0.5[θ − θ0]⊤ ∇2
θVapp(θ)

∣∣
θ=θ0

[θ − θ0].

(6.8)

Thus we have the following ellipsoidal approximation of the application set (see [40]):

Θapp(γ) :=

{
θ : (θ − θ0)⊤ ∇2

θVapp(θ)
∣∣
θ=θ0

(θ − θ0) ≤ 2

γ

}
. (6.9)

Using (6.4) and (6.9), we have that ΘSI(α) ⊆ Θapp(γ) if and only if

1

χ2
α(nθ)

(θ − θ0)
⊤ IF (θ − θ0) ≤ γ

2
(θ − θ0)⊤∇2

θVapp(θ0)(θ − θ0) , (6.10)

for all θ ∈ ΘSI(α). Indeed, assume first that ΘSI(α) ⊆ Θapp(γ) holds. Then for all
θ ∈ ΘSI(α) we have that

1

χ2
α(nθ)

(θ − θ0)
⊤ IF (θ − θ0) ≤ 1 , (6.11)

γ

2
(θ − θ0)⊤∇2

θVapp(θ0)(θ − θ0) ≤ 1 . (6.12)

Since ΘSI(α) ⊆ Θapp(γ), then the only option to satisfy simultaneously equa-
tions (6.11) and (6.12) is to satisfy inequality (6.10) for all θ ∈ ΘSI(α). Conversely,
if we assume that (6.10) holds for all θ ∈ ΘSI(α), and if we consider that (6.12)
holds for all θ ∈ ΘSI(α), then (6.11) will also be satisfied for all θ ∈ ΘSI(α), which
implies that ΘSI(α) ⊆ Θapp(γ).

Equation (6.10) implies that

1

χ2
α(nθ)

IF � γ

2
∇2
θVapp(θ)

∣∣
θ=θ0

. (6.13)

Therefore, a relaxation of the optimal input design problem (6.6) can be written as

min
input

Experimental Cost

s.t.
1

χ2
α(nθ)

IF � γ

2
∇2
θVapp(θ)

∣∣
θ=θ0

.
(6.14)

For more details on application oriented input design refer to [40].

96 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

et

noise model

rt plant yt

controller yd

ut

−

Figure 6.1: A block diagram representation of the closed-loop system.

Optimal input design via graph theory

As discussed in Chapters 3 and 4, in input design via graph theory the optimal
external signal r1:nseq = {rt}nseq

t=1 is designed as a realization of a stationary process
with finite memory nm. The problem is then formulated in terms of the pdf of the
stationary input, denoted by p(r1:nm

), where nm ≤ nseq. Assuming that the input
signal belongs to a finite set of values C, we can use elements from graph theory
to describe any p(r1:nm

) in the set of stationary processes as a convex combination
of the extreme points of the set. The extreme points are computed as the prime
cycles associated with the de Bruijn Graph of memory nm and alphabet C (cf.
Chapter 2). The proposed input design method is described in page 43, and it will
be used in this chapter. The only modification required for the method described
in page 43 to cover the contents in this chapter is in step 5, where we will consider
the optimization problem described in the next section.

6.2 Input design for identification of closed-loop systems

Problem Definition

Assume that the system (6.2) is controlled using a general (either linear or nonlin-
ear) output feedback controller:

ut = rt +Ky,t(z1:t), (6.15)

where Ky,t is a known time varying function, rt denotes an external excitation, and
z1:t := {yk − yd}tk=1. The feedback (6.15) is such that the output signal tracks
a desired value yd. To simplify the problem, we assume that yd is a prescribed
constant value. However, the present formulation can include time varying yt,d,
provided that {yk,d}k≥1 is a stationary process.

The closed-loop structure is shown in Figure 6.1. Thus the closed-loop system

6.2. INPUT DESIGN FOR FEEDBACK SYSTEMS 97

will be

xt+1 = Ft(θ, xt, z1:t) +B(θ)rt,

yt = C(θ)xt + νt,
(6.16)

where νt = H(q; θ)et, and

Ft(θ, xt, z1:t) := A(θ)xt +B(θ)Ky,t(z1:t). (6.17)

We assume that the resulting closed-loop system (6.16) is asymptotically stable.

Remark 6.1 If (6.16) is asymptotically stable, and the feedback controller is lin-
ear, then the information regarding closed-loop stability can be included in the prob-
lem formulation by using the Youla parameterization. Since we know that the closed-
loop is stable, then we can parameterize the model structure for the system in the
set of linear time invariant models that can be stabilized by the given controller,
which is performed by using the Youla parameter [90].

The objective is to design an experiment for the closed-loop system (6.16), that
generates nseq samples of the reference signal rt, to be used for identification of the
unknown parameters θ in (6.2). To this end, we consider the experiment design
problem (6.14). Since the system is in closed-loop we need to keep the output of
the plant yt close to yd during the identification experiment. Hence, we choose
to minimize the following experimental cost in the optimal input design problem
(6.14)

J = E

{nseq∑

t=1

‖yt − yd‖2
Q + ‖∆ut‖2

R

}
, (6.18)

where
∆ut := ut − ut−1, (6.19)

and Q and R are positive definite matrices. The first term in (6.18) penalizes
the deviations from the desired output, while the second term is responsible for
minimizing the input energy. The expected value in equation (6.18) is with respect
to {rt} and {et}.

In practical applications, it is common to have bounds on the maximal input
and output amplitudes allowed by the process. These constraints appear due to
physical limitations and/or to keep the system in a safe operating point. However,
these bounds cannot be prescribed in a deterministic sense, since both the input and
output of the system contains a stochastic process that cannot be measured by the
user. Therefore, it is necessary to quantify the input and output constraints by using
a probability measure. Thus, we consider the following probabilistic constraints
during the identification process1:

P{|yt − yd| ≤ ymax} > 1 − ǫy, t = 1, . . . , nseq,

P{|ut| ≤ umax} > 1 − ǫx, t = 1, . . . , nseq,
(6.20)

1In equation (6.20) we consider absolute value and the inequality as element-wise operations.

98 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

where umax is the maximum allowed value for the input signal and ymax is the
maximum allowed deviation of the output from its desired value, based on the
physical properties of the system and actuators; and ǫx, ǫy ≥ 0 are two design
variables that define the desired probabilities of being in the safe bounds for input
and output signals.

In addition to the previous constraints, we require that the updated (or newly)
designed controller based on the estimated parameters can guarantee an acceptable
control performance, i.e., the experiment design constraint (6.5) is satisfied. The
optimization problem can be summarized as:

Problem 6.1 Design {ropt
t }nseq

t=1 as the solution of

min
{rt}nseq

t=1

J = E

{
nseq∑

t=1

‖yt − yd‖2
Q + ‖∆ut‖2

R

}
,

s. t. xt+1 = Ft(θ, xt, z1:t) +B(θ)rt,

yt = C(θ)xt + νt, t = 1, . . . , nseq,

νt = H(q; θ)et, t = 1, . . . , nseq,

ut = rt +Ky,t(z1:t), t = 1, . . . , nseq,

zt = yt − yd, t = 1, . . . , nseq,

P{|yt − yd| ≤ ymax} > 1 − ǫy, t = 1, . . . , nseq,

P{|ut| ≤ umax} > 1 − ǫx, t = 0, . . . , nseq − 1,

IeF � γχ2
α(n)

2
∇2
θVapp(θ⋆)

∣∣
θ⋆=θ

,

(6.21)

where IF is the Fisher information matrix obtained with nseq samples.

Note that Problem 6.1 has a very similar structure to model predictive control
(MPC), see [64]. However, they are not necessarily the same since we are not
considering a receding horizon approach in this problem.

The optimization problem (6.21) is nonconvex due to the possible nonlinearity
of the closed-loop system and the experiment design constraints, and is difficult to
solve explicitly.

Convex relaxation of the optimization algorithm

To find a convex relaxation of Problem 6.1 we will use elements from graph the-
ory discussed in Chapters 3 and 4 to design an input sequence r1:nseq such that
the cost function in (6.21) is minimized, satisfying input-output requirements, and
identification constraints. To proceed we will assume that r1:nseq is a realization
from a stationary pdf p(r1:nm

), where nm ≤ nseq is the memory of the stationary
process. In addition, we assume that rt ∈ C, for t ∈ {1, . . . , nseq}, with C defined
as a set with finite cardinality nC . Under the previous assumptions, we can use the

6.2. INPUT DESIGN FOR FEEDBACK SYSTEMS 99

methods introduced in Chapters 3 and 4 to define the set of feasible pdfs p(r1:nm
)

as a convex combination of its extreme points. The extreme points are computed as
the prime cycles associated with the de Bruijn graph of memory nm and alphabet
C (cf. Theorem 2.1 in page 28).

If the set of probability mass functions associated with the extreme points is
given by {pj}nv

j=1, then the optimization problem can be rewritten as

min
{β1, ..., βnv }

J =

nseq∑

t=1

nv∑

j=1

βjEet,r
(j)
t

{∥∥∥y(j)
t − yd

∥∥∥
2

Q
+
∥∥∥∆u

(j)
t

∥∥∥
2

R

}
,

s.t. x
(j)
t+1 = Ft(θ, x

(j)
t , z

(j)
1:t) +B(θ)r

(j)
t ,

y
(j)
t = C(θ)x

(j)
t + νt, t = 1, . . . , nseq,

νt = H(q; θ)et, t = 1, . . . , nseq,

u
(j)
t = r

(j)
t −Ky,t(z

(j)
1:t), t = 1, . . . , nseq,

z
(j)
t = y

(j)
t − yd, t = 1, . . . , nseq,

nv∑

j=1

βjPet,r
(j)
t

{|u(j)
t | ≤ umax} > 1 − ǫx,

nv∑

j=1

βjPet,r
(j)
t

{|y(j)
t − yd| ≤ ymax} > 1 − ǫy,

nv∑

j=1

βj I(j)
F � γχ2

α(n)

2nseq
∇2
θVapp(θ⋆)

∣∣
θ⋆=θ

,

nv∑

j=1

βj = 1, βj ≥ 0, j = 1, . . . , nv. (6.22)

In the minimization problem (6.22), r
(j)
1:nseq

, u
(j)
1:nseq

, x
(j)
1:nseq

, y
(j)
1:nseq

, and z
(j)
1:nseq

denote

the signals obtained when r
(j)
1:nseq

is drawn from pj , j ∈ {1, . . . , nv}. The objective of

the optimization problem (6.22) is to minimize the cost J by finding the normalized
weights {βj}nv

j=1 satisfying the probabilistic bounds in the input and output, and the
requirement on the accuracy of the parameter estimates. The first five equations
in the constraints of (6.22) are the equations given by the closed loop system,

which are defined for the external excitations {r(j)
1:nseq

}nv

j=1. The following equations
represent the probabilistic bounds for the input and the output, the constraint
on the accuracy of the parameter estimates, and the requirement that {βj}nv

j=1

are nonnegative, normalized weights. We notice that the probabilistic bounds,
and the requirement on the accuracy of the parameter estimates are expressed as
convex combination of the respective quantities achieved by the external excitations

{r(j)
1:nseq

}nv

j=1.

100 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

If we denote by {βopt
j }nv

j=1 the set of weighting factors minimizing (6.22), then
the optimal pdf is given by

popt :=

nv∑

j=1

βopt
j pj . (6.23)

Since the set {pj}nv

j=1 is known (each pj is a uniform distribution over the nodes in

the j-th prime cycle, cf. Theorem 2.1 in page 28), we can sample {r(j)
t }Nsim

t=1 from
each pj (with Nsim sufficiently large), and numerically approximate the expected
values E

et,r
(j)
t

{·}, the probabilities P
et,r

(j)
t

{·}, and the corresponding information

matrices I(j)
F . This approach is based on Chapters 3 and 4, where numerical sim-

ulations are employed to compute the information matrices associated with each

measure in the set {pj}nv

j=1. Indeed, given {r(j)
t }Nsim

t=1 and {et}Nsim
t=1 , we can generate

{y(j)
t }Nsim

t=1 and {u(j)
t }Nsim

t=1 using (6.16). Therefore, we can compute the expressions
in (6.22) for each j ∈ {1, . . . , nv} as

P
et,r

(j)
t

{|y(j)
t − yd| ≤ ymax} ≈ 1

Nsim

Nsim∑

t=1

1|y(j)
t

|≤ymax
,

P
et,r

(j)
t

{|u(j)
t | ≤ umax} ≈ 1

Nsim

Nsim∑

t=1

1|u(j)
t

|≤umax
,

E
et,r

(j)
t

{∥∥∥y(j)
t − yd

∥∥∥
2

Q
+
∥∥∥∆u

(j)
t

∥∥∥
2

R

}
≈ 1

Nsim

Nsim∑

t=1

{∥∥∥y(j)
t − yd

∥∥∥
2

Q
+
∥∥∥∆u

(j)
t

∥∥∥
2

R

}
,

where 1X = 1 if X is true, and 0 otherwise, and ∆u
(j)
t = u

(j)
t − u

(j)
t−1. The

computation of I(j)
F is analyzed in the next subsection.

The key property of the proposed approach is that the input-output constraints
and the restriction on the Fisher information matrix are convex in {βj}nv

j=1. There-
fore, the final optimization problem becomes convex in {βj}nv

j=1.

Computation of the Fisher information matrix

To integrate the experiment design constraint with the optimization problem (6.22),

we need to compute the Fisher information matrix I(j)
F for each {r(j)

t }nseq

t=1 associated
with the j-th extreme point of the set of stationary processes of memory nm and
alphabet C.

We recall that the Fisher information matrix is given by (cf. Equation (4.3a) in
Chapter 4)

IF := E

{
∂ log pθ(y1:nseq)

∂θ

∣∣∣∣
θ=θ0

∂ log pθ(y1:nseq)

∂θ⊤

∣∣∣∣
θ=θ0

}
∈ Rnθ×nθ , (6.24)

6.2. INPUT DESIGN FOR FEEDBACK SYSTEMS 101

or equivalently,

IF = −E

{
∂2 log pθ(y1:nseq)

∂θ∂θ⊤

∣∣∣∣
θ=θ0

}
∈ Rnθ×nθ . (6.25)

where y1:nseq = {yt}nseq

t=1 . In equations (6.24) and (6.25) the expected value is with
respect to {rt} and {et}.

Due to the randomness of et, (6.16) can be rewritten as

xt+1 ∼ fθ(xt+1|y1:t, xt, rt) ,

yt ∼ gθ(yt|xt) ,
(6.26)

where fθ(xt+1|y1:t, xt, rt) and gθ(yt|xt) denotes the pdf of the state xt+1, and output
yt, conditioned on the knowledge of {xt, rt} and y1:t.

Using the model description (6.26), and the Markov property of the system
(6.16), we can write the log-likelihood of the joint distribution of y1:nseq and x1:nseq

as (cf. Section 4.1)

log pθ(x1:nseq , y1:nseq) =

nseq−1∑

t=1

log{fθ(xt+1|y1:t, xt, rt)}

+

nseq∑

t=1

log{gθ(yt|xt)} + log{pθ(x1)} . (6.27)

To simplify the computations, we will assume that the distribution of the initial
state is independent of θ, i.e., pθ(x1) = p(x1).

Linear feedback

When Ky,t is a linear controller, expressions (6.24) and (6.25) can be computed

in the frequency domain [59, Section 9.4]. Since we know {r(j)
t } for each j ∈

{1, . . . , nv}, it is possible to compute its corresponding spectrum, say Φ
(j)
r (ω). To

this end, we notice that {r(j)
t } is a periodic sequence with period given by Tj . Using

[59, Example 2.3] we compute Φ
(j)
r (ω) as

Φ(j)
r (ω) =

2π

Tj

Tj−1∑

k=0

Φ(j),p
r (2πk/Tj)δ(ω − 2πk/Tj) , 0 ≤ ω < 2π , (6.28)

where

Φ(j), p
r (ω) :=

Tj−1∑

τ=0

R(j)
r (τ)eiωτ , (6.29)

R(j)
r (τ) :=

1

Tj

Tj∑

t=1

r
(j)
t

(
r

(j)
t−τ

)⊤
. (6.30)

102 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

Nonlinear feedback

When Ky is a nonlinear function, equations (6.24) and (6.25) often result in complex
(and almost intractable) expressions. Thus, we will approximate the Fisher infor-
mation matrix using numerical methods. One solution is to use particle methods
to approximate (6.24) as the covariance matrix of the gradient of the log-likelihood
function, ∇θ log pθ(y1:nseq) (score function) (cf. Chapter 4, Subsection 4.3 [86]).
In this case, the score function is estimated using the fixed-lag smoother, and the
Fisher information matrix is approximated as the sample covariance matrix over
the different realizations of ∇θ log pθ(y1:nseq). Another approach is based on the
numerical computation of (6.25) using small perturbation methods [82], where the
Hessian (6.25) is computed as an average of numerical approximations based on the
score function. The details of the small perturbation method are provided in the
next part.

Computing the information matrix using the small perturbation
method

Consider the Fisher information matrix given by (6.25). Our goal is to obtain
an estimate of (6.25) using the small perturbation method. We use the small
perturbation method since it is simple to implement, and that it can approximate
(6.25) even if the gradient of the function is not available. In this section we
described the technique in [82] to approximate (6.25).

The main idea in [82] is to compute the Hessian (6.25) based on synthetic data,
i.e., realizations of {yt}, and {ut} are obtained by simulation of the model (6.16)
for small perturbations of θ0, using realizations of {rt} and {et}. We will denote
the i-th synthetic data as ZNsim

(i) = {y(i), t, u(i), t, r(i), t, e(i), t}Nsim
t=1 , i ∈ {1, . . . , N}.

Before we continue, we define ∆(k, i) ∈ Rnθ as a zero mean random vector such
that its entries are independent, identically distributed, symmetrically distributed
random variables that are uniformly bounded and satisfy E{∆−1

(k, i), l} < ∞, with

∆(k, i), l denoting the l-th entry of ∆(k, i). We notice that the latter condition
excludes uniform and Gaussian distributions. Furthermore, we assume that ∆(k, i), l

are bounded in magnitude. A valid choice is the Bernoulli distribution, defined on
{−1, 1}, and with parameter η = 0.5.

On the other hand, for each realization ZNsim

(i) , we compute the k-th approxima-

tion of (6.25) (k ∈ {1, . . . , M}) as

Î(k, i)
F := −1

2

{
δG(k, i)

2c

(
∆−1

(k, i)

)⊤
+ ∆−1

(k, i)

δG⊤
(k, i)

2c

}
, (6.31)

where ,

δG(k, i) := ∇θ log pθ(y(i), 1:Nsim
)
∣∣
θ=θ0+c∆(k, i)

− ∇θ log pθ(y(i), 1:Nsim
)
∣∣
θ=θ0−c∆(k, i)

(6.32)

6.3. NUMERICAL EXAMPLE 103

∆−1
(k, i) denotes the entry-wise inverse vector of ∆(k, i), y(i), 1:Nsim

= {y(i), t}Nsim
t=1 , and

c > 0 is a predefined constant. In [81] is shown that, under suitable assumptions,
the bias of the Fisher information matrix estimate (6.31) is of order O(c2). The
main assumption in [81] is the smoothness of log pθ(y1:Nsim), which is reflected
in the assumption that ∇θ log pθ(y1:Nsim) is thrice continuously differentiable in a
neighbourhood of θ0. However, the main limitation of (6.31) is that it is a low rank

approximation of the Fisher information matrix (Î(k, i)
F has at most rank two), and

it may not even be positive semi-definite.
In [82] an improved estimate of the Fisher information matrix is provided as a

function of (6.31). To this end, we define D(k, i) ∈ Rnθ×nθ as

D(k, i) := ∆(k, i)

(
∆−1

(k, i)

)⊤
− I , (6.33)

and the function Ψ(k, i) : Rnθ×nθ → Rnθ×nθ as

Ψ(k, i)(H) :=
1

2
HD(k, i) +

1

2
D⊤

(k, i)H . (6.34)

Based on (6.33) and (6.34), we can write the new Fisher information matrix estimate
in recursive form (in i) as

I(M, i)

F =
i− 1

i
I(M, i−1)

F +
1

iM

M∑

k=1

[
Î(k, i)
F + Ψ(k, i)

(
I(M, i−1)

F

)]
, (6.35)

where I(M, 0)

F = 0. In [82] is shown that the estimate (6.35) tends to IF + O(c2)
as N → ∞ (for a fixed M) in mean square sense. The advantage of using the
estimator (6.35) over (6.31) is that (6.35) guarantees that the estimate will be a
full rank and positive-definite matrix.

6.3 Numerical example

To illustrate the previous discussion, we introduce the following example:

Example 6.1 Consider the open-loop, SISO state space system described by

xt+1 = θ0
2 xt + ut , (6.36a)

yt = θ0
1 xt + et , (6.36b)

with true parameters θ0 =
[
θ0

1 θ0
2

]⊤
=
[
0.6 0.9

]⊤
. The system is controlled in

closed-loop using the controller

ut = rt − ky yt , (6.37)

104 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

0 20 40 60 80 100
−0.5

0

0.5

r
t

0 20 40 60 80 100
−0.5

0

0.5

r
t

0 20 40 60 80 100
−0.5

0

0.5

t

r
t

Figure 6.2: Part of the reference signal {rt}500
t=1. Top: Optimal reference signal.

Middle: Optimal reference signal without probabilistic constraints. Bottom: Ran-
dom binary signal.

where ky = 0.5 is a known constant. The objective is to identify the open-loop

parameters θ =
[
θ1 θ2

]⊤
from the identified closed-loop ones θc =

[
θc1 θc2

]⊤
in

the model

xt+1 = θc2 xt + rt − ky et , (6.38a)

yt = θc1 xt + et , (6.38b)

using the transformation law

θ1 = θc1 , (6.39a)

θ2 = θc1 + ky θ
c
1 . (6.39b)

To this end, we will design the reference signal {rt}500
t=1 as a realization of a station-

ary process with memory nm = 2, and subject to rt ∈ C = {−0.5, −0.25, 0, 0.25, 0.5},
for all t ∈ {1, . . . , 500}. Since the experiment will be performed in closed-loop, we

6.3. NUMERICAL EXAMPLE 105

0 20 40 60 80 100

−1

1

u
t

0 20 40 60 80 100

−1

1

u
t

0 20 40 60 80 100

−1

1

t

u
t

Figure 6.3: Part of the input signal {ut}500
t=1. Top: Input signal for the optimal

reference. Middle: Input signal for the optimal reference without probabilistic
constraints. Bottom: Input signal for a random binary reference.

define the following cost function to measure performance degradation:

Vapp(θ) =
1

500

500∑

t=1

‖yt(θ0) − yt(θ)‖2
2 , (6.40)

where yt(θ) denotes the closed-loop output when θ is employed to describe the open
loop model and a linear output feedback controller with constant gain ky has been
used. The cost function (6.40) is used to build the application set as in (6.9).
Finally, we will solve the approximate problem (6.22), where yd = 0, for all t ∈
{1, . . . , 500}, Q = 1, R = 0.02, εy = εx = 0.07, ymax = 2, umax = 1, γ = 102, and
α = 0.98.

Figure 6.2 presents one realization of {rt}500
t=1 obtained by solving (6.22), one

realization of {rt}500
t=1 obtained by solving (6.22) without probabilistic constraints,

and from a random binary sequence with values {−0.5, 0.5}. From this figure we
see that the optimal sequence is zero most of the time, except for short pulses.
This can be explained from the tight probabilistic bounds imposed for {ut}, which

106 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

0 20 40 60 80 100

−2

0

2

y
t

0 20 40 60 80 100

−2

0

2

y
t

0 20 40 60 80 100

−2

0

2

t

y
t

Figure 6.4: Part of the output {yt}500
t=1. Top: Output signal for the optimal refer-

ence. Middle: Output signal for the optimal reference without probabilistic con-
straints. Bottom: Output signal for a random binary reference.

restricts the excitation provided by {rt}. If we compare the previous signal with the
one obtained by solving (6.22) without probabilistic bounds, we see that the reference
signal contains more oscillations when the probabilistic bounds are removed.

Figures 6.3 and 6.4 present one realization for the resulting input {ut}500
t=1 and

output {yt}500
t=1, respectively. From those realizations, we conclude that, for the

optimal reference, the input and output are inside the limiting regions 93.8%, and
96% of the time, respectively, which satisfies the design requirements. On the other
hand, for the reference signal obtained by solving (6.22) without probabilistic bounds,
we have that the input and output satisfies the constraints 86.6% and 93.4% of the
time, respectively. Therefore, in this example we need to incorporate the probabilistic
bounds to guarantee that both the input and output of the system are inside the
desired region with the prescribed confidence level. With the previous modification,
we restrict the set of optimal feasible solutions for the problem of minimum variance
to the subset of optimal solutions satisfying the probabilistic bounds. Finally, for the
random binary reference, we have that the input and output are inside the confidence

6.3. NUMERICAL EXAMPLE 107

0.4 0.6 0.8

0.7

0.8

0.9

1

1.1

θ1

θ
2

0.4 0.6 0.8

0.7

0.8

0.9

1

1.1

θ1

θ
2

Figure 6.5: Application ellipsoid (green, dot-dashed line) with the respective iden-
tification ellipsoids. Blue, continuous line: Identification ellipsoid for the random
binary reference (realizations marked with ∗). Red, continuous line: Identification
ellipsoid for the optimal reference with probabilistic bounds (realizations marked
with circles). Black, dashed line: Identification ellipsoid for the optimal reference
without probabilistic bounds (realizations marked with triangles).

region 90.8%, and 79.6% of the time, which does not satisfy the confidence bounds
for the system.

To analyze the identification performance, Figure 6.5 presents the application
ellipsoid for the parameter θ, together with the resulting identification ellipsoids
and 50 identified parameters obtained with the optimal reference with probabilis-
tic bounds, the optimal reference without probabilistic bounds, and for the random
binary reference. From this figure we conclude that the 98% confidence level set
for the identified parameters lies completely inside the application ellipsoid for all
the reference signals. As expected, the confidence level set for the random binary
reference is smaller than the ones obtained with the proposed technique, since the
variance of this signal is greater than the one obtained with the optimal references.
Hence, the random binary reference excites the system more than required, which
makes the cost function in optimization problem (6.21) greater than the cost ob-
tained with the proposed method. Indeed, the cost functions are Jopt = 541.6 for
the optimal experiment with probabilistic bounds, and Jbinary = 695.8 for a random
binary reference, which is in line with the size of the uncertainty ellipsoids in Fig-
ure 6.5. On the other hand, we see that the confidence ellipsoids for the estimated
parameters are almost the same when a reference signal is designed by including or
excluding the probabilistic bounds on the input and output.

108 CHAPTER 6. CLOSED-LOOP INPUT DESIGN

6.4 Conclusion

In this chapter a method to design input sequences for closed-loop experiments
has been proposed. The method considers the input sequence as a realization of a
stationary process minimizing the experimental cost, and subject to performance
constraints. Using the graph-theoretical approach presented in Chapters 2-4, we
can express both experimental cost and constraints as a convex combination of
the values associated with the extreme measures in the set of stationary processes
with finite alphabet and memory, which are computed using numerical methods.
An interesting feature of this approach is that probabilistic constraints become
convex in the decision variables. The numerical example shows that this approach
is an attractive method for the design of input sequences to identify models in a
closed-loop setting.

Chapter 7

Conclusions

In this thesis we have introduced a new approach to input design for system identifi-
cation. The results presented in this thesis can be seen as an extension of the results
in [54] and [6, 7]. The main difference with [6, 7] is that we optimize over the sta-
tionary probability mass function (pmf) associated with the Markov chain, instead
of directly optimizing over the transition probabilities, which results in a convex
problem. On the other hand, this thesis covers the optimal input design problem
for identification of nonlinear output error and nonlinear state space models, which
extends the nonlinear FIR model structure considered in [54].

The proposed technique considers the optimization of an input sequence as a
realization of a stationary process with finite memory and finite alphabet, which
maximizes a scalar cost function of the Fisher information matrix. By using notions
of graph theory, it is possible to characterize the set of stationary probability mass
functions (pmfs) through its extreme points. It has been proved that the extreme
points of the set of stationary processes are in one to one correspondence with the
prime cycles in the equivalent de Bruijn graph.

Once the prime cycles are computed, the probability measures associated with
the extreme points of the set of stationary processes are known. Furthermore,
an input sequence can be drawn from each prime cycle, which can be employed
to compute a numerical approximation of the Fisher information matrix for each
extreme point in the set. Therefore, the Fisher information matrix can be computed
with a prescribed accuracy even if closed form expressions are not available, which
makes the proposed input design method suitable for nonlinear model structures.
The Fisher information matrices computed for the extreme points are then used to
solve the input design problem by finding the optimal convex combination of the
given matrices. Thus, the input design problem becomes convex even for nonlinear
model structures.

The solution of the input design problem delivers the optimal stationary pmf
associated with the optimal cost function, from which an input sequence must be
sampled. The problem of obtaining a sample from a prescribed stationary pmf

109

110 CHAPTER 7. CONCLUSIONS

can be solved by using Markov chains, where the input samples are obtained as
the states of the chain. Provided that the Markov chain is ergodic, the input
samples will tend to be distributed according to the stationary distribution of the
Markov chain. The existing results on the design of Markov chains with a prescribed
stationary distribution lie on the properties of the associated graph and/or the
stationary pmf (e.g., undirected graphs, or reversible Markov chains), which are
not applicable to the present work. Therefore, this thesis also introduces a method
for designing Markov chains for de Bruijn graphs with a prescribed stationary pmf.

As a first approach to input design, we analyze the proposed method for the
case of nonlinear output-error model structures. For this case, it is shown that
the computation of the Fisher information matrix can be carried out by numeri-
cal approximation, where the accuracy of the approximation is controlled directly
through the number of samples taken from the associated prime cycle. The nu-
merical examples show that the method retrieves existing results on input design
for nonlinear FIR model structures, and that it can also be employed for designing
input sequences for identification of more general nonlinear output-error models,
which are not covered by previous results in the area.

The major difficulty associated with extending the input design method on
Chapter 3 to more general nonlinear models is the approximation of the Fisher
information matrices. As a solution to this issue, Chapter 4 introduced an extension
of the input design method to nonlinear state space models. The extension relies
on particle methods, where an approximation of the observed information matrix
is computed as the sample covariance matrix of the score function. In this case,
the accuracy of the approximation is a trade-off between the number of particles
(which increases the accuracy for a fixed data length) and the data length (which
decreases the accuracy for a fixed number of particles). In order to deal with the
uncertainty associated with the approximation method, we consider the solution to
the optimization problem as the sample mean of the different solutions obtained
for different approximations of the Fisher information matrix.

As applications of the proposed method, this thesis discusses two different prob-
lems. The first problem concerns the design of input sequence for model estima-
tion in channels with quantized output. Since a numerical approximation for the
Fisher information matrix associated with the model is available, the problem can
be solved by using the presented method. A simulation example shows that the
method can be employed to obtain more informative experiments compared to the
results obtained by using a realization from a white noise process.

The second application of the method is found on application oriented closed-
loop input design. In this case the objective is the design of an external input
sequence to improve the parameters employed for the model of a plant operating
in closed-loop, while guaranteeing limits on the performance degradation during
the experiment (e.g., probabilistic constraints on the input and output, and confi-
dence ellipsoids for the identified parameters). By using the proposed input design
method, the problem can be solved by using convex optimization tools, where both
the constraints and the cost function are optimized as a convex combination of the

111

extreme points characterizing the set of stationary pmfs.
The discussion in this thesis shows that the proposed input design method is

an attractive alternative to design input sequences for identification of nonlinear
model structures, where the method guarantees a convex optimization problem,
which allows to employ powerful tools for solving the optimal input design problem.

Future work

This thesis can be seen as a first approach to input design for identification of
nonlinear models. However, there is plenty of space to improve the results in this
area. Some ideas for future work in the subject are:

Reduction of computational effort The main limitation of the input design
method introduced in this thesis is the computational effort needed to obtain
the solution. As discussed in Chapter 2, the computational effort is mostly
related with the prime cycles. An approach to overcome this issue is an open
question and topic of future research.

Irreducibility of the designed Markov chains The generation of an input re-
alization from a given stationary pmf relies on the fact that the resulting
Markov chain is irreducible, i.e., there is only one class of states in the chain.
The results presented in this thesis do not guarantee that the optimal pmf will
be associated with an irreducible Markov chain, which is important since an
input realization distributed according to the desired pmf is needed in order
to perform the experiment. A possibility to overcome this issue is to force
in the optimization problem the requirement of irreducibility of the Markov
chain. Another option for this issue is to reduce the memory of the Markov
chain until an irreducible chain is obtained. These options will be analyzed
in future research.

Stationary pdfs with continuous support The thesis has focused on the de-
sign of input sequences with finite alphabet. An approach to input design
when the alphabet lies on a continuous support is an open problem and pos-
sible research topic.

Robust optimal input design As with most optimal input design methods, the
one presented in this thesis considers the existence of prior knowledge about
the model parameters. An alternative to overcome this issue is to implement
a robust design scheme on top of it, or through an adaptive input design
procedure, where the signal is redesigned as more information is collected
from the system.

Application oriented closed-loop experiment design The results obtained in
Chapter 6 consider a linear model structure for the plant, under a known non-
linear feedback. An extension of the method to include implicit feedback laws
(e.g., as in model predictive control) is a future research direction in the topic.

Appendices

113

Appendix A

Algorithms for computation of

elementary cycles

In this appendix we present the algorithms implemented in the input design meth-
ods of Chapters 2-4.

A.1 Preliminaries

Before introducing the algorithms required in Chapters 2-4, we need the following
definitions [84]:

Definition A.1 (Undirected graph) Let G = (V , E) be a graph. Then G is called
an undirected graph if and only if

E = {{v, w}| v, w ∈ V} , (A.1)

where {v, w} is an unordered pair of vertices.

Definition A.2 (Tail and head of an edge) Let G = (V , E) be a directed graph.
Given an edge (v, w) ∈ E, v is defined as the tail of the edge (v, w), and w is
defined as the head of the edge (v, w).

Definition A.3 (Undirected version of a directed graph) Let G = (V , E) be a di-
rected graph. The undirected version of a directed graph G is defined as the graph
formed by converting each edge in E into an undirected edge, and removing duplicate
edges.

Definition A.4 (Connected undirected graph) Let G = (V , E) be a undirected graph.
Then G is said to be connected if there is a path between every pair of vertices.

Definition A.5 (Tree) A tree T is a directed graph whose undirected version is
connected. In addition, a tree T has one vertex which is the head of no edges (called

115

116 APPENDIX A. ALGORITHMS FOR ELEMENTARY CYCLES

the root), and such that all vertices except the root are head of exactly one edge. If
(v, w) is an edge of T , then v is an ancestor of w, and w is a descendant of v.

Definition A.6 (Subtree) Let T be a tree, and v a node in T . Then Tv is the
subtree of T with respect to v if and only if Tv has as vertices all the descendants
of v in T .

Definition A.7 (Spanning tree) Let G = (V , E) be a directed graph. A tree T is a
spanning tree of G if T is a subgraph of G, and T contains all the vertices of G.

Definition A.8 (Palm tree) Let G be a directed graph, consisting of two disjoint
sets of edges, denoted by E1 and E2, respectively. Suppose G satisfies the following
properties:

(i) The subgraph T containing the edges E1 is a spanning tree of G.

(ii) Each edge which is not in the spanning tree T of P connects a vertex with
one of its ancestors in T .

Then G is called a palm tree. The edges E2 are called the fronds of G.

Definition A.9 (Cross-link) Let T be a tree, and assume there are subtrees Tv,
Tw in T . Then, the edge (tv, tw) is called a cross-link if and only if tv is in Tv and
tw is in Tw.

A.2 Strong connected components of a graph

A term required in the discussion of the algorithms in this thesis is the concept of
strongly connected graphs, whose definition is given below [84, Definition 4]:

Definition A.10 (Strongly connected graph) Let G = (V , E) be a directed graph.
Suppose that for each pair of vertices v, w ∈ G, there exist paths p1 = (v, . . . , w)
and p2 = (w, . . . , v). Then G is said to be strongly connected.

Based on Definition A.10, we have the following result [84, Lemma 9]:

Lemma A.1 (Strongly connected components) Let G = (V , E) be a directed graph.
We may define an equivalence relation on the set of vertices as follows: two vertices
v and w are equivalent if there is a cycle p = (v, . . . , v) which contains w. Let the
distinct equivalence classes under this relation be Vi, i ∈ {1, . . . , n}. Let G =
(Vi, Ei), where Ei := {(u, w) ∈ E : v, w ∈ Vi}. Then:

(i) Each Gi is strongly connected.

(ii) No Gi is a proper subgraph of a strongly connected subgraph of G.

Then the subgraphs {Gi}ni=1 are called the strongly connected components of G.

A.3. ELEMENTARY CYCLES OF A GRAPH 117

It is shown in [84] that the problem of finding the strongly connected components
of a graph G can be reduced to the problem of finding the roots of the strongly
connected components. In this appendix we define LOWLINK(v) as the smallest
vertex (according to a user defined indexing for the vertices in G) which is in the
same component as v and is reachable by traversing zero or more tree arcs followed
by at most one frond or cross-link. We refer to [84, p. 156] for more details about
the definition of this function.

Algorithm A.1 in page 118 presents a pseudo-code for computing the set of
strongly connected components in a given graph G [84, p. 157]. It is shown in [84]
that Algorithm A.1 requires O(V , E) space and time, where

O(V , E) ≤ k1 #V + k2 #E + k3 , (A.2)

for some positive constants k1, k2, and k3.
The pseudo-code for determining the set of strongly connected components in

a graph G will be employed in the computation of elementary cycles in G, which is
discussed in the next section.

A.3 Elementary cycles of a graph

As it is mentioned in Chapter 2, the computation of prime cycles in a graph GCnm

can be performed by finding all the elementary cycles in GCnm−1 . In this section
we provide an algorithm to find the set of elementary cycles in a directed graph G.
The algorithm is based on the one introduced in [46, pp. 79–80]. The pseudo-code
associated with this algorithm is presented in Algorithm A.2-A.3.

We describe Algorithm A.2-A.3 based on the discussion provided in [46, p.
79]. The algorithm proceeds by building elementary paths from s. The vertices
of the current elementary path are kept on a stack. A vertex is appended to an
elementary path by a call to the procedure CIRCUIT and is deleted upon return
from this call. When a vertex v is appended to a path it is blocked by setting
BLOCKED(v) = true, so that v cannot be used twice on the same path. However,
when we return from the call which blocks v, v is not necessarily unblocked. The
idea is that we unblock a node with a sufficient delay such that any two unblockings
of v are separated by either an output of a new circuit or a return to the main
procedure.

118 APPENDIX A. ALGORITHMS FOR ELEMENTARY CYCLES

Algorithm A.1 Computation of strongly connected components in a graph

Inputs: A directed graph G = (V, E).
Output: The set of strongly connected components in G.

1: Begin

2: Integer i;
3: Procedure STRONGCONNECT(v);
4: Begin

5: i := i + 1;
6: NUMBER(v) := i;
7: LOWLINK(v) := NUMBER(v);
8: put v on stack of points;
9: For w in the set of descendants Dv do

10: Begin

11: If w is not yet numbered then

12: Begin comment (v, w) is a tree arc;
13: STRONGCONNECT(w);
14: LOWLINK(v) := min{LOWLINK(v), NUMBER(w)};
15: end

16: Else If NUMBER(w) < NUMBER(v) do

17: Begin comment (v, w) is a frond or cross-link;
18: If w is on stack of points then

19: Begin

20: LOWLINK(v) := min{LOWLINK(v), NUMBER(w)};
21: end

22: end

23: end

24: If LOWLINK(v) = NUMBER(v) then

25: Begin comment v is the root of a component;
26: start new strongly connected component;
27: While w on top of point stack satisfies NUMBER(w) ≥ NUMBER(v) do

28: Begin

29: delete w from point stack and put w in current component;
30: end

31: end

32: end

33: i := 0;
34: empty stack of points;
35: For w a vertex do

36: Begin

37: If w is not yet numbered then

38: Begin

39: STRONGCONNECT(w);
40: end

41: end

42: end

A.3. ELEMENTARY CYCLES OF A GRAPH 119

Algorithm A.2 Computation of elementary cycles in a graph (Part I)

Inputs: A directed graph G = (V, E).
Output: The set of elementary cycles in G.

1: Begin

2: Integer list array AK(n), B(n);
3: Logical array BLOCKED(N);
4: Integer s;
5: Logical Procedure CIRCUIT(v);
6: Begin Logical f ;
7: Procedure UNBLOCK(u);
8: Begin

9: BLOCKED(u) := false;
10: For w ∈ B(u) do

11: Begin

12: delete w from B(u);
13: If BLOCKED(w) then

14: Begin

15: UNBLOCK(w);
16: end

17: end

18: end

19: f := false;
20: stack v;
21: BLOCKED(v) := true;
22: For w ∈ AK(v) do

23: Begin

24: If w = s then

25: Begin

26: output circuit composed of stack followed by s;
27: f := true;
28: end

29: Else If BLOCKED(w) = false then

30: Begin

31: If CIRCUIT(w) = true then

32: Begin

33: f := true;
34: end

35: end

36: end

37: If f = true then

38: Begin

39: UNBLOCK(v);
40: end

41: Else For w ∈ AK(v) do

42: Begin

43: If v /∈ B(w) then

44: Begin

45: put v on B(w);
46: end

47: end

48: unstack v;
49: CIRCUIT := f ;
50: end

120 APPENDIX A. ALGORITHMS FOR ELEMENTARY CYCLES

Algorithm A.3 Computation of elementary cycles in a graph (Part II)

Inputs: A directed graph G = (V, E).
Output: The set of elementary cycles in G.

51: empty stack;
52: s := 1;
53: while s < n do

54: Begin

55: AK := adjacency matrix of strong component K with least vertex in subgraph
56: of G induced by {s, s + 1, . . . , n};
57: If AK 6= ∅ then

58: Begin

59: s := least vertex in VK ;
60: For i ∈ VK do

61: Begin

62: BLOCKED(i) := false;
63: B(i) := ∅;
64: end

65: dummy := CIRCUIT(s);
66: s := s + 1;
67: end

68: Else

69: Begin

70: s := n;
71: end

72: end

73: end

Appendix B

Convergence of the approximation

of IF

In this appendix we prove that the approximation (3.17) in page 42 converges to

I(i)
F as Nsim → ∞:

Theorem B.1 If {ut} has period T satisfying |ut| ≤ K for some K ≥ 0, and
ψθ0
t (ut)ψ

θ0
t (ut)

⊤ is exponentially stable, then

lim
Nsim→∞

1

Nsim

Nsim∑

t=1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤

=
1

T

T∑

t=1

ψθ0
t (ut)ψ

θ0
t (ut)

⊤

=

∫
ψθ0
t (ut,−∞)ψθ0

t (ut,−∞)⊤ dP (ut,−∞) ,

(B.1)

where {ũt} is equal to {ut} for t > 0 but ũt = 0 for t ≤ 0, ũt,−∞ := {ũk}tk=−∞,
ut,−∞ := {uk}tk=−∞, and P is the probability measure of a Markov chain generating
{ut} (a uniform probability distribution on the set of possible values of u1:T).

Proof Given ε > 0, take S as a multiple of T such that CδSψ < ε. Then, for every
t > S, ∣∣∣ψθ0

t (ũt)ψ
θ0
t (ũt)

⊤ − ψθ0
t (ũt−St)ψθ0

t (ũt−St)⊤
∣∣∣ < CδSψ < ε . (B.2)

On the other hand, since {ut} is periodic of period T , ut−St,−∞ takes only a finite
number of values for t > S (at most S), we have that for Nsim = mS + n (with m,
n positive integers |n| ≤ S):

1

Nsim

Nsim∑

t=1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤ =
mS

Nsim

1

mS

[
mS∑

t=1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤

121

122 APPENDIX B. CONVERGENCE OF THE APPROXIMATION OF IF

+

Nsim∑

t=mS+1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤
]

=
mS

Nsim

1

mS

mS∑

t=1

[
ψθ0
t (ũt−St)ψθ0

t (ũt−St)⊤ + ηt

]
+

1

Nsim

Nsim∑

t=mS+1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤

=
mS

Nsim

1

T

T∑

t=1

ψθ0
t (ut−St)ψθ0

t (ut−St)⊤ +
1

Nsim

mS∑

t=1

[µt + ηt]

+
1

Nsim

Nsim∑

t=mS+1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤ , (B.3)

where µt, ηt ∈ [−ε, ε]. Thus, the second term in (B.3) is bounded by 2ε. Moreover,
the third term in (B.3) tends to 0 as Nsim → ∞ (since it consists of a sum of a
most S terms). Therefore,

∣∣∣∣∣ lim
Nsim→∞

1

Nsim

Nsim∑

t=1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤ − 1

T

T∑

t=1

ψθ0
t (ut−St)ψθ0

t (ut−St)⊤

∣∣∣∣∣ ≤ 2ε , (B.4)

and since ε was arbitrary, we conclude that

lim
Nsim→∞

1

Nsim

Nsim∑

t=1

ψθ0
t (ũt)ψ

θ0
t (ũt)

⊤ =
1

T

T∑

t=1

ψθ0
t (ut−St)ψθ0

t (ut−St)⊤ . (B.5)

The last equality in (B.1) follows since P assigns equal probability to T different
sequences (corresponding to the possible sequences obtained by shifting {ut}). �

Appendix C

The expectation-maximization

algorithm

In this appendix we present the expectation-maximization algorithm, and useful
identities for the methods discussed in Chapter 4. The material in this appendix is
based on [8, 76, 77].

C.1 The expectation-maximization algorithm

The expectation-maximization (EM) algorithm [20, 66] is an iterative procedure
that at the k-th step seeks a value θk such that the likelihood is increased in the
sense that log pθk

(y1:T) > log pθk−1
(y1:T).

The main idea of the EM algorithm is the postulation of a missing data set
x1:T . In this thesis, the missing data x1:T will be understood as the state se-
quence in the model structure (1.3) in page 3, but other choices are possible, and
it can be considered as a design variable. Thus, we consider the joint log-likelihood
function log pθ(x1:T , y1:T) with respect to both the observed data y1:T and the
missing data x1:T . This approach assumes that maximizing the joint log-likelihood
log pθ(x1:T , y1:T) is easier than maximizing the marginal one log pθ(y1:T).

The EM algorithm then copes with x1:T being unavailable by forming an ap-
proximation Q(θ, θk) of log pθ(x1:T , y1:T). The approximation used is the minimum
variance estimate of log pθ(x1:T , y1:T) given the observed data y1:T , and an assump-
tion θk of the true parameter value. This minimum variance estimate is given by
the conditional expectation [2]:

Q(θ, θk) := E { log pθ(x1:T , y1:T)| y1:T }

=

∫

X1:T

log pθ(x1:T , y1:T)pθk
(x1:T |y1:T) dx1:T . (C.1)

The utility of this approach depends on the relationship between log pθ(y1:T), and
the approximation Q(θ, θk) of log pθ(x1:T , y1:T). This can be examined by using

123

124 APPENDIX C. THE EM ALGORITHM

the definition of conditional probability to write

log pθ(x1:T , y1:T) = log pθ(x1:T |y1:T) + log pθ(y1:T) . (C.2)

Taking the conditional expectation E{·|y1:T} on both sides of equation (C.2) we
obtain

Q(θ, θk) = log pθ(y1:T) +

∫

X1:T

log pθ(x1:T |y1:T)pθk
(x1:T |y1:T) dx1:T . (C.3)

Therefore,

log pθ(y1:T) − log pθk
(y1:T) = Q(θ, θk) − Q(θk, θk)

+

∫

X1:T

log
pθk

(x1:T |y1:T)

pθ(x1:T |y1:T)
pθk

(x1:T |y1:T) dx1:T . (C.4)

The integral in the right hand side of the equality in (C.4) is known as the Kullback-
Leibler divergence metric, which is non-negative. Indeed, for x > 0 we have
− log x ≥ 1 − x, which implies

−
∫

X1:T

log
pθ(x1:T |y1:T)

pθk
(x1:T |y1:T)

pθk
(x1:T |y1:T) dx1:T

≥
∫

X1:T

(
1 − pθ(x1:T |y1:T)

pθk
(x1:T |y1:T)

)
pθk

(x1:T |y1:T) dx1:T = 0 , (C.5)

where the equality to zero is due to the fact that pθ(x1:T |y1:T) is of unit area for
any value of θ. As a consequence of (C.5) we have that

log pθ(y1:T) − log pθk
(y1:T) ≥ Q(θ, θk) − Q(θk, θk) . (C.6)

Equation (C.6) is the key of the EM algorithm. Namely, choosing θ so that
Q(θ, θk) > Q(θk, θk) implies that the log-likelihood is also increased in that

log pθ(y1:T) > log pθk
(y1:T).

The EM algorithm exploits this to deliver a sequence of values {θk} designed to
be increasingly good approximations of the maximum likelihood estimate (1.5) in
page 5. Algorithm C.1 summarizes the steps in the EM method.

Remark C.1 For reference in the next sections, we define

H(θ, θ′) := −
∫

X1:T

log pθ(x1:T |y1:T)pθ′(x1:T |y1:T) dx1:T . (C.8)

C.2. EM ALGORITHM: USEFUL IDENTITIES 125

Algorithm C.1 EM algorithm

Inputs: y1:T (observations), and log pθ(x1:T , y1:T) (joint log-likelihood function).
Output: θ̂T (parameter estimate).

1: Set k = 0 and initialize θk such that log pθ(y1:T) is finite.
2: (Expectation (E) step): Compute Q(θ, θk).
3: (Maximization (M) step): Compute

θk+1 = arg max
θ∈Θ

Q(θ, θk) . (C.7)

4: If not converged, update k = k + 1 and return to line 2. Otherwise, set θ̂T = θk+1,
and stop the algorithm.

C.2 EM algorithm: useful identities

In this section we introduce useful results that can be derived from the intermedi-
ate expressions for the EM algorithm. In particular, we present the Fisher’s and
Louis’ identities, which are employed to estimate the Fisher information matrix in
Chapter 4. To this end, we need the following assumption [8]:

Assumption C.1 Assume that the following conditions hold:

(i) The parameter Θ is an open subset of Rnθ (for some integer nθ).

(ii) For any θ ∈ Θ, pθ(y1:T) is positive and finite.

(iii) For any (θ, θ′) ∈ Θ × Θ,

∫

X1:T

|log pθ(x1:T |y1:T)| pθ′(x1:T |y1:T) dx1:T ,

is finite.

(iv) pθ(y1:T) is twice continuously differentiable on Θ.

(v) For any θ′ ∈ Θ, θ → H(θ, θ′) is twice continuously differentiable on Θ. In
addition, ∫

X1:T

∣∣∇k
θ log pθ(x1:T |y1:T)

∣∣ pθ′(x1:T |y1:T) dx1:T ,

is finite for k = 1, 2 and any (θ, θ′) ∈ Θ × Θ, and

∇k
θ

∫

X1:T

log pθ(x1:T |y1:T)pθ′(x1:T |y1:T) dx1:T

=

∫

X1:T

∇k
θ log pθ(x1:T |y1:T)pθ′(x1:T |y1:T) dx1:T .

126 APPENDIX C. THE EM ALGORITHM

Fisher’s identity

A result derived from the EM algorithm is known as the Fisher’s identity [8, 25]:

Theorem C.1 Consider that Assumption C.1 holds. then:

∇θ log pθ(y1:T)|θ=θ′ =

∫

X1:T

∇θ log pθ(x1:T , y1:T)|θ=θ′ pθ′(x1:T |y1:T) dx1:T , (C.9)

and

− ∇2
θ log pθ(y1:T)

∣∣
θ=θ′ =

−
∫

X1:T

∇2
θ log pθ(x1:T , y1:T)

∣∣
θ=θ′ pθ′(x1:T |y1:T) dx1:T

+

∫

X1:T

∇2
θ log pθ(x1:T |y1:T)

∣∣
θ=θ′ pθ′(x1:T |y1:T) dx1:T . (C.10)

Proof Expression (C.9) is (C.1) differentiated once under the integral sign (using
(C.3)), and expression (C.10) is (C.3) differentiated twice under the integral sign.

�

Remark C.2 Expression (C.9) is known as Fisher’s identity, and equation (C.10)
is normally referred to as the missing information principle [62].

Louis’ identity

The second result useful in this thesis is known as Louis’ identity [8, 62]:

Theorem C.2 (Louis’ identity) Consider that Assumption C.1 holds. Then:

∇2
θ log pθ(y1:T)

∣∣
θ=θ′ + {∇θ log pθ(y1:T)|θ=θ′} {∇θ log pθ(y1:T)|θ=θ′}⊤

=
∫

X1:T

[
∇2
θ log pθ(x1:T , y1:T)

∣∣
θ=θ′

+ {∇θ log pθ(x1:T , y1:T)|θ=θ′} {∇θ log pθ(x1:T , y1:T)|θ=θ′}⊤
]
pθ′(x1:T |y1:T) dx1:T .

(C.11)

Proof To prove (C.11), we start from (C.10) and note that the second term on
the right-hand side of the equality is the negative of an information matrix for the
parameter θ associated with the probability density function pθ(·|y1:T) evaluated at
θ = θ′. Therefore, we can use the information matrix identity

∫

X1:T

∇2
θ log pθ(x1:T |y1:T)

∣∣
θ=θ′ pθ′(x1:T |y1:T) dx1:T =

C.2. EM ALGORITHM: USEFUL IDENTITIES 127

−
∫

X1:T

{∇θ log pθ(x1:T |y1:T)|θ=θ′}

{∇θ log pθ(x1:T |y1:T)|θ=θ′}⊤
pθ′(x1:T |y1:T) dx1:T . (C.12)

This is a consequence of Assumption C.1, point (v), and the fact that pθ(·|y1:T) is
a probability density function for all values of θ, implying that

∫

X1:T

∇θ log pθ(x1:T |y1:T)|θ=θ′ pθ′(x1:T |y1:T) dx1:T = 0 . (C.13)

Using the identity (C.2), and (C.9) we conclude that

∫

X1:T

{∇θ log pθ(x1:T |y1:T)|θ=θ′}

{∇θ log pθ(x1:T |y1:T)|θ=θ′}⊤
pθ′(x1:T |y1:T) dx1:T =

∫

X1:T

{∇θ log pθ(x1:T , y1:T)|θ=θ′}

{∇θ log pθ(x1:T , y1:T)|θ=θ′}⊤
pθ′(x1:T |y1:T) dx1:T

+ {∇θ log pθ(y1:T)|θ=θ′} {∇θ log pθ(y1:T)|θ=θ′}⊤ , (C.14)

which completes the proof. �

Bibliography

[1] J.C. Agüero, W. Tang, J.I. Yuz, R. Delgado, and G.C. Goodwin. Dual time-
frequency domain system identification. Automatica, 48(12):3031–3041, 2012.

[2] B.D.O. Anderson and J.B. Moore. Optimal filtering. Prentice Hall, Englewood
Cliffs, N.J., 1979.

[3] X. Bombois, G. Scorletti, M. Gevers, P.M.J. Van den Hof, and R. Hildebrand.
Least costly identification experiment for control. Automatica, 42(10):1651–
1662, October 2006.

[4] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph.
SIAM Review, 46(4):667–689, October 2004.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[6] C. Brighenti. On input design for system identification: input design using
Markov chains, M.Sc. Thesis, KTH Royal Institute of Technology, Stockholm,
Sweden, 2009.

[7] C. Brighenti, B. Wahlberg, and C.R. Rojas. Input design using Markov chains
for system identification. In Joint 48th Conference on Decision and Control
and 28th Chinese Conference, pages 1557–1562, Shangai, P.R. China, 2009.

[8] O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models.
Springer, 2005.

[9] G. Casella and R.L. Berger. Statistical inference. Duxbury Pacific Grove,
CA, 2002.

[10] M. Casini, A. Garulli, and A. Vicino. Input design for worst-case system iden-
tification with uniformly quantized measurements. In 15th IFAC Symposium
on System Identification (SYSID), Saint-Malo, France, 2009.

[11] M. Casini, A. Garulli, and A. Vicino. Input design in worst-case system
identification using binary sensors. IEEE Transactions on Automatic Control,
56(5):1186–1191, 2011.

129

130 BIBLIOGRAPHY

[12] M. Casini, A. Garulli, and A. Vicino. Input design in worst-case system
identification with quantized measurements. Automatica, 48(5):2297–3007,
2012.

[13] B. Chen and P.K. Willett. Channel optimized binary quantizers for dis-
tributed sensor networks. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), volume 3, pages
(iii) 845–848. IEEE, 2004.

[14] D.R. Cox. Planning of experiments. New York: Wiley, 1958.

[15] H. Cramér. Mathematical methods of statistics. Princeton University Press,
Princeton, 1946.

[16] J. Dahlin, F. Lindsten, and T.B. Schön. Second-order particle MCMC
for Bayesian parameter inference. In Proceedings of the 19th IFAC World
Congress, Cape Town, South Africa, August 2014.

[17] N.G. de Bruijn and P. Erdos. A combinatorial problem. Koninklijke Neder-
landse Akademie v. Wetenschappen, 49:758–764, 1946.

[18] A. De Cock, M. Gevers, and J. Schoukens. A preliminary study on optimal
input design for nonlinear systems. In Proceedings of the IEEE Conference
on Decision and Control (CDC), Florence, Italy, 2013.

[19] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B, 68(3):411–436, 2006.

[20] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B, 39(1).

[21] J.L. Doob. Stochastic processes. New York Wiley, 1953.

[22] A. Doucet and A. Johansen. A tutorial on particle filtering and smooth-
ing: Fifteen years later. In D. Crisan and B. Rozovsky, editors, The Oxford
Handbook of Nonlinear Filtering. Oxford University Press, 2011.

[23] V.V. Fedorov. Theory of optimal experiments. New York: Academic Press,
1972.

[24] R.A. Fisher. On an absolute criterion for fitting frequency curves. Messenger
of Mathematics, 41(8):155–160, 1912.

[25] R.A. Fisher. Theory of statistical estimation. Mathematical Proceedings of
the Cambridge Philosophical Society, 22(5):700–725, 1925.

BIBLIOGRAPHY 131

[26] M. Forgione, X. Bombois, P.M.J. Van den Hof, and H. Hjalmarsson. Exper-
iment design for parameter estimation in nonlinear systems based on multi-
level excitation. In Proceedings of the European Control Conference (ECC),
Strasbourg, France, 2014.

[27] U. Forssell and L. Ljung. Closed-loop identification revisited. Automatica,
35(7):1215–1241, 1999.

[28] K.F. Gauss. Theoria motus corporum celestium, English translation: Theory
of the Motion of the Heavenly Bodies. Dover, New York, 1963.

[29] L. Gerencsér, H. Hjalmarsson, and J. Mårtensson. Identification of ARX
systems with non−stationary inputs: asymptotic analysis with application to
adaptive input design. Automatica, 45(3):623–633, 2009.

[30] M. Gevers and L. Ljung. Optimal experiment designs with respect to the
intended model application. Automatica, 22(5):543–554, 1986.

[31] B.I. Godoy, G.C. Goodwin, J.C. Agüero, D. Marelli, and T. Wigren. On
identification of FIR systems having quantized output data. Automatica,
46(9):1905–1915, 2011.

[32] G.C. Goodwin, J.C. Murdoch, and R.L. Payne. Optimal test signal design for
linear SISO system identification. International Journal of Control, 17(1):45–
55, 1973.

[33] G.C. Goodwin and R.L. Payne. Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, New York, 1977.

[34] R.B. Gopaluni, T.B. Schön, and A.G. Wills. Input design for nonlinear
stochastic dynamic systems - A particle filter approach. In 18th IFAC World
Congress, Milano, Italy, 2011.

[35] M.C. Grant and S.P. Boyd. The CVX users’ guide. CVX Research, Inc., 2nd.
edition, January 2013.

[36] W.K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[37] R. Hildebrand and M. Gevers. Identification for control: optimal input design
with respect to a worst-case ν-gap cost function. SIAM Journal on Control
and Optimization, 41(5):1586–1608, March 2003.

[38] R. Hildebrand and G. Solari. Closed-loop optimal input design: The partial
correlation approach. In 15th IFAC Symposium on System Identification,
Saint-Malo, France, July 2009.

[39] H. Hjalmarsson. System identification of complex and structured systems.
European Journal of Control, 15(3):275–310, 2009.

132 BIBLIOGRAPHY

[40] H. Hjalmarsson. System identification of complex and structured systems. In
Proceedings of the European Control Conference, Budapest, Hungary, 2009.

[41] H. Hjalmarsson and H. Jansson. Closed loop experiment design for linear time
invariant dynamical systems via LMIs. Automatica, 44(3):623–636, 2008.

[42] H. Hjalmarsson and J. Mårtensson. Optimal input design for identification
of non-linear systems: Learning from the linear case. In American Control
Conference, pages 1572–1576, New York, United States, 2007.

[43] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press (9th
reprint), 1999.

[44] H. Jansson. Experiment design with applications in identification for control.
Ph.D. thesis, KTH Royal Institute of Technology, December 2004.

[45] H. Jansson and H. Hjalmarsson. Input design via LMIs admitting frequency-
wise model specifications in confidence regions. IEEE Transactions on Auto-
matic Control, 50(10):1534–1549, October 2005.

[46] D.B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77–84, March 1975.

[47] R.E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960.

[48] S. Kar, H. Chen, and P.K. Varshney. Optimal identical binary quantizer
design for distributed estimation. IEEE Transactions on Signal Processing,
60(7):3896–3901, 2012.

[49] J. Kiefer. General equivalence theory for optimum designs (approximate the-
ory). The Annals of Statistics, 2(5):849–879, 1974.

[50] G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-
space model. In A. Doucet, N. de Fretias, and N. Gordon, editors, Sequential
Monte Carlo methods in practice, pages 177–195. Springer, 2001.

[51] A. Kong, J.S. Liu, and W.H. Wong. Sequential imputations and Bayesian
missing data problems. Journal of the American Statistical Association,
89(425):278–288, 1994.

[52] C. Larsson, M. Annergren, and H. Hjalmarsson. On optimal input design in
system identification for model predictive control. In IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC), pages
805–810, Orlando, USA, 2011.

BIBLIOGRAPHY 133

[53] C. Larsson, M. Annergren, H. Hjalmarsson, C.R. Rojas, X. Bombois, A. Mes-
bah, and P.E. Modén. Model predictive control with integrated experiment
design for output error systems. In Proceedings of the European Control Con-
ference (ECC), Zurich, Switzerland, 2013.

[54] C. Larsson, H. Hjalmarsson, and C.R. Rojas. On optimal input design for
nonlinear FIR-type systems. In 49th IEEE Conference on Decision and Con-
trol, pages 7220–7225, Atlanta, USA, 2010.

[55] C. Larsson, C.R. Rojas, and H. Hjalmarsson. MPC oriented experiment
design. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011.

[56] Y. Lin, B. Chen, and B. Suter. Robust binary quantizers for distributed
detection. IEEE Transactions on Wireless Communications, 6(6):2172–2181,
2007.

[57] K. Lindqvist and H. Hjalmarsson. Optimal input design using linear matrix
inequalities. In IFAC Symposium on System Identification, Santa Barbara,
California, USA, July 2000.

[58] L. Ljung. Convergence analysis of parametric identification methods. IEEE
Transactions on Automatic Control, 23(5):770–783, 1978.

[59] L. Ljung. System Identification. Theory for the User, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, 1999.

[60] L. Ljung. Prediction error estimation methods. Technical report, Linköping
University, Department of Electrical Engineering, October 2001.

[61] L. Ljung and B. Wahlberg. Asymptotic properties of the least-squares method
for estimating transfer functions and disturbance spectra. Advances in Applied
Probability, 24(2):412–440, 1992.

[62] T.A. Louis. Finding the observed information matrix when using the EM
algorithm. Journal of the Royal Statistical Society: Series B, 44(2):226–233,
1982.

[63] X. Lv and P. Luo. A design of autonomous tracing in intelligent vehicle based
on photoelectric sensor. Yadian yu Shengguang, 33(6):939–942, 2011.

[64] J.M. Maciejowski. Predictive Control with Constraints. Edinburgh Gate,
Harlow, Essex, England: Prentice Hall, 2002.

[65] D. Marelli, K. You, and M. Fu. Identification of ARMA models using in-
termittent and quantized output observations. Automatica, 49(2):360–369,
2013.

[66] G. McLachlan and T. Krishnan. The EM algorithm and extensions. John
Wiley & Sons, 2008.

134 BIBLIOGRAPHY

[67] E.A. Nadaraya. On estimating regression. Theory of Probability & its Appli-
cations, 9(1):141–142, 1964.

[68] J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo
smoothing with application to parameter estimation in nonlinear state space
models. Bernoulli, 14(1):155–179, 2008.

[69] A. Papoulis. Probability, random variables, and stochastic processes.
McGraw-Hill, 1984.

[70] M.K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

[71] E. Ramsden. Hall-effect sensors: theory and application. Newnes, 2011.

[72] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[73] C.R. Rojas, H. Hjalmarsson, L. Gerencsér, and J. Mårtensson. An adaptive
method for consistent estimation of real-valued non-minimum phase zeros in
stable LTI systems. Automatica, 47(7):1388–1398, 2011.

[74] C.R. Rojas, J.S. Welsh, G.C. Goodwin, and A. Feuer. Robust optimal ex-
periment design for system identification. Automatica, 43(6):993–1008, June
2007.

[75] B. Sanchez, C.R. Rojas, G. Vandersteen, R. Bragos, and J. Schoukens. On
the calculation of the Data-optimal multisine excitation power spectrum for
broadband impedance spectroscopy measurements. Measurement Science and
Technology, 23(8):1–15, 2012.

[76] T.B. Schön and F. Lindsten. Learning of dynamical systems – Particle filters
and Markov chain methods. 2014.

[77] T.B. Schön, A. Wills, and B. Ninness. System identification of nonlinear
state-space models. Automatica, 47(1):39–49, 2011.

[78] T. Söderström and P. Stoica. Instrumental variable methods for system iden-
tification, volume 161. Springer-Verlag, Berlin, 1983.

[79] T Söderström and P Stoica. System Identification. Prentice Hall, New York,
1989.

[80] A.J. Sörensen, S.I. Sagatun, and T.I. Fossen. Design of a dynamic positioning
system using model-based control. Control Engineering Practice, 4(3):359–
368, 1996.

[81] J.C. Spall. Adaptive stochastic approximation by the simultaneous perturba-
tion method. IEEE Transactions on Automatic Control, 45(10):1839–1853,
2000.

BIBLIOGRAPHY 135

[82] J.C. Spall. Improved methods for Monte Carlo estimation of the Fisher In-
formation Matrix. In IEEE American Control Conference, pages 2395–2400,
2008.

[83] H. Suzuki and T. Sugie. On input design for system identification in time
domain. In Proceedings of the European Control Conference, Kos, Greece,
July 2007.

[84] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal
on Computing, 1(2):146–160, June 1972.

[85] S.J. Taylor. Asset price dynamics, volatility, and prediction. Princeton uni-
versity press, 2011.

[86] P.E. Valenzuela, J. Dahlin, C.R. Rojas, and T.B. Schön. A graph/particle-
based method for experiment design in nonlinear systems. In the 19th IFAC
World Congress, Cape Town, South Africa, March 2014.

[87] P.E. Valenzuela, C.R. Rojas, and H. Hjalmarsson. Optimal input design
for non-linear dynamic systems: a graph theory approach. In 52th IEEE
Conference on Decision and Control (CDC), Florence, Italy, December 2013.

[88] J.J. Van de Beek, O. Edfors, M. Sandell, S.K. Wilson, and P. Ola Borjesson.
On channel estimation in OFDM systems. In 45th IEEE Vehicular Technology
Conference, volume 2, pages 815–819, 1995.

[89] P.M.J. Van den Hof. Closed-loop issues in system identification. Annual
Reviews in Control, 22:173–186, 1998.

[90] P.M.J. Van den Hof and R.A. de Callafon. Multivariable closed-loop identi-
fication: from indirect identification to dual-Youla parametrization. In Pro-
ceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan,
1996.

[91] P.M.J. Van den Hof and R.J.P. Schrama. An indirect method for transfer
function estimation from closed loop data. Automatica, 29(6):1523 – 1527,
1993.

[92] P.M.J. Van den Hof and R.J.P. Schrama. Identification and control: closed-
loop issues. Automatica, 31(12):1751–1770, 1995.

[93] P. Van Overschee and B. De Moor. Subspace identification for linear systems:
theory, implementation, applications. Kluwer academic publishers, 1996.

[94] T.L. Vincent, C. Novara, K. Hsu, and K. Poola. Input design for structured
nonlinear system identification. In 15th IFAC Symposium on System Identi-
fication, pages 174–179, Saint-Malo, France, 2009.

136 BIBLIOGRAPHY

[95] T.L. Vincent, C. Novara, K. Hsu, and K. Poolla. Input design for structured
nonlinear system identification. Automatica, 46(6):990–998, 2010.

[96] B. Wahlberg, H. Hjalmarsson, and P. Stoica. On optimal input signal de-
sign for frequency response estimation. In 49th Conference on Decision and
Control, pages 302–307, Atlanta, USA, 2010.

[97] A. Wald. Note on the consistency of the maximum likelihood estimate. The
Annals of Mathematical Statistics, 20(4):595–601, 1949.

[98] L.Y. Wang, G.G. Yin, J-F. Zhang, and Y. Zhao. System Identification with
Quantized Observations. Birkhäuser, 2010.

[99] T. Wu and Q. Cheng. One-bit quantizer design for distributed estimation
under the minimax criterion. In IEEE 71st Vehicular Technology Conference
(VTC), pages 1–5. IEEE, 2010.

[100] A. Zaman. Stationarity on finite strings and shift register sequences. The
Annals of Probability, 11(3):678–684, August 1983.

[101] Q. Zhang and A. Benveniste. Wavelet networks. IEEE Transactions on
Neural Networks, 3(6):889–898, 1992.

	Contents
	Glossary
	Acronyms
	Introduction
	System identification
	Input design
	Thesis outline and main contributions

	Theory
	Graph theory and stationary processes
	Graph theory: basic concepts
	De Bruijn graphs and stationary processes
	Generation of stationary sequences
	Conclusion

	Input design for NOE models
	Problem formulation
	Input design via graph theory
	Reducible Markov chains
	Numerical examples
	Conclusion

	Input design for nonlinear SSM
	Problem formulation
	A review on SMC methods
	New input design method
	Numerical examples
	Conclusion

	Applications
	Input design for quantized systems
	Input design problem
	Background on ML estimation
	Information matrix computation
	Numerical example
	Conclusion

	Closed-loop input design
	Preliminaries
	Input design for feedback systems
	Numerical example
	Conclusion

	Conclusions
	Algorithms for elementary cycles
	Preliminaries
	Strong connected components of a graph
	Elementary cycles of a graph

	Convergence of the approximation of IF
	The EM algorithm
	The expectation-maximization algorithm
	EM algorithm: useful identities

	Bibliography

