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Abstract— A new approach to experiment design for identifi-
cation of closed-loop models is presented. The method considers
the design of an experiment by minimizing experimental cost,
subject to probabilistic bounds on the input and output signals,
and quality constraints on the identified model. The input
and output bounds are common in many industrial processes
due to physical limitations of actuators. The aforementioned
constraints make the problem non-convex. By assuming that the
experiment is a realization of a stationary process with finite
memory and finite alphabet, we use results from graph-theory
to relax the problem. The key feature of this approach is that the
problem becomes convex even for non-linear feedback systems.
A numerical example shows that the proposed technique is an
attractive alternative for closed-loop system identification.

I. INTRODUCTION

System identification concerns the problem of plant mod-
elling based on collected data, with a broad application in
industry [1]. The collected data for identification could be
gathered under either open- or closed-loop operation. The
later case has been of prime interest in many industrial
applications.

In practical applications, many systems can only work
on closed-loop settings due to stability issues, production
restrictions, economic considerations or inherent feedback
mechanisms. On the other hand, it is sometimes required to
update the existing control laws or design a new controller.
Since most of the methods for analysing controllers require
the knowledge of the system to be controlled, closed-loop
system identification is a building block in this process. The
main burden in closed-loop identification is the correlation
between the measurement noise and input signal, which is
imposed on the experiment by the feedback loop. There is a
quite rich literature on closed-loop identification with three
main approaches: direct methods (the model is identified as if
the system were in open-loop), indirect methods (the model
is identified from the identified closed-loop structure), and
joint input-output (an augmented model is identified, where
the input and output of the system are considered as the new
outputs, and the reference and noise as new inputs); see e.g.
[1], [2], [3], [4] and the references therein.

One crucial question that arises in any identification pro-
cess is how to generate data efficiently. This question is
addressed by input design methods, where the objective is
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to generate an input signal that maximizes the information
retrieved from an experiment [5], [6]. In this area, appli-
cations oriented input design is one approach to formulate
the optimal input design problem. The main idea is to
guarantee a certain control performance for the identified
model with the least possible experimental effort. The same
idea has been used in identification for control and least
costly identification, see e.g. [6], [7], [8].

For closed-loop models, the input design problem is often
translated to design the spectrum of an additive external
excitation. There exists a rich literature on closed-loop ex-
periment design, where the controller can also be designed
(provided it is a design variable), see [9], [10], [11], [12]
and references therein. However, the main limitation on
the existing methods is that they cannot be employed in
closed-loop systems with nonlinear feedback. In addition,
they cannot handle probabilistic constraints on the input and
output, which arise for safety or practical limitations.

In this article we present a new approach for applications
oriented experiment design for closed-loop systems. We
consider a linear time-invariant model being controlled by a
known controller (either linear or non-linear), where the main
goal is reference tracking. Due to a performance degradation,
we want to update the current controller or design another
one, and thus the plant model needs to be identified. Since the
controller is known we will employ indirect identification,
where the model is identified by adding an external stationary
input. The problem is then formulated as an optimization,
where we design the external excitation achieving the min-
imum experimental effort, while we are also taking care of
the tracking performance of the existing controller. We add a
constraint on the quality of the estimated model in terms of
the Fisher information matrix [1], to get an exciting enough
input signal guaranteeing that the estimated model is in the
set of models that satisfies the desired control specifications,
with a given probability.

In practice we also have bounds on the input and output
signals, which should be taken into account during the
experiment design. Thus, the optimization also considers
probabilistic bounds for the input and output of the system.

The obtained optimization problem is non-convex due to
the constraints, and thus it is difficult to handle. This issue
is relaxed by extending the method introduced in [13] for
closed-loop and constrained system identification, where the
probability distribution function associated with the external
excitation is characterized as the convex combination of the
measures describing the set of stationary processes. The
resulting problem is convex on the decision variables, which
makes it tractable. The method allows us to use Monte-Carlo



methods to approximate the cost functions, probabilities and
information matrices associated with each extreme measure.

The paper is organized as follows. In Section II we
introduce the concepts employed in this work. Section III
presents the proposed method for closed-loop experiment
design. Section IV illustrates the results through a numerical
example. Finally, Section V presents conclusions and future
work on the subject.

II. PRELIMINARIES

Consider the discrete time, linear, time-invariant system

xt+1 = A(θo)xt +B(θo)ut ,

yt =C(θo)xt +νt .
(1)

where ut ∈Rnu and yt ∈Rny are the input and output vectors.
νt ∈Rne is a coloured noise with νt =H(q; θo)et , where H is
a rational noise filter in terms of the time shift operator q, and
{et} is white noise sequence with zero mean and covariance
matrix Λe. In addition, we assume that H is stable, inversely
stable, and satisfies H(∞; θ) = I.

A. System Identification

In system identification, we aim to find a model of the
system (1). The model is parameterized by an unknown
parameter vector θ ∈ Rnθ , that is,

xt+1 = A(θ)xt +B(θ)ut ,

yt =C(θ)xt +νt ,
(2)

where νt = H(q; θ)et . The model coincides with (1) exactly
when θ = θo [1].

We employ the prediction error method (PEM) with
quadratic cost to calculate an approximation of the unknown
parameters θ ∈Rnθ , based on N available samples of input-
output, i.e. the data {ut ,yt , t = 1, . . . ,N} [1]. An important
asymptotic (in the sample size N) property of PEM, is that

√
N(θ −θo)∼ AsN(0,I−1

F (θo)), (3)

where IF quantify the information regarding the unknown
parameters, θ , in the observations of the output signal which
is called Fisher information matrix. Thus, for sufficiently
large samples N, we get that with a certain probability α the
estimated parameters belongs to an identification set, (see
[14]), defined as

ESI(α) =
{

θ : [θ −θo]
TIF(θo)[θ −θo]≤ χ

2
α(nθ )

}
, (4)

where χ2
α(n) is the α-percentile of the χ2-distribution with n

degrees of freedom, which in turn implies that θ̂N ∈ ESI(α)
with probability α for sufficiently large samples. For more
details, we refer the reader to [1].

B. Applications Oriented Input Design

In applications oriented input design, the main focus is
to design an input signal to be used in identification exper-
iment such that an acceptable control performance can be
guaranteed when the estimated model is used in the control
design. This requires that θ̂N ∈ Θ(γ) with high probability,
where Θ(γ), also known as application set, is the set of all
acceptable parameters from control’s point of view, and γ

is a user-defined positive constant which imposes an upper
bound on the performance degradation. One way to ensure
this is to require

ESI(α)⊆Θ(γ). (5)

Using (5), the input design problem can be formulated as a
constrained optimization problem with (5) as the constraint.
Thus, a natural objective in the input design is to minimize
an experimental cost, such as input power or energy or
experimental time, while (5) is fulfilled, i.e.

min
input

Experimental Cost

s.t. ESI(α)⊆Θ(γ).
(6)

In order to relate the control performance degradation to
the plant-model mismatch, we use the concept of application
cost function, where a scalar function of θ is considered
as application cost, denoted by Vapp(θ). We choose the
cost function such that its minimum value occurs at θ =
θo. In particular, if Vapp(θ) is twice differentiable in a
neighbourhood of θo, we assume without loss of generality:

Vapp(θo) = 0,V ′app(θo) = 0 and V ′′app(θo)≥ 0.

There are many possible choices of application functions
with these properties, see e.g. [15]. The set of all acceptable
parameters, namely the application set, is defined as

Θ(γ) =

{
θ : Vapp(θ)≤

1
γ

}
. (7)

To proceed, we employ the following local approximation of
Θ(γ) invoking the Taylor expansion of Vapp(θ) around θo:

Vapp(θ)≈Vapp(θo)+V ′app(θo)[θ −θo]

+0.5[θ −θo]
TV ′′app(θo)[θ −θo]

= 0+0+0.5[θ −θo]
TV ′′app(θo)[θ −θo].

(8)

Thus we have the following ellipsoidal approximation of the
application set (see [7]):

Θ(γ)≈Eapp(γ)=

{
θ : [θ −θo]

TV
′′
app(θo)[θ −θo]≤

2
γ

}
, (9)

and therefore, the optimal input design problem (6) can be
rewritten as

min
input

Experimental Cost

s.t.
1

χ2
α(nθ )

IF(θo)≥
γ

2
V
′′
app(θo).

(10)

For more details on applications oriented input design we
refer the reader to [7].

C. Optimal Input Design via Graph Theory
In input design via graph theory the optimal input signal

RM = (rM, . . . , r1) is designed as a realization of a
stationary process with finite memory [13]. The problem
is then formulated in terms of the projected probability
distribution function (pdf) of the stationary input, denoted
by P(Rnm), where nm < M. Assuming that the input signal
belongs to a finite set of values (say C), we can use elements
from graph theory to describe any P(Rnm) in the set of



stationary processes as a convex combination of the extreme
points of the set. The extreme points are computed as the
prime cycles associated with the de Brujin Graph of memory
nm and alphabet C (see [13]). The main advantage of this
approach is that it results in a convex optimization problem
for convex objective functions even for nonlinear models.

III. APPLICATIONS ORIENTED INPUT DESIGN FOR
CLOSED-LOOP SYSTEM IDENTIFICATION

A. Problem Definition

Assume that the system (2) is controlled using a general
(either linear or non-linear) output feedback controller:

ut = rt −Ky(yt), (11)

where Ky is a known function, and yt := {yk}t
k=1. The

feedback (11) is such that the output signal tracks a desired
value yd . The closed-loop structure is shown in Figure 1.

et
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rt plant yt
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+

ut +

+
−

+

−

Fig. 1. The schematic representation of the closed-loop system

Thus the closed-loop system will be
xt+1 = F(θ ,xt ,yt)+B(θ)rt ,

yt =C(θ)xt +νt ,
(12)

where νt = H(q; θ)et , and

F(θ ,xt ,yt) := A(θ)xt −B(θ)Ky(yt).

We assume that the resulting closed-loop system (12) is
asymptotically stable.

The objective in this article is to design an experiment
for the closed-loop system (12), that generates M samples
of the reference signal rt , to be used for identification of the
unknown parameters θ in (2). To this end, we consider the
experiment design problem (10). Since the system is in the
closed-loop we need to keep the output of the plant yt close
to yd during the identification experiment. Hence, we choose
to minimize the following experimental cost in the optimal
input design problem (10)

J = E

{
M

∑
t=1
‖yt − yd‖2

Q +‖∆ut‖2
R

}
, (13)

where
∆ut = u(t)−u(t−1), (14)

and Q and R are positive definite matrices. The first term
in (13) penalizes the deviations from the desired output,
while the second term is responsible for minimizing the input
energy. The expected value is with respect to {rt} and {et}.

In practical applications, it is common to have bounds
on the maximal input and output amplitudes allowed by the
process. These constraints appear due to physical limitations
and/or to preserve the system in a safe operating point. Thus
we consider the following probabilistic constraints during the
identification process:

P{|yt − yd | ≤ ymax}> 1− εy, t = 1, . . . ,M,

P{|ut | ≤ umax}> 1− εx, t = 1, . . . ,M,
(15)

where umax is the maximum allowed value for the input sig-
nal and ymax is the maximum allowed deviation of the output
from its desired value, based on the physical properties of the
system and actuators; and εx with εy are two design variables
that define the desired probability of being in the safe bounds
for input and output signals.

In addition to the previous constraints, we require that the
updated (or new) designed controller based on the estimated
parameters can guarantee an acceptable control performance,
i.e. the experiment design constraint (5) is satisfied. The
optimization problem can be summarized as:

Problem 1: Design {ropt
t }M

t=1 as the solution of

min
{rt}Mt=1

J = E

{
M

∑
t=1
‖yt − yd‖2

Q +‖∆ut‖2
R

}
,

s.t. xt+1 = F(θ ,xt ,yt)+B(θ)rt ,

yt =C(θ)xt +νt , t = 1, . . . ,M,

νt = H(q; θ)et , t = 1, . . . ,M,

ut = rt −Ky(yt), t = 1, . . . ,M,

P{|yt − yd | ≤ ymax}> 1− εy, t = 1, . . . ,M,

P{|ut | ≤ umax}> 1− εx, t = 0, . . . ,M−1,

IF(θ)≥
γχ2

α(n)
2

V ”
app(θ),

(16)

where IF(θ) is the Fisher information matrix obtained with
M samples. �

Note that Problem 1, has a very similar structure as
Model Predictive Control, see [16]. However, they are not
necessarily the same since we are not considering a receding
horizon approach in this problem.

The optimization problem (16) is non-convex due to the
possible non-linearity of the closed-loop system and the
experiment design constraints and is difficult to be solved
explicitly.

Remark 1: Problem 1 relies on the knowledge of the true
system. This can be addressed by either implementing a
robust experiment design scheme on top of it [17]; or through
an adaptive procedure, where the Hessian of the cost function
and output predictions are updated as more information is
being collected, [18]. In the rest of this paper we rely on the
knowledge of θo (or a prior estimate of it). �

B. Convex Relaxation of the Optimization Algorithm

To find a convex relaxation of Problem 1 we will use
elements from graph theory [13] to design an input sequence
(r1, . . . , rM) such that the cost function in (16) is minimized,
satisfying input-output requirements, and identification con-
straints. To proceed we will assume that (r1, . . . , rM) is



a realization from a stationary pdf P{r1, . . . , rnm}, where
nm < M is the memory of the stationary process. In addition,
we assume that rt ∈ C, for t ∈ {1, . . . , M}, with C defined as
a finite set. Under the previous assumptions, we can use the
theory introduced in [13] to define the set of feasible pdf’s
P{r1, . . . , rnm} as a convex combination of the extreme points
in the set. The extreme points are computed as the prime
cycles associated with the de Brujin graph of memory nm
and alphabet C [13].

If the set of extreme points is given by {Pj}nv
j=1, then the

optimization problem can be rewritten as

min
{β1, ...,βnv}

J =
M

∑
t=1

nv

∑
j=1

β jEet ,Pj

{∥∥∥yt − yd
∥∥∥2

Q
+‖∆ut‖2

R

}
,

s.t. xt+1 = F(θ ,xt ,et)+B(θ)rt ,

yt =C(θ)xt +νt , t = 1, . . . ,M,

νt = H(q; θ)et , t = 1, . . . ,M,

ut = rt −Ky(yt), t = 1, . . . ,M,
nv

∑
j=1

β jPet ,Pj{|ut | ≤ umax}> 1− εx,

nv

∑
j=1

β jPet ,Pj{|yt − yd | ≤ ymax}> 1− εy,

nv

∑
j=1

β jI
( j)
F (θ)≥ γχ2

α(n)
2

V ”
app(θ),

nv

∑
j=1

β j = 1,β j ≥ 0, j = 1, . . . ,nv. (17)

If we denote by {β opt
j }

nv
j=1 the set of weighting factors

minimizing (17), then the optimal pdf is given by

Popt :=
nv

∑
j=1

β
opt
j Pj . (18)

Since the set {Pj}nv
j=1 is known (each Pj is a uniform

distribution over the nodes in the j-th prime cycle [13]), we
can sample {r j

t }N
t=1 from each Pj (with N sufficiently large),

and approximate by Monte-Carlo methods the expected
values EPj{·}, the probabilities PPj{·}, and the corresponding
information matrices I

( j)
F (θ). This approach is based on the

one presented in [13], where Monte-Carlo simulations are
employed to compute the information matrices associated
with each measure in the set {Pj}nv

j=1. Indeed, given {r j
t }N

t=1

and {et}N
t=1, we can generate {y j

t }N
t=1 and {u j

t }N
t=1 using

(12). Therefore, we can use Monte-Carlo approximations to
compute the expressions in (17) for each j ∈ {1, . . . , nv} as

PPj{|yt − yd | ≤ ymax} ≈
1
N

N

∑
t=1

1|y j
t |≤ymax

,

PPj{|ut | ≤ umax} ≈
1
N

N

∑
t=1

1|u j
t |≤umax

,

EPj

{
‖yt − yd‖2

Q +‖∆ut‖2
R

}
≈ 1

N

N

∑
t=1

∥∥∥y j
t − yd

∥∥∥2

Q
+
∥∥∥∆u j

t

∥∥∥2

R
,

where 1X = 1 if X is true, and 0 otherwise, and ∆u j
t = u j

t −
u j

t−1. The computation of I
( j)
F (θ) is analyzed in the next

subsection.
The key property of the proposed approach is that the

input-output constraints and the restriction on the Fisher
information matrix are convex on {β j}nv

j=1. Therefore, the
final optimization problem becomes convex in {β j}nv

j=1.

C. Fisher Information Matrix Computation

To integrate the experiment design constraint with the
optimization problem (17), we need to compute the Fisher
information matrix I

( j)
F (θ) for each {r j

t }M
t=1 associated with

the j-th extreme point of the set of stationary processes of
memory nm and alphabet C.

For an unbiased estimator, the inverse of the Fisher matrix
is a lower bound on the covariance of the parameter estima-
tion error, according to the Cramér-Rao bound. The Fisher
information matrix is [5]

IF(θ) := E
{

∂ log pθ (yM)

∂θ

∂ log pθ (yM)

∂θ T

}
∈ Rnθ×nθ , (19)

where yM := {y1, . . . , yM}. We notice that (19) can also be
written as

IF(θ) =−E
{

∂ 2 log pθ (yM)

∂θ∂θ T

}
∈ Rnθ×nθ . (20)

Due to the randomness of et , (12) can be rewritten as

xt+1 ∼ fθ (xt+1|yt ,xt ,rt) ,

yt ∼ gθ (yt |xt) ,
(21)

where fθ (xt+1|xt ,rt) and gθ (yt |xt) denotes the pdf of the state
xt+1, and output yt , conditioned on the knowledge of {xt , rt}.

Using the model description (21), and the Markov property
of the system (12), we can write the log likelihood as

log pθ (yM) =
M−1

∑
t=1

log{ fθ (xt+1|yt ,xt ,rt)}

+
M

∑
t=1

log{gθ (yt |xt)}+ log{pθ (x1)} . (22)

To simplify the analysis, we will assume that the distribution
of the initial state is independent of θ , i.e., pθ (x1) = p(x1).

When Ky is a linear controller, expressions (19) and (20)
can be computed in the frequency domain [1, Section 9.4].
Since we know {r j

t } for each j ∈ {1, . . . , nv}, it is possible
to compute its corresponding spectrum, say Φ

j
r(ω). To this

end, we notice that {r j
t } is a periodic sequence with period

given by Tj. Using [1, Example 2.3] we compute Φ
j
r(ω) as

Φ
j
r(ω)=

2π

Tj

Tj−1

∑
k=0

Φ
j, p
r (2πk/Tj)δ (ω−2πk/Tj) , 0≤ω < 2π ,

(23)
where δ is the Dirac delta function, and

Φ
j, p
r (ω) :=

Tj−1

∑
τ=0

R j
r(τ)e

iωτ , (24)

R j
r(τ) :=

1
Tj

Tj

∑
t=1

r j
t

(
r j

t−τ

)T
. (25)



On the other hand, when Ky is a non-linear function,
equations (19) and (20) often result in complex (and al-
most intractable) expressions. Thus, we will approximate the
Fisher information matrix using numerical methods, instead.
One solution is to use particle methods to approximate
(19) as the covariance matrix of the gradient of the log-
likelihood function, ∂ log pθ (yM)

∂θ
(score function) [19]. Another

approach is based on the numerical computation of (20) using
small perturbation methods [20], where the Hessian (20) is
computed as an average of numerical approximations based
on the score function. Thus, the Fisher information matrix
associated with {r j

t } can be computed for nonlinear systems.

IV. NUMERICAL EXAMPLE

To illustrate the previous discussion, we introduce the
following example:

Example 1: Consider the open-loop, SISO state space
system described by

xt+1 = θ
0
2 xt +ut , (26a)

yt = θ
0
1 xt + et , (26b)

with true parameters θ0 :=
[
θ 0

1 θ 0
2

]T
=
[
0.6 0.9

]T . The
system is controlled in closed-loop using the controller

ut = rt − ky yt , (27)

where ky = 0.5 is a known constant. The objective is to
identify the open-loop parameters θ :=

[
θ1 θ2

]T from the
identified closed-loop ones θc :=

[
θ c

1 θ c
2
]T in the model

xt+1 = θ
c
2 xt + rt − ky et , (28a)

yt = θ
c
1 xt + et , (28b)

using the transformation law

θ1 = θ
c
1 , (29a)

θ2 = θ
c
1 + ky θ

c
1 . (29b)

To this end, we will design the reference signal {rt}500
t=1 as

a realization of a stationary process with memory nm = 2,
and subject to rt ∈ C := {−0.5,−0.25, 0, 0.25, 0.5}, for all
t ∈ {1, . . . , 500}. Since the experiment will be performed in
closed-loop, we define the following cost function to measure
performance degradation

Vapp(θ) :=
1

500

500

∑
t=1
‖yt(θo)− yt(θ)‖2

2 , (30)

where yt(θ) denotes the closed-loop output when θ is
employed to describe the open loop model and a linear output
feedback controller with constant and θ -independent gain has
been used. Finally, we will solve the approximate problem
(17), where yd = 0, for all t ∈ {1, . . . , 500}, Q = 1, R = 0.02,
εy = εx = 0.07, ymax = 2, umax = 1, γ = 102, and α = 0.98.

Figure 2 presents one realization of {rt}500
t=1 obtained by

solving (17), one realization of {rt}500
t=1 obtained by solving

(17) without probabilistic constraints, and from a random
binary sequence with values {−0.5, 0.5}. From this figure
we see that the optimal sequence is zero most of the time,
except for short pulses. This can be explained from the tight
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Fig. 2. Part of the reference signal {rt}500
t=1. Top: Optimal reference signal.

Middle: Optimal reference signal without probabilistic constraints. Bottom:
Random binary signal.
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Fig. 3. Part of the input signal {ut}500
t=1. Top: Input signal for the optimal

reference. Middle: Input signal for the optimal reference without proba-
bilistic constraints. Bottom: Input signal for a random binary reference.

probabilistic bounds imposed for {ut}, which restricts the
excitation provided by {rt}. If we compare the previous
signal with the one obtained by solving (17) without prob-
abilistic bounds, we see that the reference signal contains
more oscillations when the probabilistic bounds are removed.

Figures 3 and 4 present one realization for the resulting
input {ut}500

t=1 and output {yt}500
t=1, respectively. From those

realizations, we conclude that, for the optimal reference, the
input and output are inside the limiting regions 93.8%, and
96% of the time, respectively, which satisfies the design
requirements. On the other hand, for the reference signal
obtained by solving (17) without probabilistic bounds, we
have that the input and output satisfies the constraints 86.6%
and 93.4% of the time, respectively. Therefore, in this
example we need to incorporate the probabilistic bounds to
guarantee that both the input and output of the system are
inside the desired region with the prescribed confidence level.
With the previous modification, we restrict the set of optimal
feasible solutions for the problem of minimum variance to
the subset of optimal solutions satisfying the probabilistic
bounds. Finally, for the random binary reference, we have
that the input and output are inside the confidence region
90.8%, and 79.6% of the time, which does not satisfy the
confidence bounds for the system.

To analyze the identification performance, Figure 5
presents the application ellipsoid for the parameter θ , to-
gether with the resulting identification ellipsoids and 50
identified parameters obtained with the optimal reference
with probabilistic bounds, the optimal reference without
probabilistic bounds, and for the random binary reference.
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Fig. 4. Part of the output {yt}500
t=1. Top: Output signal for the optimal refer-

ence. Middle: Output signal for the optimal reference without probabilistic
constraints. Bottom: Output signal for a random binary reference.
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Fig. 5. Application ellipsoid (green, dot-dashed line) with the respective
identification ellipsoids. Blue, continuous line: Identification ellipsoid for
the random binary reference (realizations marked with ∗). Red, continuous
line: Identification ellipsoid for the optimal reference with probabilistic
bounds (realizations marked with circles). Black, dashed line: Identification
ellipsoid for the optimal reference without probabilistic bounds (realizations
marked with triangles).

From this figure we conclude that the 98% confidence
level set for the identified parameters lies completely inside
the application ellipsoid for all the reference signals. As
expected, the confidence level set for the random binary
reference is smaller than the ones obtained with the proposed
technique, since the variance of this signal is greater than the
one obtained with the optimal references. Hence, the random
binary reference excites the system more than required,
which makes the cost function in optimization problem (16)
greater than the cost obtained with the proposed method.
Indeed, the cost functions are Jopt = 541.6 for the optimal
experiment with probabilistic bounds, and Jbinary = 695.8
for a random binary reference, which is in line with the
size of the uncertainty ellipsoids in Figure 5. On the other
hand, we see that the confidence ellipsoids for the estimated
parameters are almost the same when a reference signal is
designed by including or excluding the probabilistic bounds
on the input and output.

V. CONCLUSION

In this work a method to design input sequences for
closed-loop experiments has been proposed. The method
considers the input sequence as a realization of a stationary
process minimizing the experimental cost, and subject to
performance constraints. Using elements from graph-theory,
the elements in the set of stationary processes are described
as a convex combination of the measures associated with the

prime cycles of the corresponding Brujin graph. Therefore,
both experimental cost and constraints can be expressed as a
convex combination of the values associated with the extreme
measures in the set, which are computed using Monte-
Carlo methods. An interesting feature of this approach is
that probabilistic constraints become convex in the decision
variables. The numerical example shows that this approach
is an attractive method for the design of input sequences to
identify models in a closed-loop setting.

Future work in the subject will be focused on extending
the analysis to more general model structures including non-
linear state space models. More extensions could be robust
and adaptive approaches to remove the assumptions on the
knowledge of the true system, as explained in Remark 1.
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