
Uncertainty in system identification:
learning from the theory of risk ⋆

Patricio E. Valenzuela ∗ Cristian R. Rojas ∗

H̊akan Hjalmarsson ∗

∗ Department of Automatic Control, KTH Royal Institute of
Technology, SE-100 44, Stockholm, Sweden (e-mail: {pva, crro,

hjalmars}@kth.se).

Abstract: This article addresses the issue of measuring uncertainty in optimization problems
arising in system identification. The issue of uncertainty has been studied in the theory of risk,
where the results are mainly employed in finance applications. Here we explore how the results
in the literature of theory of risk can be used to obtain a systematic approach to uncertainty in
system identification. For concreteness, the discussion is illustrated by an application to input
design, but it can be extended to other areas of the field.
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1. INTRODUCTION

Uncertainty is an issue common to many research areas.
By uncertainty we understand the lack of knowledge to
fully describe a phenomenon. The lack of knowledge causes
severe difficulties when we are interested in determining
the best decision with limited information. Examples of
this problem can be found in control design, where the con-
troller must be designed with limited information about
the plant dynamics (Zhou and Doyle, 1998; Zhou et al.,
1996), and in portfolio optimization, where the returns
are maximized subject to limited information about the
future evolution of the assets price (Bertsimas and Thiele,
2006; Black and Litterman, 1992; Krokhmal et al., 2002;
Perold, 1984; Postek et al., 2014).

In the same line, many problems arising in system iden-
tification are solved with limited information. In system
identification, the uncertainty can be understood as the
lack of knowledge about the true dynamics of the process
to be modeled. The uncertainty associated with the pro-
cess dynamics is of importance in applications where the
optimal decision depends on the true model description.
This is the case in input design, where the optimal input
sequence depends on true process dynamics (Ljung, 1999).
Approaches to solve this issue have been presented in
the literature, which can be classified in two classes: (i)
sequential or adaptive procedures, where a new design is
obtained based on the current estimates of the process
dynamics (Gerencsér and Hjalmarsson, 2005; Gerencsér
et al., 2009; Lindqvist and Hjalmarsson, 2001; Pronzato,
2000); and (ii) robust procedures, where the design is
obtained by including the uncertainty in the optimization
problem (Jansson and Hjalmarsson, 2005; Pronzato and
Walter, 1985; Rojas et al., 2007). In this article, we are
interested in addressing the uncertainty in input design
by using the robust approach.

The robust approach to uncertainty in system identifi-
cation has been analyzed in the literature, and several
techniques have been proposed (Larsson et al., 2012;
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Mårtensson and Hjalmarsson, 2006; Rojas et al., 2012).
The main idea behind these results is the inclusion of a
mapping from the space of functions with uncertainty to a
scalar value. The scalar value takes into account the uncer-
tainty associated with the process dynamics. Some exam-
ples of the mappings employed are the expected value, and
the supremum over the set of possible descriptions of the
process dynamics. However, there is no analysis of how well
the mappings address the issue of uncertainty in system
identification. By how well we mean if the mapping is
either a weak or a conservative measure of the uncertainty
in the optimization problem.

The problem of properly measuring the uncertainty has
been addressed in the theory of risk measures. In the
theory of risk, the uncertainty is understood as the risk
associated with the portfolios (Cramér, 1930). To properly
measure the risk associated with the portfolios, the notion
of coherent measure of risk has been introduced (Artzner
et al., 1999). Some of the requirements for a functional
to be a coherent measure of risk are the convexity and
monotonicity, which imply that the resulting optimization
problem is convex if the original problem with uncertainty
is convex. In addition, a coherent measure of risk en-
courages diversification, i.e., it is always better to invest
in several assets rather than in a single one, which is a
property usually required by investors to reduce the risk
associated with the portfolios.

In this article we explore the connection between uncer-
tainty in the theory of risk and uncertainty in system
identification. In particular, we discuss how the notion of
a coherent measure of risk can be employed to obtain a
systematic approach to uncertainty in system identifica-
tion. In addition, we introduce a coherent measure of risk
that can be useful in system identification: the conditional
value at risk (CVaR) (Rockafellar and Uryasev, 2000). The
usefulness of coherent risk measures will be illustrated by
its application to input design. However, we emphasize
that the applicability of this approach is not only limited
to this topic, it can also help to address the uncertainty
issue in other areas (e.g., a theory of risk approach has
already been used in Markov control processes and model
predictive control, see Chow and Pavone (2013, 2014);
Shen et al. (2014)).



The rest of this article is organized as follows. Section 2
presents the problem of uncertainty in system identifica-
tion. Section 3 analyzes the problem of uncertainty from
a theory of risk perspective. Section 4 explores the use
of the conditional value at risk to measure uncertainty
in system identification. Section 5 presents a numerical
example. Finally, Section 6 concludes this article.

2. UNCERTAINTY IN SYSTEM IDENTIFICATION

To illustrate the discussion in this article, we consider a
nonlinear state-space model with states x1:T := {xt}

T
t=1

(xt ∈ R
nx), inputs u1:T := {ut}

T
t=1 (ut ∈ R

nu), and
measurements y1:T := {yt}

T
t=1 (yt ∈ R

ny ) given by

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (1a)

yt|xt ∼ gθ(yt|xt, ut), (1b)

x0 ∼ µθ(x0), (1c)

where fθ(·), gθ(·), and µθ(·) denote known probability
distributions parameterized by θ ∈ Θ ⊂ R

d. We assume
that there exists a θ0 ∈ Θ such that (1) describes the
true system when θ = θ0, i.e., there is no undermodelling
(Ljung, 1999).

The main objective in system identification is to estimate
the model parameters θ from the collected input-output
data (u1:N , y1:N ) (Ljung, 1999). Since the estimated model
parameter relies on the input-output data, it is typically
required that the data must provide as much information
from the process as possible, which implies that the model
parameters can be estimated with maximum accuracy for a
given experiment length N . However, as we discuss below,
this requirement depends on the true model parameters θ0,
which are uncertain prior to performing an experiment.

2.1 Input design

A standard approach to maximize the accuracy of the
estimated model (1) is by optimizing a scalar function of

the Fisher information matrix Iθ0
F (Goodwin and Payne,

1977; Ljung, 1999). The Fisher information matrix is
defined as

Iθ0
F := E

{

S(θ0)S
⊤(θ0)

}

, (2a)

S(θ0) := ∇θ log ℓθ(y1:N)|θ=θ0
, (2b)

where ∇θ denotes the gradient operator with respect to θ,
and ℓθ(y1:N ), S(θ) denote the likelihood function and the
score function, respectively. We note that the expected
value in (2a) is over the stochastic processes in (1).

The input design problem is to find an input sequence
u1:N ∈ C ⊂ R

N which optimizes a scalar function of
(2a), where C denotes the set of feasible values for u1:N

(Valenzuela, 2014; Valenzuela et al., 2014). The scalar
function is given by h : R

d×d → R. To properly quantify
Iθ0
F , the function h must satisfy h(A) ≤ h(B) for any

two matrices A and B in the positive semidefinite cone
satisfying A � B. Hence, we assume that h is a convex,
matrix nonincreasing function (Boyd and Vandenberghe,
2004, pp. 108). Different choices of h have been proposed in
the literature, see e.g. Rojas et al. (2007); some examples
are h = − log det, and h = tr{(·)−1}. In this work, we
leave the selection of h to the user.

The problem described can be summarized as

Problem 1. Design an optimal input signal uopt
1:N , where

uopt
1:N = arg min

u1:N∈C
h(Iθ0

F (u1:N)) , (3)

with h : Rd×d → R a convex, matrix nonincreasing func-
tion, and Iθ0

F ∈ R
d×d defined as in (2).

As we can see from (2), the main difficulty to solve Prob-
lem 1 is that the input design relies on the knowledge of
the true parameters θ0, which are to be estimated using
the excitation to be designed. To solve this problem, a
robust input design scheme has been proposed, where
the input sequence is designed by incorporating the un-
certainty on the model parameters into the optimization
problem. However, the approach to overcome this issue
has only considered the definition of ad-hoc functions
(e.g. the expected value of h(Iθ0

F ), or the supremum of

h(Iθ0
F ) over Θ), and there is no systematic approach to

characterize these functions. Therefore, there is a need for
characterizing the set of functions that can be employed
to measure the uncertainty in input design.

2.2 Application oriented input design

Another alternative to guarantee a prescribed accuracy in
the model parameters is by imposing a quality constraint
over the estimated parameters, while we minimize the
experimental effort. This is the approach in least-costly
and application oriented input design (Bombois et al.,
2006; Hjalmarsson, 2009; Larsson et al., 2013, 2011).

To measure the quality of the estimated model parameters,
we consider a function J : Rd×R

d×C → R, which assesses
the performance degradation when a particular parameter
is employed in the model application, and it is compared
with the performance achieved by the true description.
The purpose of this cost function is that it incorporates the
intended model application into the input design problem.

On the other hand, the designed input sequence must
minimize the experimental effort required to fulfill a speci-
fied quality constraint on the estimated model parameters.
To this end, we introduce a function H : C → R, which
quantifies the required effort for a particular experiment
u1:N . We will assume that the function H is convex.

The application oriented input design problem can be
summarized as

Problem 2. Design an optimal input signal uopt
1:N , where

uopt
1:N =arg min

u1:N∈C
H(u1:N)

subject to J(θ0, θ, u1:N ) ≤ 0 ,
(4)

withH : C → R a convex function, and J : Rd×R
d×C → R.

We note that, without loss of generality, Problem 2 con-
siders a nonpositive constraint over J .

As with Problem 1, Problem 2 has the difficulty that the
optimal solution depends on the true model parameters
θ0. Therefore, an exact solution to Problem 2 cannot be
achieved in practical applications, and a method to include
the uncertainty in the optimization problem is required.

3. A RISK THEORETICAL APPROACH TO
UNCERTAINTY

Measuring uncertainty is one of the challenges to be ad-
dressed in system identification. There are results in the
literature providing approaches to uncertainty in different
problems. However, the problem of measuring uncertainty
in system identification needs a systematic approach pro-
viding a solid foundation to incorporate the uncertainty
into the optimization problem.



In this section we analyze the problem of uncertainty
from a risk theoretical perspective. Quoting Rockafellar
(2007) “risk is associated with having to make a decision
without fully knowing its consequences”. The objective in
risk theory is to determine the decision minimizing a cost
under risk. The definition of cost can be very general,
and it is not tied to a particular application (Rockafellar,
2007). We note that the notion of risk is also employed in
statistical decision theory (Berger, 2013), but its definition
differs from the notion of risk considered here.

The cost c : S × Ω → R associates to each action s ∈ S

(determined by the user) the value c(s, ω) ∈ R, where
ω ∈ Ω is a realization from the uncertainty associated
with the cost. The set Ω is assumed to be a probability
space with probability measure P , where P must reflect
the lack of knowledge or prior information regarding ω.
Since c establishes a map from Ω to R, we can interpret
the cost as a random variable.

Example 1. Consider Problem 1. The function h can be
seen as the cost c, where S = C, and Ω = Θ. Here,
we assume that Θ is a probability space with probability
measure Pθ.

Example 2. Consider Problem 2. The function J can be
also seen as the cost c, where S = C, and Ω = Θ × Θ.
Here, it is assumed that Θ×Θ is a probability space with
probability measure Pθ×θ.

To continue, we let X denote a random variable on Ω for
which its mean and standard deviation

µ{X} := E{X} , (5a)

σ{X} := E{(X − µ(X ))2}1/2 , (5b)

are well defined. The expected values in (5) are with
respect to the probability measure P . We will denote by
L2 the set of functions X such that (5) are bounded. Here,
we will assume that the function c is in L2 for every s ∈ S.

Example 3. Consider Problem 1. The function h is in L2

provided that µ{h(Iθ0
F )} and σ{h(Iθ0

F )} are bounded for
every u1:N ∈ C. In this case, the expected values in (5) are
with respect to the probability measure Pθ.

The task is to measure the risk of loss associated with X .
To this end, for every X ∈ L2 we associate a value R(X ),
where R : L2 → (−∞, ∞] is a functional. We note that R
is allowed to take the value ∞.

A question that arises at this point is which properties
R must satisfy to properly measure the risk associated
with X . This issue has been addressed in the literature of
theory of risk, where the notion of coherent measure of risk
has been developed (Artzner et al., 1999). Its definition is
presented below (Rockafellar, 2007):

Definition 1. A functional R : L2 → (−∞, ∞] is a coher-
ent measure of risk in the extended sense if and only if

(i) R(C) = C for all constant functions C,
(ii) for X1, X2 ∈ L2 and λ ∈ (0, 1),

R((1 − λ)X1 + λX2) ≤ (1 − λ)R(X1) + λR(X2) ,

(iii) R(X1) ≤ R(X2) when X1 ≤ X2,
(iv) R(X ) ≤ 0 when ‖X k −X‖2 → 0 with R(X k) ≤ 0 for

all k.

The functional R will be called a coherent measure of risk
in the basic sense if and only if it also satisfies

(v) R(λX ) = λR(X ) for λ > 0.

Definition 1 provides a systematic approach to measures of
risk. Property (i) is motivated by the fact that, if a random
variable has a constant outcome C, the result of measuring
its risk must be C. Property (ii) requires that R must
be a convex functional, which follows from the fact that
the risk associated with the convex combination of any
two random variables must be always less or equal than
the convex combination of the risk associated with each
random variable separately. Property (iii) requires that
R must associate a higher risk to those random variables
having a higher cost. Property (iv) requires the closedness
of R. Finally, (v) requires R to be positive homogeneous.

If R is a coherent measure of risk in the basic sense,
then by combining (ii) and (v) we obtain the subadditivity
property: for all X1, X2 ∈ L2,

R(X1 + X2) ≤ R(X1) +R(X2) . (6)

Equation (6) is an important result: it says that the risk
obtained by combining two random variables is less than
the sum of the risk associated to each random variable
separately, which leads to diversification. In other words,
it is always better to consider the sum of random variables
rather than each random variable separately, since the
former will have a lower risk.

From the perspective of Definition 1, we can analyze the
approaches employed in system identification to measure
uncertainty. It is easy to show that supX and E{X} are
coherent measures of risk in the basic sense, but the α-
quantile of the distribution of X (α ∈ (0, 1)), defined as

qα(X ) := min {z ∈ R : P{X (ω) ≤ z} ≥ α} , (7)

is not a coherent measure of risk (property (iii) in Defi-
nition 1 is not satisfied). Notice that chance constrained
optimization (Pázman and Pronzato, 2007; Rojas et al.,
2011) corresponds to constraining qα. Hence, chance con-
strained optimization problems are incoherent.

Even though supX and E{X} are coherent measures
of risk in the basic sense, they have disadvantages. In
the case of supX , it can be infinity when X does not
have a bounded support (Pronzato and Pázman, 2013,
Chapter 8). On the other hand, E{X} is a weak measure
of risk, since it only imposes a requirement on average,
and it can lead to realizations of X with poor results. In
recent years, a new coherent measure of risk in the basic
sense has been proposed: the conditional value at risk. Its
definition is given in the next subsection.

3.1 Conditional value at risk

The notion of conditional value at risk has been proposed
in Artzner et al. (1997). Its definition is as follows. Given
β ∈ (0, 1), the β-conditional value at risk is given by

CVaRβ(X ) :=
1

1− β

∫

X (ω)≥αβ(X )

X (ω)dP (ω) , (8)

where
αβ(X ) := qβ(X ) . (9)

Equation (9) is referred in the literature of theory of risk as
value at risk, and it has been widely employed in this area
(Favre and Galeano, 2002; Gaivoronski and Pflug, 2005;
Ghaoui et al., 2003). The value at risk (9) is understood
as the value of α ∈ R such that X (ω) ≤ α is satisfied with
probability β, i.e., it is the β-quantile associated to the
distribution of X . However, it has been proved in Artzner
et al. (1997) that value at risk is not a coherent measure
of risk, which implies that it is not suitable for optimizing
decisions under risk.



The definition of conditional value at risk in (8) is the
expected value of X with respect to the conditional distri-
bution of its upper αβ-tail. Therefore, the minimization of
(8) does not only guarantee that X opt(ω) ≤ αβ(X

opt) with
probability β, but it also guarantees that, with probability
1 − β, the mean value of the loss will be CVaRβ(X

opt).
In addition, it has been shown that (8) is a convex and
monotone function (Pflug, 2000), which is a property of
coherent measures of risk in the basic sense. We note that
the conditional value at risk (8) differs from the notion of
mean excess function employed in the literature of theory
of risk. Indeed, Equation (8) is computed based on the β-
quantile of X , while the mean excess function computes
the expected value of X (ω) − d given X (ω) ≥ d, where
d ∈ R. Hence, the mean excess function is a less useful
measure of risk than (8) in this context.

From Equation (8) we see that the optimization of the con-
ditional value at risk requires the user defined parameter
β. This parameter is chosen according to the confidence
level desired by the user (typically β = 0.98 in finance
applications).

On the other hand, the optimization of (8) requires to
solve (9), which can be difficult to compute. However,
Rockafellar and Uryasev (2000) showed that, under the
assumption that P is a continuous function, it is possible to
circumvent this issue by computing the conditional value
at risk as

CVaRβ(X ) = min
C∈R

[

C +
1

1− β
E {max (0, X − C)}

]

.

(10)
It has been shown in Rockafellar and Uryasev (2000)
that the bracketed expression in (10) is continuously
differentiable with respect to C, which makes CVaRβ(X )
easy to minimize numerically. Moreover, they showed that
the value of C minimizing (10) equals the value at risk
(9), which implies that the β-quantile can be obtained
without solving the nonconvex optimization (7). Finally,

if it is assumed that samples {ωi}
Nsim

i=1 can be drawn from
the distribution P , then the expected value in (10) can be
approximated as

E {max (0, X − C)} ≈
1

Nsim

Nsim
∑

i=1

max (0, X (ωi)− C) .

(11)
Therefore, Equation (11) can be used into (10) to obtain an
approximate value for the conditional value at risk, when
the expected value in (10) is difficult to compute explicitly.

4. MEASURING RISK IN SYSTEM IDENTIFICATION

In this section we illustrate how the conditional value at
risk can be used to measure uncertainty in system identi-
fication. To this end, we notice that the conditional value
at risk is a convex, and monotone function. Therefore,
the composition of a convex function with the conditional
value at risk results in a convex function (Rockafellar,
1970, pp. 32). As a consequence, the conditional value at
risk can be used to obtain robust optimization problems
that are convex, provided that the original problem is
convex in the decision variables.

4.1 Robust input design

One fundamental assumption to solve the input design
problem is that prior information on the model parameters

is available. One alternative to relax this assumption is by
removing the dependence of the design with respect to
the model parameters, which is the focus of robust input
design. However, as discussed in Section 3, the common
choices to measure uncertainty are either very conservative
or weak.

Here we propose the use of conditional value at risk to
obtain a robust input design problem. To this end, we
assume that a probability density function of the model
parameters is available to the user, denoted by pθ. We note
that the assumption is close to the requirement in Bayesian
techniques in the sense that a prior information on the
model parameters is taken into account in the optimization
problem.

Following the discussion in Section 3, we can interpret h as
a cost in L2 with respect to the probability measure given
by pθ. Thus, we can use the conditional value at risk to
obtain a robust formulation of the input design problem
as

uopt
1:N = arg min

u1:N∈C
CVaRβ(h(I

θ0
F (u1:N))) , (12)

where β ∈ (0, 1) is a parameter defined by the user. The
intuition by minimizing (12) is as follows: the mean value

of h(Iθ0
F ) associated with its 1− β tail distribution will be

equal to CVaRβ(h(I
θ0
F (uopt

1:N ))).

The optimization problem (12) is solved by employing
(10), where C ∈ R is an additional decision variable. The
resulting optimization is

uopt
1:N = arg min

u1:N∈C
C∈R

C+
1

1− β
E{max(0, h(Iθ0

F (u1:N ))−C)} ,

(13)
where the expected value in (13) is with respect to pθ. If
the original problem (3) is convex in the decision variables,
then the optimization problem (13) is also convex.

4.2 Robust application oriented input design

The application oriented input design problem also suffers
from the uncertainty in the true model parameters. To
solve this issue, we use the theory of risk approach to
obtain a robust version of Problem 2. Under the assump-
tion that the uncertainty in the true model parameters is
modeled by a probability density function pθ×θ, the robust
application oriented input design problem can be written
as

uopt
1:N =arg min

u1:N∈C
H(u1:N )

subject to CVaRβ(J(θ0, θ, u1:N)) ≤ 0 ,
(14)

where β ∈ (0, 1). We note that the constraint in (14)
follows from the monotonicity of the conditional value
at risk, and that CVaRβ(0) = 0. The meaning of the
constraint in (14) is as follows: the mean value of the
performance degradation associated with the 1 − β tail
distribution of J must be less or equal than 0.

Using (10), (14) can be formulated as

uopt
1:N =arg min

u1:N∈C
C∈R

H(u1:N )

subject to C +
1

1− β
δ(C) ≤ 0

δ(C) = E{max(0, J(θ0, θ, u1:N)− C)},
(15)



where the expected value in (15) is with respect to pθ×θ.
Finally, the resulting optimization problem will be convex
if the original problem is convex.

5. NUMERICAL EXAMPLE

Example 4. Consider the discrete-time, LTI model

yt =
q−1

1− 2r cos(θ)q−1 + r2q−2
ut + et , (16)

where θ ∈ [0, π], and {et} defined as white noise sequence,
Gaussian distributed, with zero mean and unit variance.
We assume that r = 0.95 is known.

In this example, we are interested to identify the location
of the resonance frequency θ. To this end, we design an
input sequence u1:N minimizing h(Iθ0

F ) = − log det(Iθ0
F ).

We assume that u1:N is a realization of a stationary process
with zero mean, and power spectrum given by

Φu(ω) =

20
∑

τ=−20

γ|τ |e
jωτ , (17)

where γ := {γk}
20
k=0 are the design variables. Due to the

power constraints at the input, the optimal input design
must satisfy E{u2

t} ≤ 5.

To address the uncertainty issue of the parameter θ, we
assume that θ is uniformly distributed over [0, π].

Finally, the optimization problem is given by

min
Φu

R(h(Iθ0
F ))

subject to Φu(ω) =

20
∑

τ=−20

γ|τ |e
jωτ

Φu(ω) ≥ 0, for all ω ∈ [−π, π]

E{u2
t} ≤ 5 ,

(18)

where R is a measure of risk over the uncertainty in θ. We
consider four cases for R:

• Case i: R(h(Iθ0
F )) = h(Iθ0

F ), Iθ0
F computed at the

nominal value θ0 = π/2.

• Case ii: R(h(Iθ0
F )) = E{h(Iθ0

F )}.

• Case iii: R(h(Iθ0
F )) = αβ(h(I

θ0
F )) (value at risk), with

β = 0.98.
• Case iv: R(h(Iθ0

F )) = CVaRβ(h(I
θ0
F )), with β = 0.98.

For Cases ii-iv we solve an approximation of (18), by

replacing E{h(Iθ0
F )}, the expected value in (10), and the

probability in (7) by their Monte-Carlo approximations,
with Nsim = 200 realizations for the model parameter θ.
The optimization problem (18) for Cases i, ii, and iv is
solved using the cvx toolbox available for Matlab (Grant
and Boyd, 2014), and Case iii is solved using the command
fmincon in Matlab.

Figure 4 shows h(Iθ0
F ) computed for different values of

θ ∈ [0, π], when the input is given by the solution of
Cases i-iv, and the achievable cost for the optimal design
assuming that the nominal value θ0 coincides with the true
parameter, for θ0 ∈ [0, π]. From this figure we can see
that the optimal input for Case i results in informative
experiments as long as θ is close to the nominal value π/2,
but it can be poor if θ is not close to π/2. The behavior

of h(Iθ0
F ) is due to that the location of the resonance θ

coincides with local minima and maxima of the power
spectrum Φu(ω). Case ii helps to obtain a more robust
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Fig. 1. h(Iθ0
F ) for θ ∈ [0, π], Example 4.

design, but results in poor experiments for θ close to the
nominal value θ0. Case iii reduces the value of h(I

θ0
F ) even

further for the poor experiments when compared to Case ii.
Finally, Case iv improves the results obtained with Case iii
for θ resulting in poor values of h(Iθ0

F ). Moreover, Case iv
guarantees the convergence to the optimal solution due to
the convexity of the problem, which is not guaranteed by
solving Case iii. The design in Case iv results in a more
constant behavior for h(Iθ0

F ) over θ ∈ [0, π], except for
the values of θ close to 0 and π, where the experiment is
more informative. As usual, the robustification in Case iv is
obtained by sacrificing the information obtained for values
of θ leading to good experiments with the more non-robust
approaches.

In conclusion, the example illustrates that the conditional
value at risk can be useful to design robust experiments
for identification of dynamical systems.

6. CONCLUSION

In this article we have studied the problem of uncertainty
from a risk theoretical perspective. The notion of coherent
measure of risk has been introduced, and it has been shown
how this notion can be used to obtain a systematic ap-
proach to uncertainty in system identification. To illustrate
the usefulness of coherent measures, the definition of con-
ditional value at risk has been presented, and applications
of this function to input design are shown.
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