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Abstract

We present a method for robust input design for nonlinear state-space models. The method optimizes a scalar cost function of
the Fisher information matrix over a set of marginal distributions of stationary processes. By using elements from graph theory
we characterize such a set. Since the true system is unknown, the resulting optimization problem takes the uncertainty on the
true value of the parameters into account. In addition, the required estimates of the information matrix are computed using
particle methods, and the resulting problem is convex in the decision variables. Numerical examples illustrate the proposed
technique by identifying models using the expectation maximization algorithm.
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1 Introduction

Input design is concerned with generating an excitation
signal that maximizes the information retrieved from an
experiment, quantified in terms of a cost function related
to the intended model application. Some of the initial
contributions are discussed in [7] and [20]. Since then,
many contributions to the subject have been presented;
see e.g. [16, 19, 22, 50] and the references therein.

In the case of dynamical systems, the existing results on
input design are mostly focused on linear models. The
assumption of a linear model structure can reduce the
complexity of the problem, leading to formulations that
are convex in the decision variables [29]. In this case, the
convexity of the problem is achieved by designing the
power spectrum of the input signal. Several approaches
to input design for linear models have been proposed in
the literature involving, e.g., linear matrix inequalities
(LMI) [24, 27], Markov chains [2], and time domain tech-
niques [40]. With the exception of the methods in [24, 27]
that rely on convexification of the problem, the previ-
ous formulations are non-convex, which illustrates the
difficulty of solving the input design problem.

? This work was supported by the Swedish Research Coun-
cil under contracts 621-2013-5524, 621-2011-5890 and 621-
2009-4017, and by the European Research Council under the
advanced grant LEARN, contract 267381.

In recent years, there has been an interest to extend the
input design methods to nonlinear (NL) model struc-
tures. The main issue is that the frequency domain meth-
ods cannot be applied, which restricts the applicability
of convex formulations [24, 27]. The first approaches to
the problem considered NL finite impulse response (FIR)
models [23, 26]. In [23] the input design problem is an-
alyzed using the knowledge from linear systems, while
in [26] the input design problem is solved over a set of
marginal distributions of stationary processes.

An extension of the input design problem to structured
NL models is presented in [47, 48], where the model is
given by an interconnection of linear models and static
nonlinearities. The class of NL model structures is also
generalized in [17], where the input signal is optimized
over an alphabet with finite cardinality. A multilevel
excitation is also considered in [9] for identification of
Wiener models. The restriction to a finite alphabet is re-
laxed in [21], where an ARX process is designed as input
for the identification of NL state-space models (SSMs).
A graph theoretical methodology to design inputs for
identification of NL output-error models is developed in
[45, 46], which is extended to NL-SSMs in [44].

The existing results on input design allow to optimize
input signals when the system contains NL functions,
but the restrictions on the system dynamics and/or the
input structure are the main limitations of most of the
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previous contributions. Moreover, with the exception of
multilevel excitation [17, 26], and stationary processes
[2, 44, 45, 46], most of the proposed methods cannot
handle amplitude limitations on the input signal, which
could arise due to physical and/or safety reasons.

The previously mentioned input design methods assume
that a prior estimate of the model parameters is available
for optimization. The requirement of such knowledge is
a common issue in input design and different solutions
to this difficulty have been proposed [18, 35, 36, 37, 49].

The main contribution of this article is to propose a ro-
bust input design method for the identification of NL-
SSMs with input constraints, which extends the model
structure considered in [45, 46], and the nominal input
design presented in [44]. The optimal input signal is con-
sidered to be a realization of a stationary process, which
maximizes a scalar function of the Fisher information
matrix (FIM). To pose a tractable convex problem, we
restrict the optimization to a set of marginal distribu-
tions of stationary processes with a finite alphabet. This
set is a polytope and hence it can be described by a con-
vex combination of its vertices. The vertices are cumu-
lative distribution functions that can be found using de
Bruijn graphs, as discussed in [44, 45]. Since the vertices
of the set are known, we can draw an input realization
and compute an estimate of the FIM for each vertex us-
ing particle methods [10, 15]. The estimates of the infor-
mation matrices are computed using the method intro-
duced in [39], which only requires one realization of the
input-output data, and thus reducing the computational
effort when estimating the FIM compared to [44].

To make the input design robust against model uncer-
tainty, the optimization problem considers a measure of
the uncertainty of the parameters, which relaxes the re-
quirements on the knowledge of the system assumed in
[44, 45, 46]. The method is illustrated through numeri-
cal examples, where the designed input is employed to
identify a NL-SSM using the expectation-maximization
(EM) algorithm [11, 30, 38].

The rest of this article is organized as follows. Section 2
states the problem and the main challenges when design-
ing inputs for identification of NL-SSM. Section 3 de-
scribes the graph theoretical approach to input design.
Section 4 discusses the estimation of the FIM using par-
ticle methods. A summary of the proposed robust input
design method is presented in Section 5. The generation
of the optimal input signal is addressed in Section 6.
To illustrate the correctness and utility of the method,
two numerical examples are discussed in Section 7. Fi-
nally, Section 8 concludes this work and presents future
research directions.

Notation: Throughout this article, N denotes the set
of natural numbers, Rp denotes the set of p-dimensional

vectors with real entries, Rp×r is the set of p × r ma-
trices with real entries, and R+ the set of positive real
numbers. P, E, and Var{·} stand for a probability mea-
sure, the expected value, and the variance, respectively.
Sometimes a subscript is added to P and E to clarify
the stochastic process considered by these operators. Fi-
nally, for a finite set A, |A| denotes its cardinality.

2 Problem formulation

Consider a NL-SSM described for all t ≥ 1 by

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (1a)

yt|xt ∼ gθ(yt|xt, ut), (1b)

x0 ∼ µθ(x0), (1c)

where fθ, gθ, and µθ denote probability density functions
(pdf) parameterized by θ ∈ Θ ⊂ Rnθ (where Θ is an
open set). Here, ut ∈ Rnu denotes the input signal, xt ∈
Rnx are the (unobserved/latent) internal states, and yt ∈
Rny are the measured outputs.

The objective in this article is to design an input signal
u1:nseq := (u1, . . . , unseq), as a realization of a stationary
process, such that the NL-SSM (1) can be identified with
maximum accuracy as defined by a scalar function of
the FIM [29]. In the sequel, we assume that there exists
at least one parameter θ0 ∈ Θ such that the model (1)
exactly describes the pdfs of the system, i.e., there is no
undermodelling [29].

Given u1:nseq
, the FIM is defined as

Inseq

F (θ0) := E
{
S(θ0)S>(θ0)|u1:nseq

}
, (2)

where S(θ0) denotes the score function, i.e.,

S(θ0) := ∇θ `θ(y1:nseq
)
∣∣
θ=θ0

. (3)

Here, `θ(y1:nseq) denotes the log-likelihood function

`θ(y1:nseq
) := log pθ(y1:nseq

|u1:nseq
) . (4)

We note that the expected value in (2) is with respect to
the stochastic processes in (1). Since we consider u1:nseq

as a realization of a stationary process, here we are in-
terested in the per-sample FIM, defined as

IF (θ0) :=
1

nseq
Eu
{
Inseq

F (θ0)
}

=
1

nseq
E
{
S(θ0)S>(θ0)

}
, (5)

where the expected value in (5) is over both the stochas-
tic processes in (1), and the stochastic vector u1:nseq

.
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We note that (5) depends on the cumulative distribu-
tion function (cdf) of u1:nseq , denoted by Pu(u1:nseq).
Therefore, the input design problem is to find a cdf
P opt
u (u1:nseq) which maximizes a scalar function of (5),

H : Rnθ×nθ × Θ → R, where 1 H is a matrix con-
cave function in its first argument [1, pp. 108]. Different
choices of H have been proposed in the literature, see
e.g. [37]; some examples are H(A, θ) = log det(A), and
H(A, θ) = − tr{A−1} for A ∈ Rnθ×nθ non-singular.

To simplify our problem, we will assume that ut can only
adopt a finite number cseq of values. We denote this set
of values as C. With the previous assumption, we can
define the following set:

PC :=

{
pu : Cnseq → R

∣∣∣∣ pu(x) ≥ 0, ∀x ∈ Cnseq ;∑
x∈Cnseq

pu(x) = 1;

∑
v∈C

pu(v, z) =
∑
v∈C

pu(z, v) ,∀z ∈ Cnseq−1

}
. (6)

The set PC introduced in (6) constrains the probability
mass function (pmf) u1:nseq

of pu to the set of marginal
pmfs associated with stationary processes. We refer
to [46] for more details about the derivation of the set
PC .

So far we have been concerned with the formulation of
the problem in terms of the stationary process describing
u1:nseq

. However, we still need to consider a remaining
issue: Equation (5) depends on the parameter θ0 describ-
ing the true system (1). Therefore, the optimal input se-
quence u1:nseq depends on the parameter we want to esti-
mate, which limits the practical applicability of the pre-
vious formulation. To overcome this issue, we consider
the function R : Θ → R that measures the uncertainty
over Θ. In the following, two definitions of R are consid-
ered: R = Eθ{·} (where we assume that Θ is a measur-
able space with known cdf Pθ), and R = minθ∈Θ{·}.

To summarize, the problem we are interested in solving
can be written as

Problem 1 Design an optimal input signal u1:nseq
∈

Cnseq as a realization from popt
u (u1:nseq

), where

popt
u := arg max

pu∈PC
R{H(IF (pu, θ), θ)} , (7)

with H : Rnθ×nθ × Θ → R a matrix concave function,
R : Θ → R, and IF (pu, θ) ∈ Rnθ×nθ defined as in (5).

�

1 We let H have an argument on Θ as the function can
explicitly depend on the model parameter.

Problem 1 is difficult to solve. The main challenge is:

(A) The set Θ may be uncountably infinite, which im-
plies that the computation of R{H(IF (θ), θ)} can
be intractable.

To address issue (A), we consider a procedure that de-
pends onR. ForR = Eθ{·}, we solve a Monte-Carlo ap-
proximation of Problem 1 by sampling Ns points from
the set Θ according to the cdf Pθ, and replacing the ex-
pected value by its sample mean estimate. In the case
whereR = minθ∈Θ{·}, we employ the scenario approach
[3, 49]. By sampling Ns points from the set Θ according
to a given cdf Ps, we can rewrite Problem 1 as an opti-
mization problem over a finite number of points in Θ. In
this case we will obtain a sub-optimal solution to Prob-
lem 1 which, however, can be made close to the optimal
solution by increasing Ns; we refer to [3, 4] for more de-
tails.

In addition to issue (A), the parameterization of the set
PC and the computation of the FIM (5) for the model (1)
are also part of the complexity of solving Problem 1. In
this article, these points will be addressed by employ-
ing existing techniques. To parameterize the set PC , we
follow the graph theoretical approach proposed in [46],
which is briefly described in the next section. Finally, the
computation of the FIM (5) will rely on particle meth-
ods and it will be considered in Section 4.

Remark 1 The assumptions of prior knowledge about
the structure of the pdfs characterizing (1) and the fi-
nite alphabet of ut might seem very restrictive. However,
the requirement of a structure for the pdfs in (1) is not
more restrictive than the requirement of a model struc-
ture for linear models, cf. [29]. On the other hand, the
finite alphabet assumption for ut is introduced to make
Problem 1 tractable, as it is difficult to parameterize in a
tractable manner the set PC resulting from removing the
finite alphabet requirement on ut. �

Remark 2 An alternative to solve Problem 1 is to
directly optimize over (2) by designing every sample
in u1:nseq . However, the resulting optimization is non-
convex, and hence the designed input can only guarantee
local optimality. �

3 Describing the set of stationary processes

Here we briefly discuss the graph theoretical approach
in [45, 46] to characterize the set PC , and we refer to [46]
for more details about this method.

One of the difficulties associated with PC is that pu ∈ PC
is of dimension nseq, where nseq can be very large. This
issue is relaxed by restricting pu to the set of pmfs de-
fined over Cnm , where nm < nseq, and corresponding to
marginal pmfs of stationary processes. This assumption
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allows to solve an approximation of Problem 1 in the
sense that the difference between the optimal cost for the
solution considering pu(u1:nseq), and the optimal cost for
pu(u1:nm) can be made arbitrarily small by defining nm
sufficiently close to nseq. We refer to Section 6 for the
details on the computation of u1:nseq

from pu(u1:nm).

A second difficulty associated with PC corresponds to its
parameterization. To solve this issue, we first notice that
all the elements in PC can be represented as a convex
combination of its extreme points, since PC is described
by a finite number of linear inequalities [34, Chapter 17].
We will refer to VPC := {v1, . . . , vnV} as the set of the
extreme points of PC . As the set PC corresponds to pmfs,
then VPC corresponds to pmfs describing every p ∈ PC as

p =

nV∑
j=1

αjvj , (8)

where αj ≥ 0, for all j ∈ {1, . . . , nV}, and

nV∑
j=1

αj = 1 . (9)

The problem of parameterizing PC turns then to find
VPC . To this end, we make use of the graph theoretical
approach proposed in [46]. First, we note that every ele-
ment in Cnm can be viewed as one node in a graph 2 . In
addition, the transitions (edges) between the elements in
Cnm are defined by the possible values of uk+1 when we
move from (uk−nm+1, . . . , uk) to (uk−nm+2, . . . , uk+1),
for all integers k > 0. The resulting graph is referred
to as a de Bruijn graph. This is illustrated in Figure 1
for cseq = 2, nm = 2, and C = {0, 1}. We see that, if
we are in node (0, 1) at time t, then we can only transit
to node (1, 0) or (1, 1) at time t + 1. In the following,
GX = {X , E} will denote a de Bruijn graph with set of
nodes X and set of edges E .

To find VPC we need the concept of prime cycles. A prime
cycle is an elementary cycle 3 whose set of nodes does
not have a proper subset which is an elementary cycle
[51, pp. 678]. It is known that the prime cycles of a graph
describe VPC [51, Theorem 6]. In other words, each prime
cycle defines one element vj ∈ VPC . Furthermore, each
vj is a uniform distribution with support on the nodes
of its prime cycle, for all j ∈ {1, . . . , nV} [51, pp. 681].
Therefore, the set VPC is described by finding all the
prime cycles associated with the de Bruijn graph GCnm .
As an example, consider Figure 1. One prime cycle in this
graph is given by ((0, 1), (1, 0), (0, 1)). For this prime
cycle, the associated pmf is vj(0, 1) = vj(1, 0) = 0.5,
and zero otherwise.

2 Note that |Cnm | = (cseq)nm .
3 An elementary cycle is a cycle where all nodes are different,
except for the first and the last [25, p. 77].

Fig. 1. Example of graph derived from Cnm , with nm = 2,
and C := {0, 1}.

It is known that all the prime cycles associated with
GCnm can be derived from the elementary cycles asso-
ciated with GCnm−1 [51, Lemma 4], which can be found
using existing algorithms 4 .

Based on the prime cycles, it is possible to generate an
input sequence uj1:nseq

from vj , which will be referred to

as the basis inputs. As an example, consider the prime
cycle ((0, 1), (1, 0), (0, 1)) of the graph in Figure 1. The

sequence uj1:nseq
associated with this prime cycle is given

by taking the value of ut in each node, i.e., uj1:nseq
=

{1, 0, 1, 0, . . . , ((−1)nseq−1 + 1)/2}.

Given uj1:nseq
, we can use it to obtain the correspond-

ing information matrix 5 for vj ∈ VPC , denoted by I(j)
F .

However, in general the matrix I(j)
F cannot be computed

explicitly. This difficulty is overcome by using particle

methods to approximate I(j)
F , as discussed in the next

section.

Remark 3 Following [46], the method presented here
can also be extended to multiple inputs. In that case, the
only required modification is the definition of the nodes,
which are then associated with the possible states of an
nu × nm matrix. �

Remark 4 The number of prime cycles in a graph de-

4 For the examples in Section 7, we have used the algorithm
presented in [25, pp. 79–80] complemented with the one pro-
posed in [42, pp. 157].
5 To simplify the discussion, here we use nseq input samples

to compute I(j)F . However, the number of samples to compute

I(j)F can be different from nseq in general.
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pends exponentially on nm, which in turn results in an
exponential increase in the computational time required
to compute such cycles as nm increases, which has al-
ready been noticed in [46]. On the other hand, the number
of prime cycles depends polynomially in cseq, resulting in
a polynomial increase in the computational time to com-
pute the prime cycles as cseq increases. �

4 Estimation of the FIM

From (8), we have that every p ∈ PC is a convex com-
bination of the elements in VPC . Hence, it is possible to
approximate the FIM associated with p as

IF (γ, θ) =

nV∑
j=1

αj I(j)
F (θ) , (10)

where γ := {αj}nVj=1 and I(j)
F (θ) denotes the FIM ob-

tained using the basis input u
(j)
1:nseq

. Equation (10) is an

approximation of the FIM associated with p in the sense
that (10) converges to the value of the FIM for p as both
nseq and nm tend to infinity [43].

The main problem for computing (10) is that the FIM

I(j)
F (θ) is intractable for the NL-SSM. Instead, we pro-

pose to approximate I(j)
F (θ) for every j ∈ {1, . . . , nV}

using particle methods [15, 28]. For brevity, we omit the
superscript j corresponding to each vertex in PC and
write v := v1:nseq for any vector v1:nseq .

4.1 Estimating the score function

From (2), we know that we can compute the FIM by the
use of the score function. However, the score function is
also intractable for a general SSM but it can be estimated
using particle smoothers. The key ingredient for this is
the Fisher identity [5] presented in Lemma 1. In the
Fisher identity, pθ(x,y|u) denotes the complete data log-
likelihood for (1) given by

log pθ(x,y|u) = logµθ(x0) +

nseq∑
t=1

ξθ(xt−1:t), (11)

ξθ(xt−1:t) := log fθ(xt|xt−1, ut−1) + log gθ(yt|xt, ut),

where we make use of the notation xt−1:t = {xt−1, xt}.

Lemma 1 (Fisher identity [6]) Assume that the fol-
lowing holds:

(i) For every θ ∈ Θ, pθ(y|u) is positive and finite.
(ii) For every (θ, θ′) ∈ Θ×Θ,∫ ∣∣∣ log pθ(x|y,u)

∣∣∣pθ′(x|y,u) dx,

is finite.

(iii) `θ(y|u) is continuously differentiable on Θ.
(iv) For every θ′ ∈ Θ, the function Lθ′ : Θ→ R defined

as

Lθ′(θ) := −
∫

log pθ(x|y,u)pθ′(x|y,u) dx,

is continuously differentiable on Θ. In addition,
Lθ′(θ) is finite for any (θ, θ′) ∈ Θ×Θ, and

∇θ
∫

log pθ(x|y,u)pθ′(x|y,u) dx

=

∫
∇θ log pθ(x|y,u)pθ′(x|y,u) dx.

Then,

S(θ′) =

∫
∇θ log pθ(x,y|u)

∣∣
θ=θ′

pθ′(x|y,u) dx . (12)

�

Proof. We refer to [6] for a proof of this lemma. �

Using (11) and (12), we arrive at the estimator

S(θ) =

nseq∑
t=1

∫
∇θ ξθ(xt−1:t)pθ(xt−1:t|y,u) dxt−1:t︸ ︷︷ ︸

:=St(θ)

. (13)

Here, we require an estimate of the two-step smoothing
distribution pθ(xt−1:t|y,u). This can be provided by a
so-called empirical distribution,

p̂θ(dxt−1:t|y) :=

N∑
i=1

w
(i)
t δ

x
(i)
t−1:t

(dxt−1:t), (14)

where x
(i)
t and w

(i)
t denote particle i and its normalized

weight at time t. Here, {x(i)
t , w

(i)
t }

nseq

t=1 denotes the par-
ticle system generated by a particle filter and δx′(x) de-
notes the Dirac measure located at x = x′.

In this paper, we generate the particle system using the
bootstrap particle filter (bPF) [14, Section 1.3.3]. Algo-
rithm 1 presents the pseudo code for the bPF, where
Cat({p(i)}Ni=1) denotes the categorical distribution with
p(i) denoting the probability of selecting element i. How-
ever, the estimator in (14) based on the bPF often suffers
from poor accuracy. This is due to problems with path
degeneracy, see e.g. [15]. To mitigate this problem, we
make use of a particle smoother that introduces a back-
ward sweep after the forward run of the particle filter.

Here, we use the forward-filtering backwards simula-
tor (FFBSi) with rejection sampling and early stop-
ping [13, 41] presented in Algorithm 2. FFBSi makes
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Algorithm 1 Bootstrap particle filter (bPF)

Inputs: An SSM (1), y1:nseq (observations), u1:nseq (inputs),
N ∈ N (number of particles).

Output: {x(i)t , w
(i)
t }Ni=1, t = 1, . . . , nseq.

All operations are carried out over i, j = 1, . . . , N .

1: Sample x
(i)
0 ∼ µθ(x0) and set w

(i)
0 = 1/N .

2: for t = 1 to nseq do

3: (Resampling) Sample a
(i)
t ∼ Cat

({
w̃

(j)
t−1

}N
j=1

)
.

4: (Propagation) Sample x
(i)
t ∼ fθ

(
x
(i)
t

∣∣∣xa(i)tt−1 , ut
)

.

5: Set x
(i)
0:t =

{
x
a
(i)
t

0:t−1, x
(i)
t

}
.

6: (Weighting) Calculate w̃
(i)
t = gθ

(
yt

∣∣∣x(i)t , ut
)

.

7: Normalize w̃
(i)
t (over i) to obtain w

(i)
t .

8: end for

use of the output from a run of the bPF. The param-
eter ρ (line 13 in Algorithm 2) is an upper bound for
the pdf fθ in the sense that fθ(xt|xt−1) ≤ ρ for all
t ∈ {1, . . . , nseq}. The computational complexity of FF-
BSi is of order O(NMnseq), where N and M denote the
number of filter and smoother particles, respectively.

The statistical properties of the FFBSi are studied by
[13] under some regularity assumptions. These include
that the pdfs derived from the SSM (1) are bounded and
that ξθ(xt−1:t) is measurable. These two conditions are
usually fulfilled when the SSM is defined by densities f
and g as in (1). Given these assumptions, it is possible
to show that the error in the estimates obtained from
the algorithm are bounded [13, Corollary 6] and obeys
a central limit theorem [13, Corollary 9]. This implies
that the estimates of the score function are (strongly)
consistent and the variance decreases as N,M →∞. In
practice, increasing N and M also increases the com-
putational cost. We return to investigate the finite-data
properties of FFBSi in Section 7.1.

Note that there are many alternative particle smoothers
that could be useful, see [28] for a recent survey. In
our previous work [44], we employed a fixed-lag (FL)
particle smoother to estimate the score function. The
main advantage with using FFBSi compared with FL
is the consistency of the former. In comparison, the FL
smoother gives biased estimates even when N → ∞.
However, the FL smoother has a computational com-
plexity of O(Nnseq), which is smaller than that of the
FFBSi smoother.

4.2 The resulting estimator

From (13), we note that S(θ) can be written as a sum of
conditional scores St(θ). This can be seen as a martingale
representation since each conditional score is condition-
ally independent given the past. Using results presented
in [31, 39], we can compute an estimate of the FIM by

Algorithm2Fast forward-filtering backward-simulator
with early stopping (fFFBSi-ES)

Inputs: Inputs to Algorithm 1, M ∈ N (No. backward tra-
jectories), Nlimit ∈ N (Limit for when to stop using rejection
sampling), ρ > 0.

Output: ÎF (θ) (estimate of the FIM).

1: Run Algorithm 1 to obtain the particle system{
x
(i)
t , w

(i)
t

}N
i=1

for t = 1, . . . , nseq.

2: Sample
{
bnseq(j)

}M
j=1
∼ Cat

(
{w(i)

nseq}Ni=1

)
.

3: Set x̃
(j)
nseq = x

(bnseq (j))
nseq for j = 1, . . . ,M .

4: for t = nseq − 1 to 1 do
5: L← {1, . . . ,M}.
6: {Rejection sampling until Nlimit trajectories remain.}
7: while |L| ≥ Nlimit do
8: n← Card(L).
9: δ ← ∅.

10: Sample
{
I(k)

}n
k=1
∼ Cat

(
{w(i)

t }Ni=1

)
.

11: Sample
{
U(k)

}n
k=1
∼ Uniform([0, 1]).

12: for k = 1 to n do
13: if U(k) ≤ f

(
x̃
L(k)
t+1 |x

I(k)
t

)
/ρ then

14: bt(L(k))← I(k).
15: δ ← δ ∪ {L(k)}.
16: end if
17: end for
18: L← L \ δ.
19: end while
20: {Use standard FFBSi for the remaining trajectories.}
21: for j ∈ L do

22: Compute w̃
(i,j)

t|nseq
∝ w

(i)
t f

(
x̃
(j)
t+1|x

(i)
t

)
for i =

1, . . . , N .

23: Normalize the smoothing weights
{
w̃

(i,j)

t|nseq

}N
i=1

.

24: Draw bt(j) ∼ Cat
({
w̃

(i,j)

t|nseq

}N
i=1

)
.

25: end for

26: Set x̃
(j)
t:nseq

=
{
x
bt(j)
t , x̃

(j)
t+1:nseq

}
for j = 1, . . . ,M .

27: Estimate the score function at t using (13) by

Ŝt(θ) =
1

M

M∑
j=1

∇θξθ
(
x̃
(j)
t:t+1

)
.

28: end for
29: Compute ÎF (θ) using (15).

ÎF (θ) =
1

nseq

{nseq∑
t=1

[
Ŝt(θ)

][
Ŝt(θ)

]>
− 1

nseq

[
Ŝ(θ)

][
Ŝ(θ)

]>}
,

(15)

where

Ŝ(θ) :=

nseq∑
t=1

Ŝt(θ) . (16)

We note that the estimator (15) is based on the output
y1:nseq

generated from (1) using θ ∈ Θ and u1:nseq
as

input.

There are other alternatives for computing an estimate
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of the FIM. One alternative approach is to make use of
the Louis identity [6]. Another alternative is to compute
the FIM using the sample covariance matrix of the score
estimates (13) as proposed by [44]. The main advantage
of the estimator (15) is that it only requires running a sin-
gle particle smoother for estimating the score function.
The approach based on the sample covariance matrix re-
quires hundreds or thousands of runs to marginalise out
the effect of the noisy realisation. That is, to estimate
the expectation operator in (13) with respect to y.

To see the later, we analyze the variance of this estima-
tor using the martingale difference property when using
Algorithm 2 to estimate the score function. To this end,
we note that the expected value of (15) is given by

nseq E
{
ÎF (θ)

}
=
nseq − 1

nseq
E

{
nseq∑
t=1

[
Ŝt(θ)

][
Ŝt(θ)

]>}
,

(17)
where the expected value in (17) is with respect to the
stochastic processes characterizing the nonlinear state
space model (1).

Before proceeding, let Ŝ`(θ) and ÎF,`m(θ) denote the `-th

and (`,m) entry of Ŝ(θ) and ÎF (θ), respectively. Then,
the variance of the (`,m) entry of (15) is given by

n2
seq Var

{
ÎF,`m(θ)

}
=

(nseq − 1)2

n2
seq

Var

{
f1(nseq, `,m)

}
+

2

nseq
f4(nseq, `,m)

+
1

n2
seq

f5(nseq, `,m) , (18)

with

f4(nseq, `,m) := E

{
f2

1 (nseq, `,m)

}

−E

{
nseq∑
t=1

f2
3 (t, `,m)

}
,

(19)

f5(nseq, `,m) := E

{
f2

2 (nseq, `,m)

}

−E

{
f2

1 (nseq, `,m)

}
,

(20)

and

f1(nseq, `,m) :=

nseq∑
t=1

Ŝt,`(θ)Ŝt,m(θ) , (21)

f2(nseq, `,m) := Ŝ`(θ)Ŝm(θ) , (22)

f3(t, `,m) := Ŝt,`(θ)Ŝt,m(θ) . (23)

We refer to Appendix A for a complete derivation of
Equation (18).

When the FFBSi is used to estimate the score func-
tion, we have by [13, Theorem 11] that the variance (18)
is bounded for a fixed nseq. Moreover, the estimator is
consistent as nseq, N,M → ∞, which follows from [13,
Corollary 9]. As previously mentioned, we investigate
the finite sample accuracy of the estimate in Section 7.1.

We can carry out a similar analysis for the alternative ap-
proach based on the sample covariance matrix. Here, we

estimate the score function Ŝ(k) using particle methods
over k ∈ {1, . . . , K} different noisy realizations based
on a single realization of the input. The estimate of the
FIM is computed by

ÎF (θ) =
1

Knseq

K∑
k=1

[
Ŝ(k)(θ)

] [
Ŝ(k)(θ)

]>
. (24)

The variance of this estimator is given by

n2
seq Var

{
ÎF,`m(θ)

}
=

1

K
Var

{
Ŝ(k)
` (θ)Ŝ(k)

m (θ)
}
, (25)

for some k ∈ {1, . . . ,K}. This implies that the ac-
curacy of (24) increases with the number of realiza-
tions K, provided that the variance of each element in[
Ŝ(k)(θ)

] [
Ŝ(k)(θ)

]>
is bounded, which again is satisfied

by FFBSi as discussed above. Therefore, we conclude
that the variance of the estimator (24) is bounded as
nseq, N,M →∞ and it approaches zero as K →∞.

As discussed above, the main benefit of using (15) in-
stead of (24) is a smaller computational cost. This re-
sults from that only one run of the particle smoother is
required for the former compared with K runs for the
latter. In practice, this decreases the computational time
for a single estimate of the FIM from over a day to about
an hour. Moreover, it is difficult to establish theoreti-
cally which of the two estimators has better accuracy.
Using numerical evaluations, we have observed that the
new estimator outperforms the latter in terms of both
accuracy and computational cost.

5 Final input design method

Under the considered approximations, the FIM (5) can
be expressed as a convex combination of the informa-
tion matrices evaluated at the vertex points of PC given
by (10). Hence, the proposed method to design input
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Algorithm 3 New input design method

Inputs: C (input values), nm (number of input samples), P
(probability measure over Θ), and Ns (number of samples
over Θ).
Output: γ? (optimal weighting of the basis inputs).

1: Sample {θi}Nsi=1 from Θ according to P.
2: Compute all the elementary cycles of GCnm−1 using, e.g.,

[25, pp. 79–80], [42, pp. 157].
3: Compute all the prime cycles of GCnm from the elemen-

tary cycles of GCnm−1 as explained in [51, Lemma 4].
Denote by {vj}nVj=1 the pmfs associated with the prime
cycles of GCnm .

4: Generate the input signals uj1:nseq
from the prime cycles

of GCnm , for each j ∈ {1, . . . , nV}.
5: for i = 1 to Ns do
6: Execute Algorithm 2 based on θi and {uj1:nseq

}nVj=1 to

obtain {Î(j)F (θi)}nVj=1.
7: end for
8: Solve the optimization problem (26) to obtain γ?.

signals in Cnm for the identification of NL-SSMs is sum-
marized in Algorithm 3. The method solves an approxi-
mation of Problem 1, which can be written as

γ? = arg max
γ={αj}

nV
j=1

R̂(H(Iapp
F (γ, θ), θ))

subject to Iapp
F (γ, θi) =

nV∑
j=1

αj Î(j)
F (θi) ,

for all i ∈ {1, . . . , Ns}
αj ≥ 0 , for all j ∈ {1, . . . , nV}
nV∑
j=1

αj = 1 ,

(26)

where R̂ denotes the approximation of the function R
when the set Θ is approximated by {θi}Nsi=1. The imple-

mentation of R̂ for the cost functions considered in this
article follows the solution presented for issue (A) in Sec-
tion 2. Thus, for R = Eθ{·} we have

R̂(H(Iapp
F (γ, θ), θ)) =

1

Ns

Ns∑
i=1

H(Iapp
F (γ, θi), θi) ,

(27)
and for R = minθ∈Θ{·} we obtain

R̂(H(Iapp
F (γ, θ), θ)) = min

θ∈{θi}Nsi=1

H(Iapp
F (γ, θ), θ) .

(28)

Algorithm 3 computes the vector γ? = {α?j}
nV
j=1 which

defines the optimal pmf popt
u as a convex combination

of the measures associated with the elements in VPC ,

Algorithm 4 Design of a transition probability matrix
Inputs: A pmf p ∈ PC , and nm.
Output: A transition probability matrix A with stationary
distribution p.

1: For each r ∈ Cnm , define

Nr := {l ∈ Cnm : (l, r) ∈ E} . (30)

In other words, Nr is the set of ancestors of r, where E
is the set of edges of GCnm .

2: For each r, l ∈ Cnm , let

Arl =



p(r)∑
k∈Nr

p(k)
, if l ∈ Nr and∑

k∈Nr
p(k) 6= 0 ,

1
|Nr| , if l ∈ Nr and∑

k∈Nr
p(k) = 0 ,

0 , otherwise.

(31)

according to

popt
u =

nV∑
j=1

α?j vj . (29)

6 Input signal generation

In this section we present a procedure to generate an in-
put sequence u1:nseq from a given pmf p(u1:nm) ∈ PC ,
which has been introduced in [46]. The method asso-
ciates GCnm with the discrete-time Markov chain [12]

πk+1 = Aπk , (32)

where A ∈ RCnm×Cnm is a transition probability ma-
trix 6 , and πk ∈ RCnm is the state vector. We note that
every entry of πk ∈ RCnm corresponds to an element
in Cnm .

Based on the previous association, p(u1:nm) is Πs ∈
RCnm , the stationary distribution of the Markov
chain (32). Thus, an input sequence u1:nseq distributed
according to p(u1:nm) can be obtained by running a
Markov chain having p(u1:nm) as its stationary distri-
bution.

Algorithm 4 presents a method to design a transition
probability matrix A for GCnm with Πs as stationary dis-
tribution. Here we will only make use of this result to
generate u1:nseq

with distribution given by the optimal
pmf popt

u (u1:nm). We refer to [46] for more details about

6 Given a set of finite cardinality X, we denote by RX×X
the matrices with real entries, with dimensions given by the
cardinality of X.
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Fig. 2. Upper: the information matrix element for φ (or-
ange), σv (green) and cross-term between φ and σv (purple).
Lower: the natural gradient for different nseq. The results
are computed using 25 Monte Carlo simulations.

Algorithm 4, where the correctness of the designed tran-
sition probability matrix is established.

7 Numerical illustrations

In this section, we present numerical simulations to illus-
trate some aspects of the proposed input design method
in two SSMs. In the first illustration, we make use of a
linear Gaussian state space (LGSS) model to evaluate
the accuracy of the estimator for the FIM and the im-
pact of the design parameters in Algorithm 2. We also
compare the solution obtained for the input design prob-
lem to some standard input signals as a sanity check of
how the proposed method works.

In the second illustration, we consider an NL-SSM,
which is more challenging from an input design per-
spective. All implementation details and settings for the
algorithm are presented in Appendix B.

7.1 Accuracy of information matrix estimation

Consider the LGSS model given by

xt|xt−1 ∼ N
(
xt;φxt−1 + ut−1, σ

2
v

)
, (33a)

yt|xt ∼ N
(
yt;xt, 0.1

2
)
, (33b)

where the parameter vector is θ = {φ, σv} with the state
persistence φ ∈ (−1, 1) and the standard deviation of
the innovations σv ∈ R+.
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Fig. 3. The logarithm of the error in Frobenius norm of the
estimate of the information matrix when varying N (upper)
and M (lower). The plots show the results from 25 Monte
Carlo simulations and the shaded areas indicate the span
between the largest and smallest error.

From Section 4.2, we know that the estimates of the FIM
obtained by (15) are consistent. However, in practice we
do not have an infinite amount of data and therefore the
properties of the estimate can only be evaluated using
numerical experiments. To this end, we make use of a
Kalman method, which allows for computing the score
function exactly for the LGSS model. Hence, we can iso-
late the influence of nseq on the accuracy of the estimate.

Figure 2 presents the estimate and the resulting natural
gradient (the gradient scaled by the inverse FIM) when
varying nseq for 25 Monte Carlo executions. We conclude
that the estimator stabilizes after about nseq ≈ 15 · 103

observations. Furthermore, we observe that the natural
gradients are almost zero at this value of nseq, indicat-
ing that the maximum likelihood estimate of parameter
vector is indeed θ0.

For a general SSM, we cannot make use of Kalman meth-
ods and have to resort to approximations using e.g., par-
ticle methods. In this setting, we would like to investigate
the influence ofN andM in Algorithm 2 on the accuracy
of the estimates, when nseq is fixed to 15 · 103 based on
the results above. Figure 3 presents the log-error in the
Frobenius norm of the information matrix when varying
N and M . In the former case, we fix M = bN/4c (the
closest integer to N/4 from below) and vary N . We con-
clude that 200 particles are enough to obtain reasonable
accuracy in this model. The increase of the log-error for
N ≥ 50 is probably due to the randomness of the Monte
Carlo simulations. In the latter case, we fix N = 200
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Table 1
Parameter estimates with the 1.96 times the standard deviation (parenthesis), the log-MSE and LD(I) in the LGSS model
computed from 40 independent runs of the EM algorithm using different (but fixed) input signals. Bold face marks the best
values and KM/PM indicate that Kalman methods/Algorithm 2 is used to compute the Q-function in the EM algorithm. The
true parameter values for θ are indicated between square brackets.

Kalman method (KM) Particle method (PM)

Input φ̂ [0.5] MSE(φ̂) σ̂v [0.1] MSE(σ̂v) LD(I) φ̂ [0.5] MSE(φ̂) σ̂v [0.1] MSE(σ̂v) LD(I)

none 0.50 (0.02) -9.06 0.10 (0.002) -13.25 -22.53 0.30 (0.02) -3.21 0.11 (0.002) -8.89 -16.63

constant 0.50 (0.00) -15.33 0.10 (0.002) -13.47 -28.83 0.50 (0.00) -14.15 0.12 (0.002) -8.33 -23.56

uniform 0.50 (0.00) -13.02 0.10 (0.002) -13.49 -26.53 0.49 (0.00) -10.31 0.11 (0.002) -8.68 -21.56

binary 0.50 (0.00) -14.06 0.10 (0.002) -13.43 -27.69 0.50 (0.00) -12.26 0.11 (0.002) -8.52 -22.67

mean case 0.50 (0.00) -14.56 0.10 (0.002) -13.46 -28.83 0.50 (0.00) -14.15 0.12 (0.002) -8.33 -23.56

worst case 0.50 (0.00) -14.52 0.10 (0.002) -13.48 -28.83 0.50 (0.00) -14.18 0.12 (0.001) -8.34 -23.67

and vary the number of backward pathsM . We conclude
from this that the accuracy of the estimates is quite ro-
bust to the choice of the number of backward trajecto-
ries, and that M = 10 seems to be a reasonable choice
for this example.

7.2 Input design for the LGSS model

The analysis above provides some guidance in selecting
nseq,N andM to obtain reasonable estimates of the FIM
for the LGSS model. Therefore, we are ready to apply
Algorithm 3 to construct an input sequence with the
aim to accurately estimate θ = {φ, σv} in (33). We make
use of the EM algorithm proposed by [38] to estimate
the parameters of the model when different inputs are
applied. This is done to investigate if the designed input
actually increases the accuracy of the estimates.

The main time spent by Algorithm 3 for designing an
input for the LGSS model is Line 6 (5 minutes for each
realisation i on a standard laptop computer from 2012)
and Line 8 (1 minute). Note that it is possible to run
Line 6 in parallel to decrease the computational time.

Table 1 presents the logarithm of the mean squared er-
ror (MSE) of the parameter estimates for different in-
puts: none (ut ≡ 0), constant (ut ≡ 1), uniform (ut ∼
Uniform([−1, 1])) and binary (ut ∼ 1−2 ·Bernoulli(0.5)).
As mentioned above, Kalman methods can be applied
to compute the score function (and the Q-function in
the EM algorithm) exactly. Hence, Kalman methods il-
lustrate the optimal performance of the proposed algo-
rithm when N and M tends to infinity. Moreover, we
make use ofR = Eθ{·} (mean case), andR = minθ∈Θ{·}
(worst case) to include robustness to the uncertainty in
the parameters. The input design technique with parti-
cle methods (PM) attains similar log-MSE values than
those obtained with a constant signal (ut = 1), which is
the optimal choice.

To complement the results in this example, we compute

LD(I) := log {det (IMSE(θ0))} for the different inputs
and methods, where IMSE(θ0) corresponds to the sample
MSE matrix

IMSE(θ0) :=
1

Nest

Nest∑
i=1

(θ̂i − θ0)(θ̂i − θ0)> , (34)

where {θ̂i}Nest
i=1 are the estimated parameters for the dif-

ferent inputs and methods in Table 1 (Nest = 40). The
results for log {det (IMSE(θ0))} are summarized in the
rightmost column of Table 1. From this table we con-
clude that the proposed method attains the maximum
value of log {det (IMSE(θ0))} among the inputs consid-
ered in this example.

7.3 Input design for a nonlinear model

The second example is an NL-SSM given by

xt|xt−1 ∼ N
(
xt;

1

γ + x2
t−1

+ ut−1, 0.1
2
)
, (35a)

yt|xt ∼ N
(
yt;βx

2
t , 1

2
)
, (35b)

where the parameters are θ = {γ, β}. The sign of the
state is lost due to the term x2

t in the measurement pro-
cess, which implies that two different values for the state
can equally represent a value for yt. Moreover, this and
the NL state process prohibit the use of Kalman meth-
ods for this model and therefore only Algorithm 2 is con-
sidered. We apply the same approach as in Section 7.2
to construct an input to excite the system and then ap-
ply an EM algorithm to estimate the parameters. The
computational time for executing Line 6 in Algorithm 3
increases to 38 minutes in this model.

Figure 4 presents estimates at each iteration of the EM
algorithm from 35 independent runs on the same in-
put/output data. The parameter β seems easier to es-
timate than the parameter γ, which is probably due to

10



0 100 200 300 400 500

0
1

2
3

4

iteration

pa
ra

m
et

er
 e

st
im

at
e

none

0 100 200 300 400 500

0
1

2
3

4
iteration

pa
ra

m
et

er
 e

st
im

at
e

Constant

0 100 200 300 400 500

0
1

2
3

4

iteration

pa
ra

m
et

er
 e

st
im

at
e

uniform

0 100 200 300 400 500

0
1

2
3

4

iteration

pa
ra

m
et

er
 e

st
im

at
e

Binary

0 100 200 300 400 500

0
1

2
3

4

iteration

pa
ra

m
et

er
 e

st
im

at
e

mean case

0 100 200 300 400 500

0
1

2
3

4

iteration

pa
ra

m
et

er
 e

st
im

at
e

worst case

Fig. 4. The evolution of the parameter estimates for (35)
obtained from 35 runs of the EM algorithm with random
initializations and different inputs. The dotted lines indicate
the values γ0 = 2 and β0 = 0.8 used to generate the data
from the model. The shaded area indicates the span between
the maximum and minimum values.

that the model is linear in β. Another interesting result
from this figure can be seen by comparing the estimates
for the different inputs. We observe that there exists a
trade-off on the accuracy achieved for the estimates of γ
and β. While a zero input gives more accurate estimates
for γ than using a nonzero input, the accuracy for the
estimates of β is increased by including a non-zero input.

We can also analyze the overall performance of the esti-
mates for different inputs. In Table 2 the parameter es-
timates and the corresponding log-MSE for different in-
puts is presented. We note that the log-MSE is computed
using θ0 and not the maximum likelihood estimate of θ.
We also present the half-length of the bootstrapped 95%
confidence intervals (CIs) for the estimated parameters
in parentheses. These are obtained after 103 resamplings
and using the adjusted bootstrap percentile [8].

Table 2 shows that no overall best input signal can be de-
termined from this experiment, as the decision depends
on the relative importance of the two parameters. In the
case of the optimal inputs designed by Algorithm 3, we
see that we can improve the log-MSE for the estimate

Table 2
Parameter estimates for the NL-SSM model in analogue with
the particle methods in Table 1 using 35 independent runs
of the EM algorithm.

Input γ̂ [2] MSE(γ̂) β̂ [0.8] MSE(β̂) LD(I)

none 2.14 (0.01) -3.99 0.90 (0.05) -3.46 -7.76

constant 6.60 (0.23) 3.07 1.03 (0.01) -2.96 -3.84

uniform 2.59 (0.05) -0.97 0.91 (0.02) -4.14 -7.31

binary 2.59 (0.06) -0.95 0.86 (0.01) -5.38 -7.94

mean case 2.47 (0.09) -1.26 0.89 (0.02) -4.47 -8.37

worst case 2.47 (0.06) -1.36 0.88 (0.01) -4.93 -8.47

of γ when compared to the uniform and binary inputs.
As expected from the previous discussion, the improve-
ment in the log-MSE for γ̂ is achieved by degrading the

log-MSE for β̂ when compared to the binary input. How-

ever, the log-MSE of β̂ for the designed inputs is better
than the one obtained with no input.

As a final comparison, the rightmost column of Table 2
presents the value of LD(I) = log {det (IMSE(θ0))} for
the different inputs, with IMSE(θ0) given by (34) using

{θ̂i}Nest
i=1 (Nest = 35). The results presented in this table

show that the designed inputs reduce the volume of the

uncertainty set associated with θ̂ when compared to the
other inputs. Hence, the proposed method designs an
input that optimally distributes the uncertainty over the
estimated parameters in the sense that the volume of
the associated uncertainty set is minimized.

In conclusion, the input design method presented here
can be employed to provide a better trade-off between
the accuracies of the parameter estimates in this chal-
lenging example, when compared to standard inputs.

8 Conclusions

We have proposed a robust input design method for the
identification of NL-SSMs. It is based on designing an
input signal as a realization of a stationary process maxi-
mizing a scalar cost function of the FIM. Since the model
parameters are unknown a priori, the optimization of the
experiment considers a measure of the uncertainty over
the space of model parameters. Furthermore, we provide
numerical illustrations indicating that the designed in-
put signal improves the accuracy of parameter estimates
compared with other standard inputs.
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A Variance for the estimator (15)

We start by writing

n2
seq Var

{
ÎF,`m(θ)

}
= n2

seq

[
E
{
Î2
F,`m(θ)

}
−E2

{
ÎF,`m(θ)

}]
, (A.1)

where the expected values in (A.1) are with respect to
the stochastic processes characterizing the SSM (1).

Based on (15), we compute E
{
Î2
F,`m(θ)

}
as

n2
seqE

{
Î2
F,`m(θ)

}
= E

{
f2

1 (nseq, `,m)
}

+
1

n2
seq

E
{
f2

2 (nseq, `,m)
}

− 2

nseq
E {f1(nseq, `,m) f2(nseq, `,m)} , (A.2)

where f1(nseq, `,m) and f2(nseq, `,m) are given by (21)
and (22), respectively.

Using the martingale difference property, we obtain

E {f1(nseq, `,m) f2(nseq, `,m)} = E

{
nseq∑
t=1

f2
3 (t, `,m)

}
,

(A.3)
with f3(t, `,m) given by (23).

Replacing (A.3) into (A.2) we have

n2
seqE

{
Î2
F,`m(θ)

}
=

[
1− (nseq − 1)2

n2
seq

]
E
{
f2

1 (nseq, `,m)
}

+
1

n2
seq

E
{
f2

2 (nseq, `,m)
}
− 2

nseq
E

{
nseq∑
t=1

f2
3 (t, `,m)

}

+
(nseq − 1)2

n2
seq

E
{
f2

1 (nseq, `,m)
}
,

(A.4)

where we have added and subtracted the term

(nseq − 1)2

n2
seq

E
{
f2

1 (nseq, `,m)
}
.

Finally, replacing (17) and (A.4) into (A.1) and rear-
ranging terms, we obtain (18).

B Implementation details

LGSS model: For the Monte Carlo study in Figure 2, we
generate 25 data sets with nseq = 2.5 · 104 observations

from (33) with θ0 = {0.5, 1.0}, no input and a known
initial zero state. For the approach based on Kalman
methods, a RTS smoother [33] is used to compute the
score function and the FIM is estimated by (15). For the
particle method, we make use of a fully adapted particle
filter (faPA; [32]) in Algorithm 2 to estimate the FIM.
This reduces the computational cost and increases the
accuracy compared with bPF. However, the faPF can
only be implemented for a small number of SSMs.

For Algorithm 3, we make use of nseq = 15 ·103, nm = 2,
and cseq = 3 values (-1, 0 and 1). This results in 8
different basis inputs. Moreover, we use H(IF (θ), θ) =
log det(IF (θ)) as the scalar cost function of the FIM.
For Algorithm 2, we make use of N = 200, M = 10,
Nlimit = 3 and ρ = 1. To account for the uncertainty in
the parameters, we sample Ns = 100 realizations uni-
formly from the parameter space Θ = {(φ, σv) : φ ∈
[0.4, 0.6], σv ∈ [0.8, 1.2]} and design the input accord-
ingly. In the EM algorithm, we make use of N = 200,
M = 20 and run it for 150 iterations.

NL-SSM: For the Monte Carlo study in Section 7.3, we
generate a single data set with nseq = 103 observations
from (35) using θ0 = {2, 0.8}. For Algorithm 3, we use
nm = 2, and cseq = 4 values (−1, −1/3, 1/3 and 1),
resulting in 24 different basis inputs. Moreover, we use
H(IF (θ), θ) = log det(IF (θ)) as the scalar cost function
of the FIM. We make use of the bPF in Algorithm 2 with
N = 2.5 · 103, M = 100, Mlimit = 10 and ρ = 5. For the
robustness, we sample Ns = 30 parameters uniformly
from the set Θ = {(β, γ) : γ ∈ (1.6, 2.4), β ∈ (0.6, 1)}.
We run the EM algorithm for 500 iterations.
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