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Abstract

In this paper the problem of optimal input design for model identification is studied. The optimal input signal is designed by
maximizing a scalar cost function of the information matrix, where the input signal is a realization of a stationary process with
finite memory, with its range being a finite set of values. It is shown that the feasible set for this problem can be associated
with the prime cycles in the graph of possible values and transitions for the input signal. A realization of the optimal input
signal is generated by running a Markov chain associated with the feasible set, where the transition matrix is built using a
novel algorithm developed for de Bruijn graphs. The proposed method can be used to design inputs for nonlinear output-
error systems, which are not covered in previous results. In particular, since the input is restricted to a finite alphabet, it
can naturally handle amplitude constraints. Finally, our approach relies on convex optimization even for systems having a
nonlinear structure. A numerical example shows that the algorithm can be successfully used to perform input design for
nonlinear output-error models.
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1 INTRODUCTION

Input design considers the construction of an input sig-
nal to maximize the information obtained from an ex-
periment. Some of the initial contributions in this line
were presented in the works of Cox [4], Fedorov [7], and
Goodwin and Payne [11], where the latter contribution
is concerned with input design for the identification of
dynamic systems. Since then, several contributions in
input design have been developed (see [33,14,9], and the
references therein).

In the case of dynamic systems, input design maximizes
the information related to the estimated parameters
of the system. By maximizing a scalar function of the
Fisher information matrix [22] related to the accuracy
of the estimated model for a particular application, we

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author Patricio E. Valenzuela.
This work was supported by the Swedish Research Council
under contracts 621-2011-5890 and 621-2009-4017, and by
the European Research Council under the advanced grant
LEARN, contract 267381.

Email addresses: pva@kth.se (Patricio E. Valenzuela),
crro@kth.se (Cristian R. Rojas), hjalmars@kth.se
(H̊akan Hjalmarsson).

obtain an input signal that can be used to identify a
good application model of the unknown system. The
results in this area are mainly focused on input design
for linear systems, where powerful tools can be applied
to solve the problem [10,22,17,20,25]. Several methods
have been reported in the literature involving, e.g.,
linear matrix inequalities (LMI) [17,20,26,32], Markov
chains [3,2], and time domain gradient based schemes
[10,27], among others.

In recent years, the interest on input design has shifted
from linear to nonlinear systems. Unfortunately, most of
the tools used for input design for linear systems based
on frequency domain techniques are no longer valid for
the nonlinear case, which implies that new techniques
need to be developed in this domain. One approach to
input design for the identification of nonlinear systems
is introduced in [15], where a linear systems perspec-
tive is considered. Extensions to a class of finite-impulse-
response type systems are developed in [19], where a
characterization of probability density functions is em-
ployed. Input design for structured nonlinear identifica-
tion is introduced in [30,31], where the system is assumed
to be an interconnection of known linear systems and
unknown static nonlinearities. An input design method
for a general class of nonlinear systems is presented in
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[12], based on a particle filter used to approximate the
cost function, which is optimized over a particular class
of input vectors using stochastic approximation. The
methods previously mentioned [15,19,12] in general are
highly complex (usually ending up with non-convex op-
timization formulations, e.g., [12]) and are restricted to
particular model structures (e.g., [15,19]) and/or par-
ticular classes of input signals (e.g., white noise filtered
through an ARX filter [12]). Moreover, except for the
results in [3,2,19], the methods introduced cannot han-
dle input design with amplitude constraints. Amplitude
constraints can arise due to power and/or physical limi-
tations in the system. Therefore, input design with am-
plitude constraints also requires further considerations.

As a first contribution, in this article we develop a novel
approach for input design in nonlinear systems. This
approach considers the design of an input sequence for
models with additive white noise at the output, which
extends the class of nonlinear systems considered in [19].
The input is constrained to be a stationary process with
a finite set of possible values, and where the associated
probability mass function (pmf) has finite memory, i.e.,
a Markov chain of fixed order. Therefore, the optimiza-
tion considers the design of an optimal pmf which max-
imizes the information obtained from the experiment,
quantified as a scalar function of the information ma-
trix. By using notions of graph theory, we can express
the set of feasible pmf’s as a convex combination of the
pmf’s of the prime cycles describing the vertices of the
set. Since the prime cycles can be explicitly computed
by known algorithms [34,18], the optimization problem
becomes easy to pose. Furthermore, for standard choices
of the cost function, the problem is convex even for non-
linear systems, which simplifies the problem formulation
discussed in [3,2]. Finally, since the input is restricted
to a finite set of possible values, the method naturally
incorporates amplitude limitations.

Once the optimization problem is solved, we obtain the
optimal stationary distribution over the possible states
of the memory describing the pmf. To obtain an input
with the desired stationary distribution, we must be able
to design a feasible transition probability matrix satis-
fying the constraints of the graph associated with our
problem. Unfortunately, due to the asymmetric struc-
ture of the graph, we cannot use standard Markov chain
Monte Carlo (MCMC) methods [13,1] to determine a
transition matrix for the graph. Therefore, and as a sec-
ond contribution of this paper, we develop a method to
design a valid transition probability matrix for graphs
generated from stationary processes with finite memory.

The present article can be seen as an extension of the
results in [19] and [3,2]. The main difference with [3,2] is
that we optimize over the stationary pmf associated with
the Markov chain, instead of directly optimizing over the
transition probabilities. This approach results in a con-
vex problem (which cannot be achieved in [3,2], where

optimization techniques guaranteeing local optima must
be employed). In [19] a similar approach to the one pre-
sented in our article is discussed, but restricted to the
analysis to nonlinear FIR systems. By using the finite
memory property of nonlinear FIR models, the input de-
sign problem in [19] is solved in terms of an input realiza-
tion of finite length. However, the results in [19] cannot
be employed to design input sequences for identification
of more general nonlinear output-error models, since the
models will generally depend on the entire past input
sequence. In this line, our article extends the analysis to
more general nonlinear model structures, which includes
nonlinear FIR systems (see Example 1 in [29] where the
results are consistent with those introduced in [19]).

As with most optimal input design methods, the one
proposed in this contribution relies on knowledge of the
true system. This difficulty can be overcome by imple-
menting a robust experiment design scheme on top of it
[25] or via an adaptive procedure, where the input sig-
nal is re-designed as more information is being collected
from the system [24,8]. This issue goes beyond the scope
of this article and it will not be addressed here.

A previous description of the proposed method has been
presented in [29]. In this paper we give a more detailed
explanation of the input design technique, a method of
the generation of the input signal from an optimal finite
state Markov chain stationary distribution, and new nu-
merical examples.

The rest of the paper is organized as follows. Section 2
introduces some background on graph theory. Section 3
presents the input design problem. In Section 4 we solve
the input design problem using elements of graph theory.
Section 5 presents a novel method to generate an input
signal from the optimal stationary distribution obtained
in Section 4. Section 6 illustrates the results with numer-
ical examples. Finally, Section 7 presents conclusions.

Notation. In the sequel, we denote by C the complex
set, by Z the integer set, by R the real set, by Rp the set
of real p-dimensional vectors, and by R

r×s the set of real
r×smatrices. Given z ∈ C, |z| denotes its modulus. The
expected value with respect to the random variable x
and the probability measure are denoted by Ex{·}, and
P{·}, respectively. det and tr stand for the determinant
and the trace functions, respectively. Given a finite set
T , #T denotes its cardinality.

2 PRELIMINARIES ON GRAPH THEORY

In this section we provide a brief background on the
concepts of graph theory used in the next sections. Our
notation follows that of [18, pp. 77].

A directed graph GV = (V ,X ) consists of a nonempty and
finite set of vertices (or nodes) V and a set X of ordered
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pairs of distinct vertices called edges. A path in GV is a
sequence of vertices pvu = (v = v1, v2, . . . , vk = u) such
that (vi, vi+1) ∈ X for all i ∈ {1, . . . , k − 1}. A cycle is
a path in which the first and last vertices are identical.
A cycle is elementary if no vertex but the first and last
appears twice. Two elementary cycles are distinct if one
is not a cyclic permutation of the other.

An n-dimensional de Bruijn graph of m symbols [5] is a
directed graph representing overlaps between sequences
of symbols (c.f. Figure 2). It has mn vertices, consisting
of all possible sequences of length n derived from the
given symbols. The same symbol can appear multiple
times in a sequence. If we have a set of symbols C =
{s1, . . . , sm} then the set of n-dimensional vertices is

V = Cn = {(s1, . . . , s1, s1), (s1, . . . , s1, s2), . . . ,

(s1, . . . , s1, sm), (s1, . . . , s2, s1), . . . ,

(sm, . . . , sm, sm)} . (1)

If one of the vertices can be expressed as another vertex
by shifting all its symbols one place to the left and adding
a new symbol at the end, then the latter has a directed
edge to the former vertex. Thus the set of directed edges
is

X = {((v1, v2, . . . , vn), (r1, r2, . . . , rn)) :

v2 = r1, v3 = r2, . . . , vn = rn−1} . (2)

In the following we will denote by GCn the n-dimensional
de Bruijn graph derived from Cn.

3 PROBLEM FORMULATION

Consider the single-input, single-output time invariant
system depicted in Figure 1. Here, G0 is a dynamic sys-
tem (possibly nonlinear), defined for t ≥ 1 as

G0(Ut) :=







xt+1 = f0(xt, ut)

zt = h0(xt, ut)

x1 = µ

, (3)

{et} is a white noise sequence with zero mean and finite
varianceλe, ut ∈ R is the input, xt ∈ Rnx are the internal
states of G0 with initial condition µ ∈ Rnx , yt ∈ R is the
measured output, and Ut := (ut, . . . , u1). Notice that
G0 is defined as in (3) to simplify notation. We consider
a model structure G, defined for any θ ∈ Θ ⊂ Rm as

G(Ut; θ) :=







xt+1 = f(xt, ut; θ)

zt = h(xt, ut; θ)

x1 = µ

. (4)

We assume that there exists a θ0 ∈ Θ such that
G(Ut; θ0) = G0(Ut) [22], i.e., there is no undermod-
elling. Notice that the noise et is assumed to enter only
at the output.

zt

et

G0
ut yt

Fig. 1. Block diagram of a (possibly nonlinear) system.

To continue, we introduce the following definition:

Definition 1 Consider a bounded signal {ut}, |ut| ≤ K
(K > 0), and a nonlinear system yt = G0(Ut). We say
that G0 is exponentially stable if and only if there are
constants C > 0 (depending possibly on K), 0 < δ < 1,
such that for all t, s ∈ Z,

|G0(Ut)−G0(U
s
t )| < Cδt−s , (5)

where Ust := {ut, ut−1, . . . , us+1, 0, 0, . . .}. �

We notice that Definition 1 differs from that given by
[21] since it considers deterministic systems, and it is not
defined over moments of order 4 (as it is in the definition
introduced in [21]).

The objective in this article is to design an input signal
Unseq = (unseq , . . . , u1) as a realization of a stationary
process, such that the system (3) can be estimated with
maximum accuracy as defined by a scalar function of the
Fisher information matrix IF [22]. In this article, the
Fisher information matrix IF is defined as the expected
value of the conditioned Fisher information matrix IeF
over the stationary process Unseq . I

e
F can be computed

as

IeF =
1

λe
Ee

{

nseq
∑

t=1

ψθ0t (Ut)ψ
θ0
t (Ut)

T

∣

∣

∣

∣

∣

Unseq

}

, (6)

where

ψθ0t (Ut) :=
d ŷt(Ut)

dθ

∣

∣

∣

∣

θ=θ0

, (7a)

ŷt(Ut) := G(Ut; θ) , (7b)

and θ, θ0 ∈ Θ. Since we are interested in computing
Unseq as a realization of a stationary process, we will
maximize a scalar cost function of the per-sample Fisher
information matrix, defined as

IF := EUnseq
{IeF }

=
1

λe
EUnseq , e

{

nseq
∑

t=1

ψθ0t (Ut)ψ
θ0
t (Ut)

T

}

. (8)

On the other hand, we note that equation (7b) does
not depend on the noise realization. Therefore, we can
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rewrite (8) as

IF =
1

λe

∫

Unseq∈R
nseq

nseq
∑

t=1

ψθ0t (Ut)ψ
θ0
t (Ut)

T dP (Unseq) ,

(9)
where P (Unseq) is the cumulative distribution function
(cdf) of Unseq .

We note that (9) depends on P (Unseq). Therefore, the
input design problem we will consider is to find a cdf
P opt(Unseq) which optimizes a scalar function of (9). We

define this function as h : Rm×m → R. As it is custom-
ary in input design [11,17,22], h is assumed to be a con-
cave function. Several choices of h have been proposed
in the literature [25]. Some examples for h are det, and
− tr{(·)−1}. In this work, we leave to the user the selec-
tion of h.

Since nseq can be large, the input design problem in-
volves dealing with a potentially very high dimensional
integral (9), which can be computationally intractable.
To address this issue, we can restrict the input signal ut
to be a stationary process of finite memory, i.e., ut can
be assumed to be a Markov process of order nm (say) 1 .
This means that P (Unseq) can be completely described
by its nm-dimensional projection P (Unm

) [34]. Recall
that an nm-dimensional projection P (Unm

) of P (Unseq)
is a cdf P (Unm

) associated with the stationary vector
Unm

, which is extended to the space of stationary vec-
tors Unseq to define P (Unseq) [34, Theorem 1].

Since P (Unm
) has to be the projection of a stationary

cdf, the optimization must be constrained to the set 2

P :=

{

F : Rnm → R|F (x) ≥ 0, ∀x ∈ R
nm ;

F is monotone non-decreasing ;

lim
xi→∞

F (x1, . . . , xnm
) = 1, for i = 1, . . . , nm

∫

v∈R

dF (v, z) =

∫

v∈R

dF (z, v) , ∀z ∈ R
(nm−1)

}

.

(10)

The last condition in (10) (with some slight abuse of no-
tation) guarantees that F ∈ P is the projection of the
cdf of a stationary sequence [34]. Indeed, the last condi-
tion in (10) states that the cdf obtained by marginalizing
over unseq is the same to the one obtained by marginaliz-
ing over u1, which retrieves the shift invariant property
associated with stationary processes.

1 Notice that the assumption on nm can be relaxed by mak-
ing nm close to nseq.
2 Recall that the joint cdf is defined as F (x1, . . . , xnm) :=
P{X1 ≤ x1, . . . , Xnm ≤ xnm}, with {Xi}

nm
i=1 as random

variables.

For computational tractability, we further constrain ut
to belong to a finite alphabet C with cardinality cseq.
With this assumption, it is convenient to work with the
pmf p(Unm

) rather than the cdf P (Unm
). In addition, we

can define the constraint set of the pmf p(Unm
) as:

PC := {f : Cnm → R| f(x) ≥ 0, ∀x ∈ Cnm ;
∑

x∈Cnm

f(x) = 1;

∑

v∈C

f(v, z) =
∑

v∈C

f(z, v) , ∀z ∈ C(nm−1)

}

. (11)

Based on Definition 1, we require the following assump-
tion over ψθ0t (Ut)ψ

θ0
t (Ut)T :

Assumption 1 Consider ψθ0t (Ut) defined in (7). Then

the function ψθ0t (Ut)ψ
θ0
t (Ut)T is exponentially stable with

constants Cψ > 0, 0 < δψ < 1. �

Finally, the input design problem can be summarized as:

Problem 1 Design an optimal input signal Uopt
nseq

∈

Cnseq as a realization from the projected pmf popt(Unm
),

given by

popt(Unm
) := arg max

p∈PC

h(IF (p)) , (12)

where h : Rm×m → R is a concave function,

IF (p) =
1

λe

∑

Unseq∈Cnseq

nseq
∑

t=1

ψθ0t (Ut)ψ
θ0
t (Ut)

T p(Unseq) ,

(13)

and where ψθ0t (Ut) ∈ Rm is defined as in (7), satisfying
Assumption 1. �

A subtle issue still needs to be addressed: how should
p(Unm

) be parameterized? Since the information matrix
IF in (13) is defined in terms of p(Unseq) (the full pmf
of the input sequence) instead of p(Unm

), it is natural
to attempt to parameterize p(Unseq) in terms of a finite
number of elements of PC, i.e., projections of station-
ary pmf’s, since these elements can be extended to a full
stationary pmf p(Unseq). Such a parameterization is de-
scribed in the next section.

4 INPUT DESIGN VIA GRAPH THEORY

To parameterize the elements of PC , we first notice that
this is a convex set, and, in particular, a polyhedron
[23, pp. 170], since it is described by linear inequalities.
Hence, any element of PC can be described as a convex
combination of its extreme points [23, Corollaries 18.3.1
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(ut−1, ut)

(1, 1)

(ut−1, ut)

(0, 0)

(ut−1, ut)

(1, 0)

(ut−1, ut)

(0, 1)

Fig. 2. Example of the de Bruijn graph derived from Cnm ,
with cseq = 2, nm = 2, and C := {0, 1}.

and 19.1.1]. In other words, if we define VPC
:= {wi, i =

1, ..., nV} as the set of all the extreme points of PC , then
for all f ∈ PC we have

f =

nV
∑

i=1

αiwi , (14)

where αi ≥ 0, i ∈ {1, . . . , nV}, and

nV
∑

i=1

αi = 1 . (15)

The set VPC
can be characterized in a graph-theoretical

manner. To this end, notice that the set of possible val-
ues for (ut−nm+1, . . . , ut), Cnm , is composed of (cseq)

nm

elements, which can be viewed as nodes in a graph. In
addition, the transitions between the elements in Cnm ,
as described by a stationary process of memory nm, are
given by the possible values of ut+1 when we move from
(ut−nm+1, . . . , ut) to (ut−nm+2, . . . , ut+1), for all inte-
gers t ≥ 0. The edges between the elements in Cnm de-
note the possible transitions between the states, repre-
sented by the nodes of the graph. The resulting graph
corresponds to a de Bruijn graph (c.f. Section 2). Fig-
ure 2 illustrates this idea, when cseq = 2, nm = 2, and
C = {0, 1}. From this figure we can see that, if we are at
node (0, 1) at time t, then we can only transit to node
(1, 0) or (1, 1) at time t+ 1.

In order to describe the elements of VPC
, we need the

concept of prime cycles. A prime cycle is an elementary
cycle whose set of nodes do not have a proper subset
which is an elementary cycle [34, pp. 678]. To continue
we will need the following theorem:

Theorem 1 The prime cycles of the de Bruijn graph
of a Markov process of memory nm are in one-to-one
correspondence with the elements of VPC

. In addition,
each wi ∈ VPC

corresponds to a uniform distribution
whose support is the set of elements of a prime cycle. �

ut = 0 ut = 1

Fig. 3. Example of the de Bruijn graph derived from Cnm ,
with cseq = 2, nm = 1, and C := {0, 1}.

Proof. See [34, Theorem6] and [34, pp. 681] for a formal
proof. �

Using Theorem 1 we can describe all the elements in
VPC

by finding all the prime cycles associated with the
de Bruijn graph GCnm drawn from Cnm . To find all the
prime cycles in GCnm we will use the following lemma:

Lemma 1 All the prime cycles associated with GCnm can
be derived from the elementary cycles of GC(nm−1) . �

Proof. See [34, Lemma 4] for the details. �

Lemma 1 states that finding all the prime cycles in
GCnm is equivalent to finding all the elementary cycles
in GC(nm−1) , which can be determined using standard
graph algorithms 3 (see, e.g., [18,28]). To illustrate this
procedure, consider the graph depicted in Figure 3. One
elementary cycle for this graph is given by (0, 1, 0). Us-
ing Lemma 1, the elements of one prime cycle for the
graph GC2 are obtained as a concatenation of the ele-
ments in the elementary cycle (0, 1, 0). Hence, the prime
cycle in GC2 associated with this elementary cycle is
((0, 1), (1, 0), (0, 1)).

Once all the prime cycles of GCnm are found, the set VPC

is fully determined. Then, for each wi ∈ VPC
we can

generate a corresponding input signal by generating the
corresponding prime cycle. Therefore, we can define the
information matrix corresponding to prime-cycle i and
element wi ∈ VPC

as

I
(i)
F :=

1

λe

∑

Unm∈Cnm

nm
∑

t=1

ψθ0t (U it )ψ
θ0
t (U it )

T wi(Unm
)

≈
1

λeNsim

Nsim
∑

t=1

ψθ0t (U it )ψ
θ0
t (U it )

T , (16)

for all i ∈ {1, . . . , nV}, and Nsim sufficiently large (in
relation to the length of the prime cycles). Notice that

each I
(i)
F is associated with the i-th prime cycle. The ap-

proximation (16) is a necessary step since the explicit

3 For the examples in Section 5, we have used the algorithm
presented in [18, pp. 79–80] complemented with the one pro-
posed in [28, pp. 157].
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computation of I
(i)
F for the nonlinear model (4) is of-

ten intractable. Instead of approximating I
(i)
F as an av-

erage over different realizations of the input sequence

Unseq , we consider an approximation of I
(i)
F as an av-

erage over one realization of length Nsim, where Nsim

is sufficiently large. The approximation (16) is possible

since ψθ0t (Ut)ψ
θ0
t (Ut)

T satisfies Assumption 1 (see Ap-
pendix A for a proof of this statement). The approxima-
tion error incurred when (16) is employed to compute

I
(i)
F is of order δNsim

ψ .

As an example of how to generate {uit}
Nsim
t=0 for a

particular wi, we use the graph depicted in Fig-
ure 2. One prime cycle for this graph is given by
((0, 1), (1, 0), (0, 1)). Therefore, the sequence {uit}

Nsim
t=0

is given by taking the last element of each node, i.e.,
{uit}

Nsim
t=0 = {1, 0, 1, 0, . . . , ((−1)Nsim + 1)/2}.

Once the approximation (16) is made for all the elements
in VPC

, we can compute an approximation of the infor-
mation matrix IF (p) associated with the elements in PC

as a convex combination of the I
(i)
F ’s, i ∈ {1, . . . , nV}.

Indeed, if we define γ := {α1, . . . , αnV
} ∈ R

nV , we can
write

Iapp
F (γ) :=

nV
∑

i=1

αi I
(i)
F , (17a)

nV
∑

i=1

αi = 1 , (17b)

αi ≥ 0 , for all i ∈ {1, . . . , nV} , (17c)

where Iapp
F (γ) is the approximation of the information

matrix IF (p) associated with the elements of PC .

To summarize, the proposed method for the design of
input signals in Cnm can be described as follows:

(1) Compute all the elementary cycles of GC(nm−1) by
using, e.g., [18, pp. 79–80], [28, pp. 157].

(2) Compute all the prime cycles of GCnm from the ele-
mentary cycles of GC(nm−1) as explained above (c.f.
[34, Lemma 4]).

(3) Generate the input signals {uit}
Nsim
t=0 from the prime

cycles of GCnm , for each i ∈ {1, . . . , nV}.

(4) For each i ∈ {1, . . . , nV}, approximate I
(i)
F using

(16).
(5) Define γ = {α1, . . . , αnV

} ∈ R
nV . Find γopt :=

{αopt
1 , . . . , αopt

nV
} by solving the following approxi-

mation of Problem 1:

γopt = arg max
γ∈R

nV

h(Iapp
F (γ)) , (18)

where h : Rm×m → R is a concave function,

Iapp
F (γ) =

nV
∑

i=1

αi I
(i)
F , (19a)

nV
∑

i=1

αi = 1 , (19b)

αi ≥ 0 , for all i ∈ {1, . . . , nV} , (19c)

and I
(i)
F is given by (16).

The procedure mentioned above computes γopt which
defines the optimal pmf popt(Unm

) via (14). Notice that
Iapp
F (γ) in (19a) is linear in the decision variables. There-

fore, if −h is convex, problem (18)-(19) can be solved
using convex optimization tools.

Remark 1 Steps (1) to (3) are independent of the sys-
tem for which the input is designed. Therefore, once the
steps (1) to (3) are computed, they can be re-used for in-
put design in different systems.

Remark 2 The approximate solution to Problem 1
given by (18) might not be unique. In that case, (18) will
return the weighting vector associated with one optimal
pmf. Moreover, even if the optimal pmf popt(Unm

) is
unique, the optimal input realization Unseq is not unique.
Indeed, Unseq is a vector of random variables with sta-
tionary distribution popt(Unm

).

Remark 3 The computational cost associated with the
proposed technique is mostly described by the effort re-
quired to compute the elementary cycles. A time bound
for the computation of elementary cycles is given by
O(cnm

seq (cseq + 1)(ce + 1)), where ce is the number of ele-
mentary cycles given by [18, p. 77]

ce :=

cnm
seq −1
∑

i=1

(

cnm
seq

cnm
seq − i+ 1

)

(

cnm

seq − i
)

! . (20)

As expected, the computational time grows with the num-
ber of elementary cycles. How to avoid the computation
of the entire set of elementary cycles is ongoing research.

5 INPUT SIGNAL GENERATION

In this section we develop a procedure to generate an
input sequence Unseq from the optimal projected pmf
popt(Unm

) computed above. To this end, notice that we
can associate GCnm with the discrete-time Markov chain
[6]

πk+1 = Aπk , (21)

where A ∈ R
Cnm×Cnm

is a transition probability matrix,
and πk ∈ RCnm

is the state vector. In this case, there
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is a one-to-one correspondence between each entry of
πk ∈ RCnm

and an element of Cnm .

Based on this association, popt(Unm
) corresponds to

Πs ∈ R
Cnm

, the stationary distribution of a Markov
chain of the form (21). Therefore, in order to generate
an input sequence Unseq from popt(Unm

), we can design
a Markov chain having popt(Unm

) as its stationary dis-
tribution, and simulate this Markov chain to generate
Unseq from its samples.

If Arl ∈ R denotes the (r, l)-entry in A, then a valid A
for the Markov chain (21) must satisfy

Arl ≥ 0 , for all r, l ∈ Cnm , (22)
∑

r∈Cnm

Arl = 1 , for all l ∈ Cnm , (23)

Arl = 0 , if (l, r) /∈ X . (24)

Notice that the indices of A are not numerical, but be-
long to Cnm .

It can be proved that a matrix A satisfying (22)-(23)
has 1 as an eigenvalue [16]. Furthermore, if the Markov
chain is ergodic, the eigenvector Πs ∈ RCnm

associated
with this eigenvalue is the stationary pmf of Cnm (up to
a scaling factor), satisfying

Πs = AΠs . (25)

Our task is then to design a transition probability matrix
satisfying (22)-(25). There is an extensive literature on
how to optimize the mixing time of the resulting Markov
chain (see, e.g., [1,13] and the references therein). How-
ever, these works assume that the graph is undirected or
reversible, which implies that A must have a particular
structure (e.g., A being a symmetric matrix). Since the
structure of the graph GCnm does not satisfy in general
the mentioned properties, most existing methods cannot
be applied here.

Below we develop a method to design a transition prob-
ability matrix for the de Bruijn graph GCnm . The idea is
that, if we parameterize the transition probabilities of a
Markov chain with memory n in terms of the stationary
probabilities of a Markov chain with memory n+ 1, we
obtain a convex problem, as discussed in Section 4. Once
the stationary probabilities are optimized, the proposed
algorithmgives a uniquemapping between the optimized
stationary probabilities and the transition matrix with
memory n, by using

P{ut|ut−1, . . . , ut−n} =
P{(ut, . . . , ut−n)}

∑

ut∈C P{(ut, . . . , ut−n)}
,

(26)

where P denotes the stationary probability measure of
the Markov chain (i.e., defined by the entries of Πs), and
P{·|·} denotes the conditional probability measure.

To continue, we need to introduce the following result:

Fact 1 The stationary probability measure P, corre-
sponding to popt(Unm

), satisfies

cseq
∑

r=1

P{(v1, . . . , vnm−1, sr)} =

cseq
∑

r=1

P{(sr, v1, . . . , vnm−1)} , (27)

for all (v1, . . . , vnm−1) ∈ Cnm−1. �

Fact 1 follows since popt(Unm
) is the projection of a sta-

tionary distribution, c.f. (11). Based on this fact, we can
design a transition probability matrix A for GCnm as fol-
lows:

Algorithm 1 Generation of a transition probability ma-
trix A from popt(Unm

):

• For each r ∈ Cnm , define

Nr := {l ∈ Cnm : (l, r) ∈ X} . (28)

In other words, Nr is the set of ancestors of r.
• For each r, l ∈ Cnm , let

Arl =











































P{r}
∑

k∈Nr

P{k}
, if l ∈ Nr and

∑

k∈Nr

P{k} 6= 0 ,

1
#Nr

, if l ∈ Nr and
∑

k∈Nr

P{k} = 0 ,

0 , otherwise.

(29)

�

Algorithm 1 introduces a method to design valid transi-
tion probability matrices when Πs satisfies Fact 1. The
next theorem establishes the correctness of the algo-
rithm.

Theorem 2 Given a stationary probability measure P
satisfying Fact 1, then the matrix A ∈ RCnm×Cnm

de-
signed by Algorithm 1 is a transition probability matrix
satisfying (22)-(25). �

Proof. Properties (22) and (24) are trivially satisfied
by the construction of A. To establish (23) and (25), we

7



need to analyze the structure of the transition probabil-
ity matrix A associated with a de Bruijn graph. From
the definition of X (c.f. (2)), we have that

∑

l∈Nr

P{l} =

cseq
∑

l=1

P{(sl, r(1), . . . , r(nm − 1))} . (30)

To proceed, we need to define

Tr := {l ∈ Cnm : (r, l) ∈ X}, r ∈ Cnm , (31)

i.e., (31) is the set of descendants of r. From the definition
of X , we have that #Tr = #Nr = cseq.

First, we will prove (23). Consider first a l ∈ Cnm such
that

∑

k∈Nr
P{k} 6= 0 for all r ∈ Tl. Then,

Tl = {(l(2), . . . , l(nm), s1), . . . ,

(l(2), . . . , l(nm), scseq)} . (32)

In addition, for any r ∈ Tl,

Nr = {(s1, l(2), . . . , l(nm)), . . . ,

(scseq , l(2), . . . , l(nm))} . (33)

Equation (33) shows that the sets Nr are equal for all
r ∈ Tl. Therefore, the sums

∑

k∈Nr
P{k} are equal (and

nonzero) for all r ∈ Tl, hence

∑

r∈Cnm

Arl =
∑

r∈Tl

P{r}
∑

k∈Nr
P{k}

=

∑

r∈Tl
P{r}

∑

k∈Nr̃
P{k}

, (34)

for any r̃ ∈ Tl. Furthermore, in the light of (32)-(33), we
can rewrite (34) as

∑

r∈Cnm

Arl =

∑cseq
r=1 P{(l(2), . . . , l(nm), sr)}
∑cseq
k=1 P{sk, l(2), . . . , l(nm)}

= 1, (35)

where the last equality follows from Fact 1.

On the other hand, if l ∈ Cnm is such that
∑

k∈Nr
P{k} =

0 for all r ∈ Cnm , we write

∑

r∈Cnm

Arl =
∑

r∈Tl

1

#Nr

=
∑

r∈Tl

1

#Tl
= 1 , (36)

The results presented in (35)-(36) establish (23).

Now we prove (25). For each r ∈ Cnm such that
∑

k∈Nr
P{k} 6= 0, we have that the r-th element of the

product AΠs (denoted by πsr) is given by

πsr =
P{r}

∑

l∈Nr
P{l}

∑

k∈Nr

P{k}

= P{r} . (37)

On the other hand, for each r ∈ Cnm such that
∑

k∈Nr
P{k} = 0, we can consider an l ∈ Cnm such that

r ∈ Tl. According to (32), (33), and using Fact 1, we
can conclude that

∑

r̃∈Tl

P{r̃} =
∑

k∈Nr

P{k} = 0 , (38)

which implies that

P{k} = 0 (39)

for all k ∈ Tl, and in particular, for k = r. Since l ∈ Cnm

is arbitrary, (39) is true for all l ∈ Cnm such that r ∈ Tl.
Hence, (37) is also satisfied for each r ∈ Cnm such that
∑

k∈Nr
P{k} = 0, which establishes (25). This concludes

the proof. �

The transition probability matrix designed using Algo-
rithm 1 has the following property:

Theorem 3 The transition probability matrix A ∈
RCnm×Cnm

designed by Algorithm 1 has all its eigenval-
ues in the region D := {z ∈ C : |z| ≤ 1}. In addition, A
has at most (cseq)

nm−1 nonzero eigenvalues in D. �

Proof. The first statement follows since A is a transi-
tion probability matrix, according to Theorem 2.

To establish the second statement, notice that, from
(32)-(33), for each l ∈ Cnm we have that Nr is the same
for all r ∈ Tl, which means that the columns of A can
be partitioned into (cseq)

nm−1 groups of cseq identical
columns. Therefore, the number of nonzero eigenvalues
ofA inD is at most (cseq)

nm−1. This concludes the proof.
�

Remark 4 There are, in general, several transition ma-
trices having a given P as stationary probability mea-
sure, subject to a graph constraint. Algorithm 1 provides
only one such choice based on the constraint that A cor-
responds to a Markov chain of order n instead of n+ 1.
Among those transition matrices, it would be preferable to
select the one with the fastest mixing time, i.e., for which
the Markov chain reaches the stationary distribution as
quickly as possible, in a given sense. The most com-
mon criterion to define mixing time is the second largest
eigenvalue modulus (SLEM). A Monte Carlo study, for
cseq = 2 and nm = 2, based on uniform sampling from
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the set of transition matrices giving a specific P (which
can be shown to be a polytope) has empirically shown
that the A matrix given by Algorithm 1 is within the 7%
with lowest SLEM, which suggests that Algorithm 1 gives
a reasonable (but improvable) mixing time. One way to
further reduce the SLEM of A is by performing gradient
descent, starting from the matrix designed in Algorithm
1. Another option to reduce the SLEM is by exploiting
the full memory of the Markov chain; this, however, will
be further explored in a future publication.

Remark 5 In some cases the optimal solution may not
be ergodic, i.e., it may consist of disconnected sub graphs.
To solve this, it is possible to add a small perturbation
to the resulting Markov chain of the input, to make it
ergodic.

Remark 6 For simplicity, the method introduced in this
article is discussed for SISO models. However, an imme-
diate extension of this technique to the MIMO case can
be done. Indeed, in the MIMO case with nu inputs, the
states associated with each node in the de Bruijn graph
are the possible values of an nu × nm matrix, where the
i-th row describes the states for the stationary process in
the i-th input. With this modification, the method can be
directly employed to solve input design for MIMOmodels.

6 NUMERICAL EXAMPLES

In this section we present numerical examples of the
method proposed in this paper. Additional examples for
this method can be found in [29].

Example 1 Consider the block diagram depicted in Fig-
ure 1, where {et} is Gaussian white noise sequence with
zero mean and variance λe = 1. The system is described
by

G0(Ut) :=































xt+1 =
1

θ01 + x2t
+ ut

zt = θ02 x
2
t

x1 = 0

, (40)

where θ0 =
[

θ01 θ
0
2

]T

=
[

0.8 2
]T

. Notice that the system

(40) cannot be described as a Wiener-Hammerstein sys-
tem, since the state equation is nonlinear on the state xt.

To analyze our method, we consider the model

G(Ut; θ) :=































xt+1 =
1

θ1 + x2t
+ ut

zt = θ2 x
2
t

x1 = 0

, (41)

(−1) (0) (1)
0

0.2

0.4

0.6

P
{
l}

Fig. 4. Plot with the stationary probabilities for the optimal
input signal in Example 1.

with θ =
[

θ1 θ2

]T

= θ0.

We design an input of nseq = 104 samples as a real-
ization of the pmf obtained by solving Problem 1, with
nm = 1, and C = {−1, 0, 1}. Problem 1 will be solved
for h(·) = log{det(·)}. Note that the cost function im-
plies that the optimization problem (18) is convex in the
decision variables γ defined in (19a).

The stationary probabilities P{l} obtained as the solution
of Problem 1 are presented in Figure 4. In this figure, we
notice that the stationary probabilities cannot be associ-
ated with a random sample among the states (in which
case we would see a uniform distribution).

Given the stationary probabilities in Figure 4, we can
use Algorithm 1 to design a transition matrix to gener-
ate samples with the desired distribution. The resulting
transition matrix by using Algorithm 1 is given by

A =









0 0 0

0.47 0.47 0.47

0.53 0.53 0.53









, (42)

where the rows and columns of A are indexed in the order
(−1), (0), (1).

The SLEM forA defined as (42) is 0. Therefore, the num-
ber of nonzero eigenvalues is 1, as expected by Theorem
3.

Finally, we generate the input signal by running the
Markov chain with transition matrix (42) with random
initial state in {0, 1}, and recording the first nseq = 104

samples. This is possible since the SLEM associated
with the transition probability matrix (42) is zero, which
implies that the chain will start in the stationary distri-
bution. To compare the result of the new method with
those of standard input signals, we compute the cost
functions when the input vector of length nseq is a real-
ization of a uniformly distributed random variable with
support [−1, 1]. Table 1 presents the results obtained for
the cost function when the input is designed with the
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Table 1
Numerical results for the cost function in Example 1.

h(IF ) Graph Uniform Normal Binary

log{det(IF )} 3.67 2.77 3.12 3.47

0.79 0.8 0.81

1.98

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02

θ̂1

θ̂
2

 

 

Fig. 5. Plot with the 95% confidence ellipsoids for input se-
quences of length nseq = 104, and the estimated parameters,
Example 1. Blue, dashed line: Confidence ellipsoid for a
binary input sequence (realizations marked with ∗). Red,
continuous line: Confidence ellipsoid for the optimal input
sequence, Case 2 (realizations marked with circles).

proposed method (Graph), and when the input sequence
is a realization of a sequence of independent and uni-
formly distributed random variables with support [−1, 1]
(Uniform). The results show that the proposed method
for input design outperforms the experiment result based
on uniform samples. In addition, we can also compare
our result with those obtained with the input being inde-
pendent and Gaussian distributed, with zero mean and
variance 1 (Normal in Table 1), and when the input is a
realization of a binary white process with values −1 and
1 (Binary in Table 1). In this case, the results obtained
by Gaussian and Binary distributed inputs are closer to
the ones obtained by the proposed input design method.
However, our method still improves the input based on
random samples.

As an additional exercise, we can also compute the re-
sults obtained when the input is designed for the following
cases:

Case 1: nm = 2, C = {−1, 0, 1} , (43)

Case 2: nm = 1, C = {−1, −1/3, 1/3, 1} , (44)

Case 3: nm = 1, C = {−1, −0.5, 0, 0.5, 1} . (45)

Table 2 presents the results when the Markov chains
associated with the Cases 1-3 are employed to generate
nseq = 104 samples. From these results we conclude that
we can increase the information obtained from the in-
put if we extend the memory of the stationary process

Table 2
Numerical results for the cost function in Example 1, Cases
1-3.

h(IF ) Case 1 Case 2 Case 3

log{det(IF )} 3.82 4.50 4.48

generating the input sequence. Moreover, the results are
significantly better when we only extend the set C.

To analyze the accuracy of the method, we present in Fig-
ure 5 the 95% confidence ellipsoids for the input sequence
generated from a random binary distribution, and from
an optimal input obtained by solving Case 2. In addi-
tion, we also plot 102 estimated parameters computed by
using the data set generated with both input sequences.
The results in the figure show that the proposed input de-
sign technique decreases the uncertainty region for the
estimated parameters, compared with a random input se-
quence of length nseq. This conclusion is also confirmed
by the numerical estimates of θ0, which obeys the dis-
tribution given by the theoretical bounds. Therefore, the
proposed technique is an attractive alternative to increase
the accuracy of the parameter estimates obtained with
random samples. �

Example 2 Consider the problem introduced in Exam-
ple 1. As before, we will design an input of nseq = 104

samples as a realization of the pmf obtained by solving
Problem 1, for Case 2 and Case 3 in Example 1. In this
case, Problem 1 is solved for h(·) = − tr{(·)−1}.

Table 3
Numerical results for the cost function in Example 2.

h(IF ) Case 2 Case 3 Unif. Normal Binary

tr{IF
−1} 0.49 0.45 1.21 0.96 0.83

The results obtained by different input sequences of length
nseq = 104 are presented in Table 3, where Unif. Normal
and Binary represent the results obtained with the ran-
dom samples defined in Example 1. The results show that
the proposed input design technique (Case 2 and Case
3 in Table 3) outperforms the inputs based on random
samples.

To analyze the accuracy for this example, Figure 6
presents the 95% confidence ellipsoids for the input se-
quence generated from a random binary distribution,
and from an optimal input obtained by solving Case 3.
In addition, we also plot 102 estimated parameters com-
puted by using the data set generated with both input
sequences. In the same line than Figure 5, we see that
the accuracy of the estimated parameters is improved
for the confidence sets, when we compare the optimal
input sequence with a random realization from a binary
distribution. Therefore, the method presented in this ar-
ticle is an effective approach to design input sequences
to identify the system (40). �

10



0.79 0.8 0.81

1.98

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02

θ̂1

θ̂
2

Fig. 6. Plot with the 95% confidence ellipsoids for input se-
quences of length nseq = 104, and the estimated parameters,
Example 2. Blue, dashed line: Confidence ellipsoid for a
binary input sequence (realizations marked with ∗). Red,
continuous line: Confidence ellipsoid for the optimal input
sequence, Case 3 (realizations marked with circles).

7 CONCLUSIONS

In this paper we have developed a novelmethod to design
input signals for system identification. The input signal
is restricted to be the realization of a stationary process
with finite memory. Thus, the method computes the pmf
that maximizes a scalar cost function of the informa-
tion matrix in the set of such processes. To describe the
feasible set we use elements from graph theory, where
the vertices of the feasible polyhedron are represented
by the prime cycles in a de Bruijn graph. Therefore, the
information matrix can be numerically computed as a
convex combination of the information matrices associ-
ated with those prime cycles. The optimization problem
then becomes convex even for nonlinear models.

Once the optimal pmf is computed, we run a Markov
chain to obtain an input signal with the desired station-
ary distribution. For that purpose, we have developed an
algorithm to design a transitionmatrix achieving the sta-
tionary pmf. Finally, the numerical example has shown
that the proposed method can be successfully applied to
design inputs for nonlinear output-error systems, and it
outperforms inputs based on random samples.

As a future work on this topic, we will address the issue
related with the computational complexity of the pro-
posed method. In particular, we will analyze how the
computation of the prime cycles can be reduced. Fur-
thermore, we will consider extensions of the proposed
technique to more general model structures.
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A Convergence analysis of the approximation

for I
(i)
F

In this section we prove that the approximation (16)

converges to I
(i)
F as Nsim → ∞:

Theorem 4 If {ut} is periodic of period T satisfying

|ut| ≤ K for some K ≥ 0, and ψθ0t (Ut)ψ
θ0
t (Ut)T is expo-

nentially stable, then

lim
Nsim→∞

1

Nsim

Nsim
∑

t=1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

=
1

T

T
∑

t=1

ψθ0t (Ut,−∞)ψθ0t (Ut,−∞)T

=

∫

ψθ0t (Ut,−∞)ψθ0t (Ut,−∞)T dP (Ut,−∞) , (A.1)

where {ũt} is equal to {ut} for t > 0 but ũt = 0 for t ≤ 0,

Ũt,−∞ := {ũk}tk=−∞, Ut,−∞ := {uk}tk=−∞, and P is the
probability measure of a Markov chain generating {ut}
(a uniform initial probability distribution on the set of
possible values of UT ). �

Proof. Given ε > 0, take S as a multiple of T such that
CδSψ < ε. Then, for every t > S,

∣

∣

∣
ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

−ψθ0t (Ũ t−St,−∞)ψθ0t (Ũ t−St,−∞)T
∣

∣

∣
< CδSψ < ε . (A.2)

On the other hand, since {ut} is periodic of period T ,

U t−St,−∞ takes only a finite number of values for t > S (at
most S), we have that for Nsim = mS + n (with m, n
positive integers):

1

Nsim

Nsim
∑

t=1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

=
mS

Nsim

1

mS

[

mS
∑

t=1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

+

Nsim
∑

t=mS+1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

]

=
mS

Nsim

1

mS

mS
∑

t=1

[

ψθ0t (Ũ t−St,−∞)ψθ0t (Ũ t−St,−∞)T + ηt

]

+
1

Nsim

Nsim
∑

t=mS+1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

=
mS

Nsim

1

T

T
∑

t=1

ψθ0t (U t−St,−∞)ψθ0t (U t−St,−∞)T

+
1

Nsim

mS
∑

t=1

[µt + ηt]

+
1

Nsim

Nsim
∑

t=mS+1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T , (A.3)
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where µt, ηt ∈ [−ε, ε]. Thus, the second term in (A.3) is
bounded by 2ε. Moreover, the third term in (A.3) tends
to 0 as Nsim → ∞ (since it consists of a sum of a most
S terms). Therefore,

∣

∣

∣

∣

∣

lim
Nsim→∞

1

Nsim

Nsim
∑

t=1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

−
1

T

T
∑

t=1

ψθ0t (U t−St,−∞)ψθ0t (U t−St,−∞)T

∣

∣

∣

∣

∣

≤ 2ε , (A.4)

and since ε was arbitrary, we conclude that

lim
Nsim→∞

1

Nsim

Nsim
∑

t=1

ψθ0t (Ũt,−∞)ψθ0t (Ũt,−∞)T

=
1

T

T
∑

t=1

ψθ0t (U t−St,−∞)ψθ0t (U t−St,−∞)T . (A.5)

The last equality in (A.1) follows since P assigns equal
probability to T different sequences (corresponding to
the possible sequences obtained by shifting {ut}). �
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