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Abstract— This article is focused on the best achievable
tracking performance of unstable tall and squared-up plant
models. The squared-up plant is originated by adding control
inputs to a tall system to become a square plant. The work is
developed for discrete time, LTI systems, when a decaying signal
is considered as reference. Closed form expressions for thebest
tracking performance for one and two degree of freedom control
schemes are presented, and a case study of the benefits of adding
control inputs is also considered.

Index Terms— Performance bounds, two degree of freedom
control, augmented systems, optimal control, multivariable
control.

I. I NTRODUCTION

This work is focused on the computation of performance
bounds in discrete time MIMO feedback control systems.
A performance bound describes the best achievable perfor-
mance, measured by a specific cost function, which can
be achieved in the control of a plant. This index can be
employed to establish a benchmark against which the result
of any design procedure can be compared.

Performance bounds in control systems have been of
interest in the last decade. In this period, significant results
have been obtained in this field (see, e.g, [1], [2], [3], [4],and
the references therein). The main contribution of these works
is the development of closed form expressions for the best
achievable performance, when a feedback control system is
considered. In [1] the best achievable performance for con-
tinuous time feedback control system is studied. The results
in [1] suggest that unstable poles, non-minimum-phase zeros
and time delays worsen the optimal tracking performance.
Similar results are presented in [3], extending the analysis
to discrete time MIMO feedback control systems. However,
these results are only useful for particular delay structures,
and for square systems.

Plants with general delay structures are studied in [5].
In that work, the best achievable tracking performance is
computed, when stable discrete time MIMO control systems
are considered. In the same spirit than [3], the results in [5]
shows that finite and infinite non-minimun-phase zeros have
a deleterious effect on tracking performance.

The results presented in [1], [3], [5] can be only applied
to square systems. Results for tall plants have been reported
in [2], [6], [7], [8]. A key issue in the control of tall plants
is they are non-right invertible. In [2] the best achievable
tracking performance for SIMO systems is computed. The
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results in [2] shows that not only non-minimum phase zeros
and unstable poles affect the optimal performance, but also
the total variation of the plant direction with frequency.
Similar results are presented in [4], where the closed form
expressions are also derived for discrete time SIMO systems,
and an unify approach for continuous and discrete time
systems is also discussed. Nevertheless, the assumptions on
the reference vector make the results applicable only to
special situations. A related work [9], by the same authors,
deals with the regulation problem for tall plants, that is, the
reference was assumed to be a vector Kronecker delta. The
results in [9] shows that the control performance is improved
when additional channels are added.

In despite of the recent results for SIMO plants, the
optimal performance reached by them is limited, since the
number of control channels is less than the number of
outputs. One method to improve the performance of control
for tall systems is by adding control inputs. As a first
contribution of this paper, we propose a methodology to
quantify the benefits of adding control inputs to a tall system,
to make it square. This approach selects a cost function for
the case when the reference is a decaying signal. As a second
contribution, we compute a closed form expression for the
best achievable performance for unstable tall and squared-
up systems. Finally, we study the benefits of adding control
inputs in unstable tall plants through specific cases.

The remainder of this paper is as follows. Section II
introduces notation and preliminaries of this work; Section
III presents the best achievable tracking performance for
one degree of freedom control scheme; Section IV studies
the best achievable tracking performance in two degree of
freedom feedback control; Section V presents a study of the
benefits of adding control inputs to an unstable tall system;
finally, Section VI presents conclusions of this work and
future research.

II. N OTATION AND PRELIMINARIES

In the current work the following notation is used:C
is the complex set,Cn×m is the complex set ofn × m

matrices,R is the real set, andRn×m is the real set ofn×m

matrices. Given a matrixA ∈ Cn×m, AT andAH define its
transpose and complex conjugate transpose, respectively.For
a complex numberx, x and |x| are defined as its conjugate
and magnitude, respectively;Rn×m

p is the set ofn × m

transfer matrices which are real rational and proper;Rn×m
sp is

the set ofn×m transfer matrices which are real rational and
strictly proper;RHn×m

∞ is the set ofn×m transfer matrices
which are real rational, stable and proper;RHn×m

2 is the
set ofn×m transfer matrices which are real rational, stable



and strictly proper, andRH⊥

2

n×m
the set ofn×m transfer

matrices which are constant, improper and/or unstable. Given
a functionX [z] ∈ Cn×m, X [z]

∼ is defined as

X [z]
∼
, X

[

z−1
]H

, (1)

which is reduced toX [z]∼ = X
[

z−1
]T

for real rational
case.

A transfer matrixU [z] ∈ Cn×m (n ≥ m) is unitary if
and only if

U [z]
∼

U [z] = Im , (2)

whereIk is thek × k identity matrix.
A transfer matrixP [z] ∈ RHn×m

∞ admits an inner-outer
factorization

P [z] = Pi [z] Po [z] , (3)

where Pi [z] ∈ RHn×m
∞ is an inner factor, i.e.,

Pi [z]
∼
Pi [z] = Im. On the other hand,Po [z] ∈ RHm×m

∞

is an outer factor, and it is right invertible, which is analytical
on |z| > 1 [10].

A numberc ∈ C is said to be a zero ofP [z] ∈ Rn×m
sp if

and only if rank{P [c]} < normal rank{P [z]}. If |c| > 1,
c is called a non-minimum-phase (NMP) zero, otherwisec

is called a minimum-phase (MP) zero. For a square plant
H [z] ∈ RHn×n

2 ,

H [z] = EI ,dc [z] HFM [z] , (4)

where HFM [z] ∈ RHn×n
∞ is a minimum-phase (MP)

transfer matrix, andEI,dc [z] ∈ RHn×n
2 is a unitary left

non-minimum-phase (NMP) zeros interactor forH [z], which
is defined as

EI,dc [z]
−1

, EI, c [z]
−1

EI,d [z]
−1

, (5)

whereEI, c [z]
−1 ∈ RH⊥

2

n×n
andEI,d [z]−1 ∈ RH⊥

2

n×n

are the unitary left finite and infinite NMP zeros interactor,
respectively,

EI, c [z]
−1

,

nc
∏

k=1

{

1− ck

1− ck

1− z ck

z − ck
ηηηkηηη

H
k +UkU

H
k

}

,

(6)

EI,d [z]
−1

,

nz
∏

k=1

{

z ηηη∞k
ηηηH∞k

+U∞k
UH

∞k

}

, (7)

and ηηηk, ηηη∞k
∈ Cn×1 and Uk, U∞k

∈ Cn×(n−1) satisfy
ηηηk ηηη

H
k +Uk U

H
k = ηηη∞k

ηηηH∞k
+U∞k

UH
∞k

= In, ∀k [5].
The expectation operator is denoted byE {·}. The 2 norm

for a systemB [z] ∈ Cn×m no singular on|z| = 1 is defined
as

‖B [z]‖2 =

√

trace

{

1

2π

∫ π

−π

B [ejω ]
H
B [ejω ] dω

}

. (8)

Under the 2 norm,RHn×m
2 andRH⊥

2

n×m
are orthogonal

sets. Therefore,
∥

∥

∥
{A [z]}

H⊥
2

+ {A [z]}
H2

∥

∥

∥

2

2
=

∥

∥

∥
{A [z]}

H⊥
2

∥

∥

∥

2

2
+

r [k]

−

e [k] y [k]u [k]
C [z] G [z]

Fig. 1. One Degree of freedom control scheme.

+
∥

∥{A [z]}
H2

∥

∥

2

2
. (9)

where {A [z]}
H⊥

2

denotes the part ofA [z] ∈ RH⊥

2

n×m
,

and{A [z]}
H2

denotes the part ofA [z] ∈ RH2
n×m.

III. T RACKING PERFORMANCE BOUNDS FOR PERFECT

AND DELAYED CONTROL CHANNELS

This section is focused on the best tracking performance
for tall and squared-up plant models, assuming that the con-
trol channels are either perfect or they only have propagation
delays, and when a decaying signal is applied as closed
loop reference. As first part of this section, the problem is
stated, and then closed form expressions for the best tracking
performance are derived for unstable plant models.

A. Problem formulation

Consider the 1-dof1 control scheme, depicted in Figure 1.
In that figure,G [z] ∈ Rn×m

sp (n ≥ m) is the plant model,
C [z] ∈ Rm×n

p is a feedback controller, andr [k] ∈ Rn,
e [k] ∈ Rn, u [k] ∈ Rm are the reference, tracking error and
control signals, respectively. In this section, we study the
functional

J ,

∞
∑

k=0

e [k]
T
e [k] , (10)

when r [k] , ννν λk, with ννν ∈ Rn and λ ∈ R, such that
|λ| < 1. This reference guarantees the convergence ofJ to
a finite value whenn > m.

Assuming the closed loop internally stable, then

J = ‖E [z]‖
2
2 , (11)

whereE [z] is theZ-Transform of the tracking errore [k].
Using the closed loop description given in Figure 1, thenJ

becomes

J =

∥

∥

∥

∥

(In +G [z]C [z])
−1 ννν

z − λ

∥

∥

∥

∥

2

2

, (12)

where theZ-Transform of the referencer [k] is used.
The expression (12) is non-linear in the controllerC [z].

To solve this problem, we use the coprime factorization of
G [z], defined as [10]

G [z] , ND [z]DD [z]−1 = DI [z]
−1

NI [z] , (13)

with NI [z] , ND [z] ∈ RHn×m
∞ , DI [z] ∈ RHn×n

∞ and
DD [z] ∈ RHm×m

∞ . These factors can be used to describe a
stabilizing controllerC [z] as

C [z] , (YD [z]−DD [z]Q [z]) (ND [z]Q [z]−XD [z])
−1

1Degree of freedom.



= (Q [z]NI [z]−XI [z])
−1

(YI [z]−Q [z]DI [z]) , (14)

where Q [z] ∈ RHm×n
∞ is the design parameter, and

YI [z] , YD [z] ∈ RHm×n
∞ , XI [z] ∈ RHm×m

∞ , XD [z] ∈
RHn×n

∞ are such that they satisfy the double Bezout identity
[

XI [z] −YI [z]
−NI [z] DI [z]

] [

DD [z] YD [z]
ND [z] XD [z]

]

=

[

Im 0

0 In

]

.

(15)
Using (14) into (12), we get

J =

∥

∥

∥

∥

(XD [z]−ND [z]Q [z])DI [z]
ννν

z − λ

∥

∥

∥

∥

2

2

. (16)

To simplify our analysis, we make the following assump-
tion:

Assumption 1: ννν ∈ Rn is a random vector that satisfies

E {ννν} = 0 , (17)

E
{

ννν νννT
}

= In . (18)

Taking the expectation to (16) and under Assumption 1,
we can writeE {J} as

E {J} =

∥

∥

∥

∥

(XD [z]−ND [z]Q [z])DI [z]
1

z − λ

∥

∥

∥

∥

2

2

. (19)

Finally, our study is focused on minimizing (19), subject
to Q [z] ∈ RHm×n

∞ . This can be written as
Problem 1: GivenG [z] ∈ Rn×m

sp , n ≥ m, find

Jopt , inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(XD [z]

−ND [z]Q [z])DI [z]
1

z − λ

∥

∥

∥

∥

2

2

, (20)

and, if Jopt is achievable, findQopt [z] stable and proper
that achievesJopt.

Problem 1 will be solved in the next section.

B. Optimal tracking performance: unstable plants

When the plants are unstable, we can obtain closed form
expressions for the optimal tracking performance, when an
exponentially decaying reference is considered.

Theorem 1: Consider the Problem 1, a plantG [z] ∈
Rn×m

sp , n ≥ m, with np different unstable poles,
and its coprime factorization given by (13). Also, de-
fine an inner-outer factorization ofND [z] as ND [z] ,

NDi [z]NDo [z], and a factorization ofDI [z] given by
DI [z] , DI,FM [z]ED, c [z], with ED, c [z] defined as (6),
andDI,FM [z] is stable, biproper and MP. Then, the solution
of the Problem 1 is achieved by choosingQ [z] , Qopt [z],
where

Qopt [z] , arg inf
Q[z]∈RH

m×n
∞

E {J}

= NDo [z]
−1 (P1 [λ] +P2 [z])DI,FM [z]−1

, (21)

and

P1 [z] ,

np
∑

i=1

Ai

z − pi
, (22)

P2 [z] , P [z]ED, c [z]
−1

−P1 [z] , (23)

P [z] , NDi

[

λ−1
]T

+NDo [z]YI [z] , (24)

Ai , lim
z→pi

(z − pi)P [z]ED, c [z]
−1

, (25)

andJopt is given by

Jopt = Jopt
s + Jopt

u , (26)

where

Jopt
s ,

1

1− λ2

(

n− trace
{

NDi

[

λ−1
]

NDi

[

λ−1
]T

})

,

(27)

Jopt
u ,

1

1− λ2
trace

{

(

P1

[

λ−1
]

−P1 [λ]
)T

P1 [λ]
}

+ trace







np
∑

i=1

np
∑

j=1

pi ·
AH

i Aj

(1− λ pi) (pi − λ) (pi pj − 1)







.

(28)
Proof: First, note from (15) thatND [z]YI [z] + In =

XD [z]DI [z]. Then, (20) becomes

Jopt = inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(In +ND [z]YI [z]

−ND [z]Q [z]DI [z])
1

z − λ

∥

∥

∥

∥

2

2

. (29)

Using the unitary matrix

ΛΛΛ [z] ,

[

NDi [z]
∼

In −NDi [z]NDi [z]
∼

]

, (30)

into (29), we can write

Jopt = inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

ΛΛΛ [z] (In +ND [z]YI [z]

−ND [z]Q [z]DI [z])
1

z − λ

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

(In −NDi [z]NDi [z]
∼)

1

z − λ

∥

∥

∥

∥

2

2

+ inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(NDi [z]
∼
+NDo [z]YI [z]

−NDo [z]Q [z]DI [z])
1

z − λ

∥

∥

∥

∥

2

2

. (31)

Also, noting that
(

NDi [z]
∼ −NDi

[

λ−1
]T

) 1

z − λ
∈ RH⊥

2

m×n

(32)
(

NDi

[

λ−1
]T

+NDo [z]YI [z]

−NDo [z]Q [z]DI [z])
1

z − λ
∈ RHm×n

2 ,

(33)

it is clear that

Jopt =

∥

∥

∥

∥

(In −NDi [z]NDi [z]
∼
)

1

z − λ

∥

∥

∥

∥

2

2

+



+

∥

∥

∥

∥

(

NDi [z]
∼ −NDi

[

λ−1
]T

) 1

z − λ

∥

∥

∥

∥

2

2

+ inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(

NDi

[

λ−1
]T

+NDo [z]YI [z]

−NDo [z]Q [z]DI [z])
1

z − λ

∥

∥

∥

∥

2

2

. (34)

It is straightforward to prove that

∥

∥

∥

∥

(In −NDi [z]NDi [z]
∼
)

1

z − λ

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

(

NDi [z]
∼ −NDi

[

λ−1
]T

) 1

z − λ

∥

∥

∥

∥

2

2

=

1

1− λ2

(

n− trace
{

NDi

[

λ−1
]

NDi

[

λ−1
]T

})

= Jopt
s ,

(35)

and thus (34) becomes

Jopt = Jopt
s

+ inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(P [z]−NDo [z]Q [z]DI [z])
1

z − λ

∥

∥

∥

∥

2

2

,

(36)

with P [z] defined by (22). On the other hand, if we
consider the factorizationDI [z] , DI,FM [z]ED, c [z],
whereDI,FM [z] is biproper, stable and MP, andED, c [z]
is unitary, then

Jopt = Jopt
s + inf

Q[z]∈RH
m×n
∞

∥

∥

∥

∥

(

P [z]ED, c [z]
−1

−NDo [z]Q [z]DI,FM [z])
1

z − λ

∥

∥

∥

∥

2

2

. (37)

The expressionP [z]ED, c [z]
−1 contains stable and unstable

terms. Therefore, it is necessary to make a partial fraction
expansion. Given that the unstable terms are thenp unstable
plant poles (with multiplicity one), then

P [z]ED, c [z]
−1

, P1 [z] +P2 [z] , (38)

where

P1 [z] ,

np
∑

i=1

Ai

z − pi
, (39)

P2 [z] , P [z]ED, c [z]
−1

−P1 [z] , (40)

with Ai defined as (23). According to the definitions given
in (22) and (23), it follows thatP1 [z] ∈ RH⊥

2

m×n
and

P2 [z] ∈ RHm×n
∞ . Therefore,

Jopt = Jopt
s +

∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

+ inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(P1 [λ] +P2 [z]

−NDo [z]Q [z]DI,FM [z])
1

z − λ

∥

∥

∥

∥

2

2

. (41)

We can then note from (41) thatQ [z] can be chosen
according to (21) to obtain

Jopt , Jopt
s +

∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

. (42)

To complete this proof, we need to prove that the second
term in the right hand side of the equality in (42) isJopt

u ,
with Jopt

u defined as (28). For this purpose, consider

∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

=

trace

{

1

2πj

∮

(P1 [z]−P1 [λ])
∼

1− zλ
×

(P1 [z]−P1 [λ])

z − λ
dz

}

, (43)

where the integral is on|z| = 1, counterclockwise oriented.
The expression (43) can be computed using the Cauchy’s
Residue Theorem [11]. We thus obtain

∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

=

1

1− λ2
trace

{

P1 [λ]
T
P1 [λ]

}

+ trace

{

1

2πj

∮
[

P1 [z]
∼
P1 [z]−P1 [z]

∼
P1 [λ]

(1− zλ) (z − λ)

−P1 [λ]
T
P1 [z]

(1− zλ) (z − λ)

]

dz

}

, (44)

which can be rewritten as
∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

=

trace

{

1

2πj

∮

P1 [z]
∼
P1 [z]−P1 [z]

∼
P1 [λ]

(1− zλ) (z − λ)
dz

}

= −
1

1− λ2
trace

{

P1 [λ]
T
P1 [λ]

}

+ trace

{

1

2πj

∮

P1 [z]
∼
P1 [z]

(1− zλ) (z − λ)
dz

}

. (45)

The term inside the integral in (45) has, at least, two NMP
at infinity. This allows one to use the result reported in [12]
to compute (45) as

∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

=

1

1− λ2
trace

{

(

P1

[

λ−1
]

−P1 [λ]
)T

P1 [λ]
}

+ trace

{

np
∑

i=1

Res
z=pi

−1

{

P1 [z]
∼
P1 [z]

(1− zλ) (z − λ)

}

}

, (46)

and, therefore,
∥

∥

∥

∥

(P1 [z]−P1 [λ])
1

z − λ

∥

∥

∥

∥

2

2

=

1

1− λ2
trace

{

(

P1

[

λ−1
]

−P1 [λ]
)T

P1 [λ]
}



r [k] y [k]u [k]
G [z]

[

C1 [z] C2 [z]

]

Fig. 2. Two Degree of freedom control scheme.

+ trace







np
∑

i=1

np
∑

j=1

pi ·
AH

i Aj

(1− λ pi) (pi − λ) (pi pj − 1)







.

(47)

Using (47) into (42) we obtain (26), concluding this proof.

The result presented in Theorem 1 shows that the optimal
tracking performance for an unstable plant can be analysed
by parts. The first term in (26) is a function of the finite
and the infinite NMP zeros ofG [z]. On the other hand, the
second term in (26) is a function of the unstable poles of
G [z]. The termJopt

u shows that, whenλ → p−1
i , the index

goes to infinity. This can be understood when we consider
Assumption 1, because this assumption takes an average over
all possible values of the reference vector. Finally, we must
note thatJopt depends explicitly on the reference parameter
λ, and on the number of output channelsn.

Note that we can simplify Theorem 1 whenn = m, i.e.,
we consider an unstable square system. In this case, we can
use an explicit form for the inner factorNDi [z], given by
the left unitary NMP zeros interactor ofND [z], defined as
(5)–(7).

The results presented in this section are obtained by
assuming that the closed loop system has only1 design
parameter. The next section studies the optimal tracking
performance when a2 parameter controller scheme is used
in a closed loop configuration.

IV. T RACKING PERFORMANCE BOUNDS FOR PERFECT

AND DELAYED CONTROL CHANNELS: 2-DOF CONTROL

LOOP

In this section, we study the optimal tracking performance
in a 2-dof control loop, when an exponentially decaying
reference is used. This section will allow to discuss the
benefits of adding control inputs, when the closed loop has
2 parameters to be designed.

A. Problem formulation

Consider the 2-dof control loop depicted in Figure 2. In
this scheme,G [z] ∈ Rn×m

sp (n ≥ m) is the plant model,
r [k] ∈ Rn is the reference,y [k] ∈ Rn is the system output,
andu [k] ∈ Rm is the control signal, defined as

U [z] , C1 [z]R [z] +C2 [z]Y [z] , (48)

where C1 [z] ∈ RHm×n
∞ , C2 [z] ∈ Rm×n

p , and
R [z] , Y [z] , U [z] are the Z-Transforms of r [k] , y [k],
and u [k], respectively. In this control configuration, the
performance will be measured by

J ,

∞
∑

k=0

(r [k]− y [k])
T
(r [k]− y [k]) , (49)

when r [k] , νννλk, ννν ∈ R
n and λ ∈ R, |λ| < 1. Using

Parseval’s Theorem, (49) can be written as

J = ‖R [z]−Y [z]‖
2
2 . (50)

The closed loop transfer matrices are non linear on parame-
tersC1 [z] andC2 [z]. Therefore, we use the double coprime
factorization forG [z], given by

G [z] , ND [z]DD [z]
−1

= DI [z]
−1

NI [z] , (51)

where NI [z] , ND [z] ∈ RHn×m
∞ , DI [z] ∈ RHn×n

∞ and
DD [z] ∈ RHn×n

∞ satisfy
[

XI [z] −YI [z]
−NI [z] DI [z]

] [

DD [z] YD [z]
ND [z] XD [z]

]

=

[

Im 0

0 In

]

,

(52)
whereYI [z] , YD [z] ∈ RHm×n

∞ , XI [z] ∈ RHm×m
∞ and

XD [z] ∈ RHn×n
∞ . The above definitions allow to build a

stabilizing controller as [13]
[

C1 [z] C2 [z]
]

, (XI [z]−R [z]NI [z])
−1

×
[

Q [z] YI [z]−R [z]DI [z]
]

, (53)

with Q [z] , R [z] ∈ RHm×n
∞ . This factorization can be used

to write J as

J =

∥

∥

∥

∥

(In −ND [z]Q [z])
ννν

z − λ

∥

∥

∥

∥

2

2

, (54)

where theZ-Transform ofr [k] is used. If we assume that
ννν ∈ Rn satisfies Assumption 1, thenE {J} becomes

E {J} =

∥

∥

∥

∥

(In [z]−ND [z]Q [z])
1

z − λ

∥

∥

∥

∥

2

2

. (55)

The problem to be tackled in the coming section is stated
next.

Problem 2: GivenG [z] ∈ Rn×m
sp , n ≥ m, find

Jopt , inf
Q[z]∈RH

m×n
∞

∥

∥

∥

∥

(In [z]−ND [z]Q [z])
1

z − λ

∥

∥

∥

∥

2

2

,

(56)
and, if Jopt is achievable, findQopt [z] stable and proper
that achievesJopt.

B. Optimal tracking performance: 2-dof control scheme

This section presents a closed form expression for the
optimal tracking performance given in Problem 2, when a
decaying reference is used:

Corollary 1: Consider the Problem 2, a plantG [z] ∈
Rn×m

sp , n ≥ m, with no zeros on|z| = 1, and its coprime
factorization given by (51). Consider an inner-outer factor-
ization for ND [z], given by ND [z] , NDi [z]NDo [z].
Then, the solution of Problem 2 is achieved by choosing
Q [z] , Qopt [z], where

Qopt [z] , arg inf
Q[z]∈RH

m×n
∞

E {J}

= NDo [z]
−1

NDi

[

λ−1
]T

, (57)



and the optimal performance is given by

Jopt =
1

1− λ2

(

n− trace
{

NDi

[

λ−1
]

NDi

[

λ−1
]T

})

.

(58)
Proof: Direct from the proof of Theorem 1, replacing

YI [z] = 0 andDI [z] = In.
The result presented in Corollary 1 can be particularized to

square plants, by using the left unitary NMP zeros interactor
EI,dc [z] as the inner factorNDi [z].

The result given in Corollary 1 shows that the optimal
tracking performance only depends on plant NMP zeros,
which are included inNDi [z]. If we compare this results
with those obtained in Section III, we can observe that
the optimal tracking cost is smaller in a 2-dof control
configuration than in a 1-dof control scheme, only when the
plant is unstable. Indeed, when the plant is stable, the results
(26) and (58) are equal, which is consistent with previous
results [14], [15].

V. CASE STUDY

The previous results are presented to allow an analysis of
the improvement achieved when we control an augmented
system, which is obtained by adding new control inputs to a
tall system. Conversely, these results can be used to study the
effect of deleting control inputs of a square system to become
a tall plant. This study will be focused in cases studies, which
allow to compare the benefits (or deterioration) of adding (or
deleting) control inputs, under different structures.

A. Effect of unstable poles on tracking performance improve-
ment

Apart from NMP zeros, other system dynamics that affect
tracking performance are the unstable poles. As we can
find in the literature, the unstable poles worsen the tracking
performance, when a 1-dof control scheme is considered.
In this section , we study the improvement on tracking
performance, when a new control channel is added to an
unstable tall plant.

Example 1: Consider a tall plantGA [z] ∈ R2×1
sp defined

as

GA [z] ,

[

z − 0.5

z (z − p)

z − 0.5

z (z − 0.8)

]T

, (59)

with p ∈ R, such that|p| > 1. The system presented in (59)
has 1 unstable pole inz = p, and 1 NMP zero at infinity. To
improve the tracking performance of the system, we propose
to add 1 control channel to get

GS [z] ,















z − 0.2

z (z − 0.6)

GA [z]

z − 0.4

z (z − 0.6)















. (60)

The augmented system (60) has the same unstable pole in
z = p, 2 NMP zeros at infinity and, possibly, 1 finite NMP
zero.
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Fig. 3. Evolution of∆ as a function ofp.

To study the benefits of adding this new control input,
we consider a reference defined asr [k] , (0.9)

k
ννν, with

k ∈ N0 andννν ∈ R2. Defining J
opt
A as the optimal tracking

performance ofGA [z], and J
opt
S as the optimal tracking

performance ofGS [z], we study the evolution of∆ as a
function of p, where

∆ ,
J
opt
A − J

opt
S

J
opt
A

. (61)

Figure 3 shows the evolution of∆ as a function of the
unstable polep. We can observe that the benefits of adding
a new control input are always over50% for this case. In
addition, these benefits are always nonzero, even if the square
system has new finite NMP zeros, which worsen the tracking
performance of the augmented system.

B. Effect of number of design parameters on tracking per-
formance improvement

As we study in this paper, an additional degree of freedom
improves the tracking performance of a control system. This
effect is explored in the following example.

Example 2: Consider a tall plantGA [z] ∈ R2×1
sp defined

as

GA [z] ,

[

z − 0.5

z (z − p)

z − 0.5

z (z − 0.8)

]T

, (62)

with p ∈ R, such that|p| > 1. The system presented in (62)
has 1 unstable pole inz = p, and 1 NMP zero at infinity. To
improve the tracking performance of the system, we propose
to add 1 control channel to get

GS [z] ,















z − 0.2

z (z − 0.6)

GA [z]

z − 0.4

z (z − 0.6)















. (63)

The augmented system (63) has the same unstable pole in
z = p, 2 NMP zeros at infinity and, possibly, 1 finite NMP
zero. Thus, the tall and augmented systems are the same as
we use in Example 1.

On the other hand, we defineJopt
A as the optimal tracking

performance of the tall system in a 1-dof control scheme,
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Fig. 4. Evolution of∆i as a function ofp.

J
opt
S, 1 as the optimal tracking performance of the augmented

system in a 1-dof control scheme, andJopt
S, 2 as the optimal

tracking performance of the augmented system in a 2-dof
control architecture. To quantify the benefits of using the
augmented system, we define

∆i ,
J
opt
A − J

opt
S, i

J
opt
A

, (64)

wherei ∈ {1, 2}. This index allows to compare the benefits
of adding a new control input in a closed loop system. Also,
we can study the effect of a new design parameter in the
system performance.

Figure 4 presents the evolution of∆i as a function of
unstable polep, for i ∈ {1, 2}. The results show that a new
design parameter improves tracking performance better than
1-dof control scheme, when the same augmented system is
used. Indeed, in a 2-dof control scheme, the unstable pole
p does not appear into the optimal tracking performance;
however, the optimal tracking performance in a 1-dof control
scheme worsen asp increases.

VI. CONCLUSIONS

This paper presented the best achievable performance for
tall and squared-up systems, when a decaying reference is
considered. This reference guarantees the tracking error to
have finite energy and, therefore, closed form expressions are
computed for both tall and squared-up models. The results
show that unstable poles and NMP zeros have a deleterious
effect on the tracking performance in 1-dof control schemes.

To compare the performance with other control architec-
tures, in this paper we also derive expressions for the best
achievable tracking performance for 2-dof control schemes.
As we can expect, the closed form expressions depend only
on NMP zeros, which is consistent with known results [14],
[15].

The previous results have been studied through specific
examples. The expressions obtained in each case show that
new control channels are beneficial for control purposes,
when an initial unstable plant is considered. Moreover, the
tracking performance is improved if two degrees of freedom
are used.

Future work will be focused on study of benefits of using
augmented systems when control channels with energy con-
straints are considered, and when data losses are presented
in such channels.
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