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Abstract— We propose a novel approach to input design for
identification of nonlinear state space models. The optimal input
sequence is obtained by maximizing a scalar cost function of
the Fisher information matrix. Since the Fisher information
matrix is unavailable in closed form, it is estimated using
particle methods. In addition, we make use of Gaussian process
optimization to find the optimal input and to mitigate the
problem of a large computational cost incurred by the particle
method, as the method reduces the number of functional
evaluations. Numerical examples are provided to illustrate the
performance of the resulting algorithm.

Index Terms— System identification, input design, Gaussian
process optimization.

I. INTRODUCTION

Input design concerns the maximization of the information
retrieved from an experiment. Some of the first contributions
in this area have been introduced in [1], [2]. Since then, sev-
eral approaches to experiment design have been developed
(see e.g. [3] and the references therein).

Recently, the problem of input design for the identification
of nonlinear dynamical models has gained interest. One
of the main difficulties in this case is that a closed form
expression for the Fisher information matrix is typically
not available. In addition, the frequency domain techniques
employed in the linear case [4] are no longer valid, which
implies that other formulations are required. Contributions
in this field consider nonlinear FIR models [5], multilevel
excitation [6], [7], [8], and nonlinear state space models [9],
among others.

As the Fisher information matrix is unavailable in closed
form, we need to rely on estimates. However, such estimates
are always subject to uncertainty, which results in difficulties
when implementing traditional optimization methods.

In this work, we explore the reduction of the computational
complexity when calculating the objective function used
in input design for identification of nonlinear dynamical
models. To this end, a Gaussian process optimization (GPO)
based algorithm is presented. By assuming that the scalar
function of the Fisher information matrix is a realization
from a Gaussian process (GP), we can compute its predictive
posterior distribution given a set of samples over the feasible
set. The predictive posterior distribution acts as a surrogate
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of the intractable objective function, and is employed to
compute the next sample over the feasible set by using
an acquisition rule. This technique recursively explores the
feasible set to determine the element maximizing a surrogate
function. The advantage of this approach when compared
with existing techniques is that it can handle uncertainty
in the estimates of the objective function, and it drives the
exploration of the input space towards those regions where
an improvement of the objective function is expected.

As with most approaches in experiment design, we rely on
prior information about the system for computing an optimal
design. This assumption can be overcome by implementing
an adaptive scheme [10], or by using a robust input design
scheme on top of it [11]. However, this is beyond the scope
of this paper.

II. PROBLEM FORMULATION

Consider the discrete time, nonlinear state space model
(SSM) defined for all t ≥ 1 by

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (1a)

yt|xt ∼ gθ(yt|xt, ut), (1b)

x0 ∼ µθ(x0), (1c)

where fθ , gθ, and µθ are known probability density functions
(pdf) parameterized by the unknown parameter θ ∈ Θ ⊂
R

nθ . Here, ut ∈ C ⊆ R
nu denotes the input signal, xt ∈ R

nx

are the (unobserved/latent) internal states, and yt ∈ R
ny are

the measured outputs. We assume that there exists a θ0 ∈ Θ
such that the pdfs in (1) describe the true pdfs of the system
when θ = θ0, i.e., there is no undermodelling [3].

The objective is to design u1:T := (u1, . . . , uT ) ∈ CT ,
such that the parameter θ in the model (1) can be identified
with maximum accuracy as defined by a scalar function of
the Fisher information matrix Iθ0

F [2], given by

Iθ0
F (u1:T ) := E

{
S(θ0)S⊤(θ0)|u1:T

}
, (2)

with S(θ0) denoting the score function, i.e.,

S(θ0) := ∇ ℓθ(y1:T )|θ=θ0
, (3a)

ℓθ(y1:T ) := log pθ(y1:T |u1:T ) . (3b)

We note that the expected value in (2) is with respect to the
stochastic processes in (1).

In the following, we consider u1:T as a realization of a
stationary process. Hence, we will be interested in the per-
sample Fisher information matrix, given by

Iθ0,av
F (u1:T ) :=

1

T
Eu

{
Iθ0
F (u1:T )

}
. (4)



The input u1:T optimizes a scalar function of (4). We
define this scalar function as h : R

m×m → R, assumed to
be a matrix nondecreasing function [12, p. 108].

The problem presented here can be summarized as
Problem 1: Find an input signal uopt

1:T ∈ CT as

uopt
1:T := arg max

u1:T∈CT
h(Iθ0,av

F (u1:T )) , (5)

where h : R
m×m → R is a matrix nondecreasing function,

and Iθ0,av
F (u1:T ) is given in (4). �

III. GAUSSIAN PROCESS OPTIMIZATION IN INPUT DESIGN

Problem 1 is difficult to solve. One of the main challenges
is the characterization of h(Iθ0,av

F (u1:T )) for all u1:T ∈
CT . Indeed, a closed form expression for h(Iθ0,av

F (u1:T ))
is only available under specific assumptions on the model
structure (1) and the input properties, implying that we need
to rely on approximations in the general case. Moreover, even
if an estimate of h(Iθ0,av

F (u1:T )) is available, the estimate is
subject to uncertainty, and this uncertainty cannot be handled
by part of the available optimization methods.

Instead, we employ the iterative procedure discussed in
[13] to solve Problem 1. The procedure generates a sequence
of iterates {u(k)

1:T}k≥0 for the input excitation. Each iteration
consists of three steps:

(i) Given u
(k)
1:T , compute an estimate of the objective func-

tion h(Iθ0,av
F (u

(k)
1:T )), denoted by ĥk.

(ii) Given the collection of tuples {u(j)
1:T , ĥj}kj=0, cre-

ate a model of the (unavailable) objective function
h(Iθ0,av

F (u1:T )).
(iii) Use the model as a surrogate for h(Iθ0,av

F (u1:T )) to
generate a new iterate u

(k+1)
1:T .

The procedure only requires one estimate of h(Iθ0,av
F (u1:T ))

at each iteration, hence keeping the number of estimates as
low as possible. Moreover, it requires fewer iterations than a
random search, since it focuses on regions of CT where an
improvement is expected.

For step (i), we employ particle methods to estimate
h(Iθ0,av

F (u
(k)
1:T )). This is discussed in Section III-A.

For steps (ii) and (iii) we use the GPO framework [14],
[15]. We first compute a surrogate of the objective function
by modelling it as a Gaussian process, and computing the
predictive posterior distribution based on {u(j)

1:T , ĥj}kj=0.
This is discussed in Section III-B.

Then we make use of a heuristic, referred to as the
acquisition rule (presented in Section III-C), to compute
u
(k+1)
1:T based on the GP model. The acquisition rule favours

values of u1:T for which the model predicts a large value of
the objective function and/or where there is high uncertainty.
This establishes a trade-off between exploration and exploita-
tion of the input set. Finally, to employ the GPO framework
in input design, we need tractable parameterizations of CT ,
which are discussed in Subsection III-D.

A. Estimating the Fisher information matrix

Given u
(k)
1:T ∈ CT , we need to approximate (4). To this

end, we consider the estimator in [16], which is based on

one estimate of S(θ0) (provided a sufficiently large T ) to
approximate (4) by [17]

Îθ0,av
F :=

1

T

[
T∑

t=1

Ŝt(θ0)(Ŝt(θ0))
⊤ − 1

T
Ŝ(θ0)(Ŝ(θ0))⊤

]
,

(6)
where the Fisher identity [18] can be used to write1

S(θ′) =
T∑

t=1

St(θ
′) , (7)

St(θ
′) :=

∫
∇ ξθ(xt−1:t)|θ=θ′pθ′(xt−1:t|y,u) dxt−1:t ,

ξθ(xt−1:t) := log fθ(xt|xt−1, ut−1) + log gθ(yt|xt, ut) ,

where xt−1:t := {xt−1, xt}. From (6), we note that an
estimate for (7) is required, which can be obtained from
particle methods [19].

To estimate the score function in (7), we require the
two-step smoothing distribution pθ(xt−1:t|y,u), which is
not available analytically for a general SSM. Instead, we
approximate it using an empirical distribution

p̂θ(dxt−1:t|y,u) :=
N∑

i=1

w
(i)
t δ

x
(i)
t−1:t

(dxt−1:t), (8)

where x
(i)
t and w

(i)
t denote particle i and its normalized

weight at time t. Here, {x(i)
t , w

(i)
t }Tt=1 denotes the particle

system generated by a particle filter and δx′ denotes the Dirac
measure located at x = x′.

Following [16], here we use the bootstrap particle filter
(bPF), see Algorithm 1 [21]. However, the estimator (8)
based only on the bPF often suffers from poor accuracy due
to particle degeneracy, see e.g. [19]. To mitigate this problem,
we use a particle smoother that introduces a backward
sweep after the forward run of the bPF. Here, we use the
forward-filtering backwards simulator (FFBSi) with rejection
sampling and early stopping [20].

Algorithm 2 presents the pseudo-code for the FFBSi.
Here, Multi({p(i)}Ni=1) and Uniform([a, b]) denote the multi-
nomial distribution over N elements, with p(i) being the
probability of choosing the i-th element, and the uniform
distribution with support [a, b], respectively. We note that
the parameter ρ required by Algorithm 2 is chosen such
that fθ(xt|xt−1, ut−1) ≤ ρ for all t ∈ {1, . . . , T }. The
computational complexity of FFBSi is of order O(NMT ),
where N and M denote the number of filter and smoother
particles, respectively. We refer to [20] for more details on
the effects of N , M and T in the accuracy of the estimator
and to [19] for more details on Algorithms 1-2.

B. Modelling the objective function

We explore the use of a GP to model the objective
function h(Iθ0,av

F (u1:T )) [22]. GPs can be understood as a
generalization of the multivariate Gaussian distribution and
are commonly used as priors over functions [23]. In this
perspective, the posterior obtained by conditioning on the

1For conciseness, we write v := v1:T for any vector v1:T . In addition,
we remove the dependence on k of the input, state, and measurements.



Algorithm 1 Bootstrap particle filter (bPF)
INPUTS: An SSM (1), y (observations), u (inputs), N ∈ N (no.
particles).
OUTPUT: {x(i)

t , w
(i)
t }

N
i=1, t = 1, . . . , T .

1: Sample x
(i)
0 ∼ µθ(x0) and set w(i)

0 = 1/N .
2: for t = 1 to T do
3: for i, j = 1 to N do
4: (Resampling) Sample a

(i)
t from a multinomial distribu-

tion with P

(
a
(i)
t = j

)
= w

(j)
t−1.

5: (Propagation) Sample x
(i)
t ∼ fθ

(
x
(i)
t

∣∣∣xa
(i)
t

t−1 , ut

)
.

6: Set x(i)
0:t =

{
x
a
(i)
t

0:t−1, x
(i)
t

}
.

7: (Weighting) Calculate w̃
(i)
t = gθ

(
yt

∣∣∣x(i)
t , ut

)
.

8: Normalize w̃
(i)
t (over i) to obtain w

(i)
t .

9: end for
10: end for

Algorithm 2 Fast forward-filtering backward-simulator
with early stopping (fFFBSi-ES)
INPUTS: Inputs to Algorithm 1, M ∈ N (no. backward trajectories),
Nlimit ∈ N (limit for when to stop using rejection sampling), ρ > 0.
OUTPUT: Îθ0,avF (u) (estimate of the Fisher information matrix).

1: Run Algorithm 1 to obtain the particle system
{
x
(i)
t , w

(i)
t

}N

i=1
for t = 1, . . . , T .

2: Sample
{
bT (j)

}M

j=1
∼ Multi

(
{w(i)

T }
N
i=1

)
.

3: Set x̃(j)
T = x

bT (j)
T for j = 1, . . . ,M .

4: for t = T − 1 to 1 do
5: L← 1, . . . ,M .
6: {Rejection sampling until Nlimit trajectories remain.}
7: while |L| ≥ Nlimit do
8: n← Multi

(
{1/|L|}|L|

i=1

)
.

9: δ ← ∅.
10: Sample

{
I(k)

}n

k=1
∼ Multi

(
{w(i)

t }
N
i=1

)
.

11: Sample
{
U(k)

}n

k=1
∼ Uniform([0, 1]).

12: for k = 1 to n do
13: if U(k) ≤ f

(
x̃
L(k)
t+1 |x

I(k)
t

)
/ρ then

14: bt(L(k))← I(k).
15: δ ← δ ∪ {L(k)}.
16: end if
17: end for
18: L← L \ δ.
19: end while
20: {Use standard FFBSi for the remaining trajectories [20].}
21: for j ∈ L do
22: Compute w̃

(i,j)
t|T ∝ w

(i)
t f

(
x̃
(j)
t+1|x

(i)
t

)
for i = 1, . . . , N .

23: Normalize the smoothing weights
{
w̃

(i,j)
t|T

}N

i=1
.

24: Draw bt(j) ∼ Multi

({
w̃

(i,j)

t|T

}N

i=1

)
.

25: end for
26: Set x̃(j)

t:T =
{
x
bt(j)
t , x̃

(j)
t+1:T

}
for j = 1, . . . ,M .

27: Calculate
Ŝ(k)
t (θ) =

1

M

M∑

j=1

∇ξθ
(
x̃
(j)
t:t+1

)
.

28: end for
29: Compute Îθ0,avF (u1:T ) using (6).

observations corresponds to the functions that could have
generated the observations.

In the following, we model the function h(Iθ0,av
F (·)) as
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Fig. 1. Left: Histogram of ν and plot of the scaled pdf of an N (0, 12)
distribution (continuous line), Example 1. Right: Quantile-quantile plot of
the samples of ν and the N (0, 12) distribution, Example 1.

being a priori distributed according to a GP. That is

h(Iθ0,av
F (·)) ∼ GP (m(·), κ(·, ·)) , (9)

where the process is fully described by the mean function
m(·) and the covariance function κ(·, ·). Examples of these
functions are a constant for m and a Matérn s/2 function
for κ [22, p.84].

To simplify the discussion, we will focus on a specific
iteration k of the proposed procedure. Let Dk := {u(k)

1:T , ĥk}
denote a set of iterates, where u

(k)
1:T and ĥk denote matrices

obtained by stacking input realizations and estimates of the
objective function up to iteration k, respectively. In addition,
we will assume that

ĥk = h(Iθ0,av
F (u

(k)
1:T )) + z , (10)

where z ∼ N (0, σ2
z), and σz > 0. We note that σz is

unknown a priori, and it needs to be estimated using Dk. The
assumption (10) seems strict, but the continuous mapping
theorem [24, Theorem 2.7] shows that the central limit
theorem also applies to the estimate ĥk, as it is satisfied
by (3b) asymptotically in the number of particles.

Example 1: Consider

xt+1|xt ∼ N
(
φxt + ut, 0.1

2
)
, (11a)

yt|xt ∼ N
(
αxt, 0.1

2
)
, (11b)

where the parameters are θ = {φ, α}. We generate T = 103

observations from (11) with θ0 = {0.8, 1}.
We are interested in estimating h(Iθ0,av

F (u1:T )) =

log det(Iθ0,av
F (u1:T )), where u1:T is a binary white noise

process with values {−1, 1}.
The estimate of the Fisher information matrix is obtained

using Algorithms 1-2, with N = 2.5·103 particles, M = 100
backward trajectories and Nlimit = ⌊

√
N⌋ in the fFFBSi

smoother. Figure 1 shows the histogram based on 103

realizations of the random variable

ν :=

√
M(ĥ− h)

σ√
Mĥ

, (12)

where ĥ := h(Îθ0,av
F (u1:T )), and h, σ2√

Mĥ
are the sam-

ple mean of ĥ and variance of
√
M ĥ, respectively. As a

comparison, we also present the scaled pdf of an N (0, 12)
distribution. We can see that the histogram follows the shape
of the pdf of a N (0, 12) distribution. This is also confirmed
by the quantile-quantile (QQ) plot in Figure 1, where the



quantiles of ν coincides with those given by an N (0, 12)
distribution. �

Based on (10), it follows that the predictive posterior
distribution is

h(Iθ0,av
F (u1:T ))|Dk ∼ N

(
µ(u1:T |Dk), σ

2(u1:T |Dk) + σ2
z

)
,

(13)
where µ(u1:T |Dk) and σ2(u1:T |Dk) denote the posterior
mean and variance given Dk. From standard results for the
Gaussian distribution, we have

µ(u1:T |Dk) = m(u1:T )

+ κ(u1:T , u
(k)
1:T )Γ

−1
{
ĥk −m(u1:T )

}
,

(14a)

σ2(u1:T |Dk) = κ(u1:T , u1:T )

− κ(u1:T , u
(k)
1:T )Γ

−1κ(u
(k)
1:T , u1:T ) , (14b)

with Γ := κ(u
(k)
1:T , u

(k)
1:T )+σ2

zIk, where Ik denotes the k×k-
identity matrix.

In the GP model introduced here, we use mean and
covariance functions that possibly depend on some unknown
hyperparameters. In addition, we also need to estimate σz

characterizing the random variable z in (10). To estimate
these quantities, we adopt the empirical Bayes procedure,
where the marginal likelihood of the data is numerically
optimized with respect to the hyperparameters [25].

C. Acquisition rules

To implement step (iii), we need to generate u
(k+1)
1:T ∈ CT .

One option is to perform a random walk over CT , which
works well provided that the parameterization of u1:T is of
small dimension. However, this approach is inefficient as the
dimension of the parameterization for u1:T increases.

Instead, we make use of acquisition rules that balance
exploration and exploitation of the parameter space and
employ the posterior distribution obtained from the GP. Here,
we use the expected improvement (EI) technique [26].

Consider the predicted improvement

I(u1:T ) := max
{
0, h(Iθ0,av

F (u1:T ))− µmax − ξ
}
, (15)

where ξ ∈ R is a user defined coefficient balancing explo-
ration and exploitation2, and

µmax := max
u1:T∈u

(k)
1:T

µ(u1:T |Dk) , (16)

the expected peak of h(Iθ0,av
F (u1:T )) at iteration k.

By using the posterior distribution obtained from the GP,
we define the EI as3

E {I(u1:T )} = σ(u1:T ) {Z(u1:T )Φ(Z(u1:T ))

−φ(Z(u1:T ))} , (17a)

Z(u1:T ) := σ−1(u1:T ) {µ(u1:T )− µmax − ξ} , (17b)

2|ξ| should be a fraction of |µmax| to promote exploration (ξ < 0) or
exploitation (ξ > 0) in the method.

3For simplicity, the dependence on Dk is dropped from the notation.

with Φ and φ denoting the cumulative distribution function
and the pdf of the standard Gaussian distribution, respec-
tively. Then, an acquisition rule is

u
(k+1)
1:T = arg max

u1:T∈CT
E {I(u1:T ) |Dk }+ e1:T , (18)

where e1:T is a random vector4 with a user defined distribu-
tion such that E{e1:T} = 0. Hence, the input in the next
iteration is a realization of a random variable promoting
exploration around the element maximizing the EI. From
(17) we see that the EI assigns a large value when both the
variance σ(u1:T ) and the mean difference µ(u1:T ) − µmax

are large, in line with the desired behavior of an acquisition
function, as it is explained at the beginning of Section III.

D. Parameterizing the input

To implement the GPO for solving the input design
problem, we need a parameterization of CT . Here we briefly
explain two options:

1) Stationary Markov processes: If we restrict C to be
finite and u1:T to be a realization from an n-dimensional
stationary Markov process of a given order, then the param-
eterization employed in [8] can be used. This parametrization
is of interest when amplitude constraints on the input must
be satisfied during the experiment.

The parameterization of the input is given by the stationary
distribution of the Markov process, which is constrained to

PC :=

{
pu : Cn → R

∣∣∣∣ pu(x) ≥ 0, ∀x ∈ Cn;

∑

x∈Cn

pu(x) = 1;

∑

v∈C
pu(v, z) =

∑

v∈C
pu(z, v) , ∀z ∈ Cn−1

}
. (19)

Following [8], we parameterize (19) as the convex hull
of its extreme points, which are computed using graph
theoretical techniques. Therefore, the decision variable in
this case corresponds to the weighting vector of the extreme
points describing an element in PC . Assuming that PC
has nV extreme points, then the weighting vector α :=
[α1 . . . αnV

]⊤ ∈ R
nV is used to compute p ∈ PC as

p =

nV∑

i=1

αip
(i) , (20)

with α satisfying

αi ≥ 0 , for all i ∈ {1 , . . . , nV} , (21a)
nV∑

i=1

αi = 1 . (21b)

In (20), {p(i)}nV

i=1 corresponds to the probability mass
functions (pmf) that are the extreme points of PC .

4The implementation of the random vector is over the parameter space
characterizing CT .



Algorithm 3 GPO for input design

INPUTS: Algorithm 2, K (no. iterations) and u
(0)
1:T ∈ C

T (initial
excitation).
OUTPUT: {x(i)

t , w
(i)
t }

N
i=1, t = 1, . . . , T .

1: Sample u
(0)
1:T ∈ C

T .
2: for k = 0 to K do
3: Use Algorithm 2 to compute ĥk := h(Îθ0 ,avF (u

(k)
1:T )).

4: Compute (13)-(14) to obtain h(Iθ0 ,avF (u1:T ))|Dk .
5: Compute (16) to obtain µmax.
6: Compute (18) to obtain u

(k+1)
1:T .

7: end for
8: Compute the maximizer of µ(u1:T |DK) to obtain uopt

1:T .

Once a new sample α ∈ R
nV satisfying5 (21) is generated,

we compute the associated pmf p ∈ PC by (20), and we
generate u1:T by running a Markov chain with stationary
distribution p.

2) Stationary AR processes: If variance constraints are
imposed on the input, we can restrict u1:T to be a filtered
white noise process, as it is proposed in [27]. In this case,
the decision variables are the filter coefficients, and the
properties of the white noise. For example, we can assume
that u1:T is a realization from a stationary AR process

A(q)ut = et , (22)

where {et} is Gaussian white noise, with variance σ2
e , and

A(q) :=

na∑

i=0

ai q
−i , (23)

with na > 0 given, ai ∈ R for all i ∈ {1, . . . , na}, and
a0 = 1. For this example, the decision variables are σe > 0,
and {ai}na

i=1, such that A(q) has all its zeros strictly inside
the complex unit disc6.

E. The final procedure

Algorithm 3 presents the resulting procedure for input
design using Gaussian process optimization. We note that
only one functional evaluation is required per iteration,
reducing the computational effort when optimizing over CT .

IV. NUMERICAL EXAMPLES

Example 2: Consider the linear Gaussian SSM in Exam-
ple 1. We are interested in maximizing h(Iθ0,av

F (u1:T )) =

log det(Iθ0,av
F (u1:T )), where u1:T (T = 103) is a realization

of a stationary Markov process (see Section III-D), with
nm = 1 and C = {−1, 1}.

For Algorithm 3, we use K = 500, ξ = 0.01, and u
(k+1)
1:T

given as a random walk centered around the parametrization
of the argument maximizing the EI at iteration k, uniformly
distributed on [−0.01, 0.01]. The estimate of the Fisher infor-
mation matrix is obtained using Algorithms 1-2, which are
implemented as in Example 1. For the prior distribution of

5This can be achieved by sampling α satisfying (21a), and then normal-
izing the entries of α to satisfy (21b).

6This can be guaranteed by factorizing A(q) into first and second order
polynomials in q, and imposing the constraint on each of these factors.

h(Iθ0,av
F (u1:T )), we consider a constant mean function, and

a covariance function composed of a Matérn s/2 structure
and a constant, where the value of s and the constant are
estimated using empirical Bayes. The Matérn s/2 structure
is chosen in this example as it contains information about the
smoothness of h(Iθ0,av

F (u1:T )). Other choices for the covari-
ance function are possible and we refer to [22, Chapter 4]
for more details.

Algorithm 3 is implemented in Matlab using the
fmincon command for (18) and the GPML toolbox [28]
to infer the hyperparameters and estimate the predictive
posterior distribution of h(Iθ0,av

F (u1:T )).
The solution given by Algorithm 3 is ut = 1 for all

t ≥ 0. In this example, a nonzero constant input introduces a
nonzero offset in the measurements, which helps to estimate
θ in the presence of process disturbance and measurement
noise. As a reference, we draw u1:T as a realization from a
binary white noise process with values {−1, 1}. The results
are h(Iθ0,av

F (uopt
1:T )) = 14.57 for the optimal input and

h(Iθ0,av
F (u1:T )) = 10.18 for the binary white noise. �

Example 3: Consider the system

xt+1|xt ∼ N
( 1

γ + x2
t

+ ut, 0.1
2
)
, (24a)

yt|xt ∼ N
(
βx2

t , 1
2
)
, (24b)

where the parameters are θ = {γ, β}. We generate T = 103

observations from the model with θ0 = {2, 0.8}. We note
that estimating γ in (24) is inherently difficult, since two
different values of xt can explain yt equally well.

We consider the same setting and function h as in Exam-
ple 2, but we consider three cases for C:

• Case 1: C = {−1, 1}.
• Case 2: C = {−1, 0, 1}.
• Case 3: C = {−1,−1/3, 1/3, 1}.

Table I presents the value of hopt := h(Îθ0,av
F (uopt

1:T ))
for each case, where uopt

1:T corresponds to the optimal input
obtained from Algorithm 3. As comparison, we also present
h(Îθ0,av

F (u1:T )) when {ut} is a first order stationary AR
process given by (22)-(23), where a1 = −0.9 and σ2

e =
1 − a21, and a binary distributed white noise with values
{−1, 1} (AR Gaussian and Binary in Table I, respectively).
We see that the stationary AR process gives less information
than the binary white noise process, and that the binary
white noise seems to be optimal when C = {−1, 1}, as it is
confirmed by the value of hopt for Case 1. We also note that
adding intermediate values to the input alphabet increases
the amount of information in the data, as hopt is greater in
Cases 2 and 3 than in Case 1.

0 20 40 60 80 100
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0

1

t

u
t

Fig. 2. Optimal input uopt
1:T for Case 3 in Example 3.
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Fig. 3. Value of ĥk and µmax at iteration k for Case 3 in Example 3.

TABLE I

hopt FOR DIFFERENT INPUT REALIZATIONS, EXAMPLE 3.

Input AR Gaussian Binary Case 1 Case 2 Case 3
hopt 2.07 4.11 4.11 4.15 4.44

Figure 2 presents the optimal input obtained for Case 3.
We note that the optimal input includes a nonzero offset to
improve the accuracy of the parameter estimates.

To illustrate the evolution of ĥk, Figure 3 presents the
samples {ĥk}100k=1, together with the value of µmax at every
iteration. The first 20 samples are drawn at random from
CT to provide an initial estimate of the hyperparameters in
the GP prior. We note that some of the samples in {ĥk}20k=1

are not close to the optimal cost, which is expected due to
random sampling. However, once Algorithm 3 is executed
from iteration 21 onwards, we observe that the samples are
close to µmax, which implies that the space CT is explored
only in those regions where h can only increase with respect
to the current estimates. Hence, the proposed technique
drives the parameter search towards those regions where an
improvement in the objective function is expected. �

V. CONCLUSIONS

A Gaussian process optimization algorithm for input de-
sign for the identification of nonlinear dynamical models
has been introduced. The method maximizes a scalar cost
function of the Fisher information matrix over the parameter
set for the input sequence. Since the objective function is
unavailable in closed form, a Gaussian process approach is
employed to compute a surrogate function. Numerical exam-
ples show that the algorithm can provide a good alternative
to solve the input design problem.

Future work on this subject will consider a better estima-
tor of the Fisher information matrix with a better particle
smoother, alternative parameterizations of {ut} and conver-
gence analysis of the method.
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[18] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov
Models, Springer, 2005.

[19] F. Lindsten and T.B. Schön, “Backward simulation methods for
Monte Carlo statistical inference,” Foundations and Trends in Machine
Learning, vol. 6, no. 1, pp. 1–143, 2013.

[20] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential Monte
Carlo smoothing for general state space hidden Markov models,”
Annals of Applied Probability, vol. 21, no. 6, pp. 2109–2145, 2011.

[21] A. Doucet and A. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in The Oxford Handbook of Nonlinear
Filtering, D. Crisan and B. Rozovsky, Eds. Oxford University Press,
2011.

[22] C.E. Rasmussen and C.K.I. Williams, Gaussian processes for Machine
Learning, MIT press, 2006.

[23] P. Boyle, Gaussian processes for regression and optimisation, Ph.D.
thesis, Victoria University Wellington, Wellington, New Zealand,
2007.

[24] P. Billingsley, Convergence of probability measures, 2nd ed., John
Wiley & Sons, 1999.

[25] B.P. Carlin and T.A. Louis, Bayes and empirical Bayes methods for
data analysis, London: Chapman and Hall, 1996.

[26] D.R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4,
pp. 345–383, 2001.

[27] R.B. Gopaluni, T.B. Schön, and A.G. Wills, “Input design for
nonlinear stochastic dynamic systems - A particle filter approach,” in
Proceedings of the 18th IFAC World Congress, Milano, Italy, August
2011.

[28] C.E. Rasmussen and H. Nickish, Gaussian process regression and
classification toolbox, version 3.6, July 2015.


