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Abstract— This article is focused on the best achievable results in [2] shows that not only non-minimum phase zeros
tracking performance of unstable tall and squared-up plant and unstable poles affect the optimal performance, but also
models. The squared-up plant is originated by adding contrb e tota] variation of the plant direction with frequency.
inputs to a tall system to become a square plant. The work is . . .
developed for discrete time, LTI systems, when a decayinggial Similar _results are presgnted n [_4]’ Where the closed form
is considered as reference. Closed form expressions for thest ~ €Xpressions are also derived for discrete time SIMO systems
tracking performance for one and two degree of freedom contol  and an unify approach for continuous and discrete time

schemes are presented, and a case study of the benefits of atili  systems is also discussed. Nevertheless, the assumptions o

control inputs is also considered. the reference vector make the results applicable only to
Index Terms— Performance bounds, two degree of freedom ial situati A related K 191 by th th
control, augmented systems, optimal control, multivarialte specia §| uations. r.e ated work [9], by the same authors,
control. deals with the regulation problem for tall plants, that e t
reference was assumed to be a vector Kronecker delta. The
. INTRODUCTION results in [9] shows that the control performance is impcbve

This work is focused on the computation of performancé/nen additional channels are added.
bounds in discrete time MIMO feedback control systems, !N despite of the recent results for SIMO plants, the
A performance bound describes the best achievable perf@Rtimal performance reached by them is limited, since the
mance, measured by a specific cost function, which Camjmber of control char!nels is less than the number of
be achieved in the control of a plant. This index can b@utPuts. One method to improve the performance of control
employed to establish a benchmark against which the resffif @/l systems is by adding control inputs. As a first
of any design procedure can be compared. contribution of this paper, we propose a methodology to

Performance bounds in control systems have been geantify t_he benefits of adding control inputs to a tall syste
interest in the last decade. In this period, significant Itesu ©© Make it square. This approach selects a cost function for
have been obtained in this field (see, e.g, [1], [2], [3], &id the case when the reference is a decaying signal. As a second

the references therein). The main contribution of theseor CONtribution, we compute a closed form expression for the
is the development of closed form expressions for the beBESt achievable performance for unstable tall and squared-
achievable performance, when a feedback control systemYR Systems. Finally, we study the benefits of adding control
considered. In [1] the best achievable performance for colffPuts in unstable tall plants through specific cases.
tinuous time feedback control system is studied. The result 1he remainder of this paper is as follows. Section Il
in [1] suggest that unstable poles, non-minimum-phaseszerB‘trOduceS notation and pfellmlnanes qf this work; Settio
and time delays worsen the optimal tracking performancd! Presents the best achievable tracking performance for
Similar results are presented in [3], extending the analysP"e degree of freedom control scheme; Section IV studies

to discrete time MIMO feedback control systems. Howevefl€ Pest achievable tracking performance in two degree of
these results are only useful for particular delay strestr freedom feedback control; Section V presents a study of the
and for square systems. benefits of adding control inputs to an unstable tall system;

Plants with general delay structures are studied in [5{nally, Section VI presents conclusions of this work and
ture research.

In that work, the best achievable tracking performance i

computed, when stable discrete time MIMO control systems I

are considered. In the same spirit than [3], the results]in [5 ) .

shows that finite and infinite non-minimun-phase zeros have " the current work the following notation is used:

a deleterious effect on tracking performance. is the complex setC"”™ is the complex set of x m
The results presented in [1], [3], [5] can be only appliednatr!CeSJR IS the real s_et, ang" ™ is tThe real }slet Of_L X

to square systems. Results for tall plants have been reportg@trices. Given a matrid € C*™, A™ andA™ define its

in [2], [6], [7], [8]. A key issue in the control of tall plants ranspose and complex conjugate transpose, respecticely.

is they are non-right invertible. In [2] the best achievabl@ COMPIex number, T and |z| are defined as its conjugate

. s
tracking performance for SIMO systems is computed. ThaNd magnitude, respectivelyz;*™ is the set ofn x m
transfer matrices which are real rational and prop&}; ™ is

This work was supported by grants Anillo ACT53, FONDECYT the set ofn x m transfer matrices which are real rational and
1100692, and CONICYT through the Advanced Human Capitagiaro. strictly proper'RH"X’” is the set of, x m transfer matrices
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versidad Técnica Federico Santa Maria, Valparaiso,leChEmail: which are real rational, stable and prop@&ii, is the
mari 0. sal gado@sm cl set ofn x m transfer matrices which are real rational, stable
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and strictly proper, an®H2 """ the set ofn x m transfer ~ r[k] O (k]
matrices which are constant, improper and/or unstablesrGiv

a functionX [z] € C"*™, X [z]™ is defined as

: 1)

which is reduced toX [z]” = X [z*l]T for real rational
case.

A transfer matrixU [z] € C™*™ (n > m) is unitary if
and only if

X[~ 2x [z 1"

U[]” Ul

wherely is thek x k identity matrix.
A transfer matrixP [z] € RHL™ admits an inner-outer
factorization

P 2] = Pi[2] Po [2] , ®3)

where P;[z] € RHZ™ is an inner factor, ie.,
P; [2]” P;[z] = L. On the other handP, [2] € RH <™
is an outer factor, and it is right invertible, which is artalgl
on |z| > 1 [10].

A numberc € C is said to be a zero dP [z] € Ry™ if
and only if rank{P [¢]} < normalrank{P [z]}. If |¢| > 1,

y [K]

Fig. 1. One Degree of freedom control scheme.

+[{A |l - ©)

| nXm

where {A [Z]}H; denotes the part oA [z] € RH, ,
and{A [z]},,, denotes the part oA [2] € RH," "™,

IIl. TRACKING PERFORMANCE BOUNDS FOR PERFECT
AND DELAYED CONTROL CHANNELS

This section is focused on the best tracking performance
for tall and squared-up plant models, assuming that the con-
trol channels are either perfect or they only have propagati
delays, and when a decaying signal is applied as closed
loop reference. As first part of this section, the problem is
stated, and then closed form expressions for the best trgicki
performance are derived for unstable plant models.

c is called a non-minimum-phase (NMP) zero, otherwise A. Problem formulation
is called a minimum-phase (MP) zero. For a square plant consjder the 1-ddfcontrol scheme, depicted in Figure 1.

H[z] € RH5*",

H[z] = E1 ac [2] Hrm [2] , (4)

where Hpv [2] € RHL™ is a minimum-phase (MP)
transfer matrix, andEyr qc [2] € RH5 ™" is a unitary left
non-minimum-phase (NMP) zeros interactor ¥1z], which

is defined as

Eraclz] "2 Erclz] ' Eralz] ", (%)

| nxn

andEg 4 (2] € RH;

| nxn

whereEy . [2]"" € RH;

are the unitary left finite and infinite NMP zeros interactor

respectively,

N

[1

k=1

1—crl—2z7c

Erclz ' 2

{

EI,d [2]_1 £ H {Znomcnfok + UOOkU(I)_IOk ’
k=1
andni, e, € C™! and Uy, U, € C**~1) satisfy
Nk nkH + Uy UkH = Nooy, 'r)f% + U, UfOk =1I,, Vk [5].
The expectation operator is denoted®y-}. The 2 norm
for a systenB [z] € C"*™ no singular orz| = 1 is defined
as

B [2]]], = \/trace{ %

Under the 2 normRH5 "™ andR#; "™ are orthogonal
sets. Therefore,

e + UkUkH} )
(6)
(7)

1—¢ z—c

‘B [e7]" B [e7+] dw} . (8)

—T

(A by + (ALl || = €A G|+

In that figure,G [2] € R ™ (n > m) is the plant model,
Clz] € Ry is a feedback controller, and[k] € R",
e[k] € R, u[k] € R™ are the reference, tracking error and
control signals, respectively. In this section, we studg th

functional -
T2y e[k elk] (10)

k=0
whenr[k] £ v)*, with v € R™ and A € R, such that

|A] < 1. This reference guarantees the convergencé tf
a finite value whem > m.
'’ Assuming the closed loop internally stable, then

J=|E[]| (11)

whereE [z] is the Z-Transform of the tracking erros [k].
Using the closed loop description given in Figure 1, then
becomes
2

; (12)
2
where theZ-Transform of the reference[k] is used.

The expression (12) is non-linear in the control@rz].
To solve this problem, we use the coprime factorization of
G [z], defined as [10]

G[z] £ Np[s]Dp[2] ' =Dilz] ' Ni[7],

v
zZ—A

J= H(In +G[Clz) "

(13)

with Np[z], Np [2] € RHZ™, Di[z] € RHL™ and
Dp [z] € RHZ*™. These factors can be used to describe a
stabilizing controllerC [z] as

Cl[:] £ (Yp [:] - Dp [z]Q[2]) (Np [2] Q[:] - Xp [2])

1Degree of freedom.



= (Q[INt[2] - Xy [2) " (Y1[s] - Q[e] D [2]) . (14) P,y [2] 2P [2]Ep c[:] ' —Pi[4] (23)
_11T
where Q[z] € RHZ*™ is the design parameter, and P[] £Np; [A7']" +Npo[2] Yi[z],  (24)
Yi[z], Yp [2] € RHZ, Xi[z] € RH™, Xpl2] € A;2 lim (z—p;)P[2]Ep.el2] ", (25)
RHZX™ are such that they satisfy the double Bezout identity EPi
|: X; [Z] ~Y; [Z]] |:DD [2] Yp [Z]:| - |:Im 0:| and J°Pt is given by
—Ni[z] Dif¢] | [Np[z] Xplz]] [0 Iy (:i_5) JOPt — Jopt 4 Jopt (26)
Using (14) into (12), we get where
2 opt & 1 _t Np: —1 N -7
7= e -NolQE DR | e T (1~ race{Noy - Nou Y117
2
To simplify our analysis, we make the following assump- 27)
tion: Jort & 2trace{ P2 -Pi )" Py [)\]}
Assumption 1: v € R™ is a random vector that satisfies 1=A
A AlA,
E{v} =0, (17) + trace 77 - T .
™ _ ;z:: (1 =) (@i — A) (Bip; — 1)
E{I/V}—In. (18) i=1j=1
. . . (28)
Taking the expectation to (16) and under Assumption 1,  proof: First, note from (15) thaNp [2] Y [z] + I, =
we can writef {J} as Xp [2] D1 [2]. Then, (20) becomes
1 2
E{J}=||Xp [] = Np []Q[z) D1 [e] ——| - (19)  jort =  inf (In + Np [2] Y1 [2]
Finally, our study is focused on minimizing f9), subject QlzleR M= )
to Q[z] € RHZ*™. This can be written as N D 1 29
Problem 1. Given G [z] € RE™, n > m, find p[] Q[z D1 [2]) z=All, (29)
Using the unitary matrix
JoPt & inf (Xp [#] ~
Q[zleRHEZ™ Alz] 2 No: [] ~ (30)
1P I, — Np; [2] Np; [2]
~Np [2]Q[z]) D [2] — » (20) into (29), we can write
2
and, if J°P? is achievable, findQ°P* [z] stable and proper  jopt — inf A[2] (I + Np [2] Y1 [2]
that achieves/ort. Qz]eRHZ™"
Problem 1 will be solved in the next section. 1 1P
| | ~Np 2] Q4| Di[z)) —
B. Optimal tracking performance: unstable plants , 2= A2
When the plants are unstable, we can obtain closed form _ H(I“ — Np; [2] No; [2]) 1
expressions for the optimal tracking performance, when an ' ' z=Ally
exponentially decaying reference is considered. of N v
Theorem 1: Consider the Problem 1, a plag [2] € + QUEleRHT <" (Npj [2]” + Npo [2] Y1 [£]
Re™, n > m, with n, different unstable poles, 12
and its coprime factorization given by (13). Also, de- —Np, [2] Q[2] D1 [2]) —— (31)
fine an inner-outer factorization dNp [z] as Np [z] £ z = Ally
Np; [#2]Np, [2], and a factorization ofD; [2] given by Also, noting that
Dy [Z] £ DI,FM [Z] ED,c [Z], with ED,c [Z] defined as (6), T mxn
andDy, g [2] is stable, biproper and MP. Then, the solution (Nm [2]” — Np; [A7'] ) — € RH;
of the Problem 1 is achieved by choosi@)z] £ Q°P* 2], i (32)
where T
(Npi [A1]" + Np, [2] Y1 2]
Q°P 2] £ arg inf E{J} 1
Qz]ERHIL™ _NDo [Z] Q [Z] Dy [Z]) m (S Rngxn s
=Npo[2] ' (P1[A| + P2 [2]) Drrm 2], (21) (33)
and it is clear that
TrAL 2
P, [2] 2 i 22 opt _ CNu. ey L
1 [2] ;Z_pi 22 _H(In Nos 2] Noi [47) = | +




1 2

zZ—A

+ H (Npi 2] = Nps 2 1]")

2

+ inf
Q[z]GRH;@X"

(Npi A7) + Npo 2] Y 2]

1 2

—Nb, [2] Q[2] D1 [2]) R

(34)

2
It is straightforward to prove that

1 2

zZ—A

(8o N N 1)

2

1 2

zZ—A

+ H (NDi 2] — Np; [xl]T) 2

1 -1 -7 o
m (n — traCG{NDl [)\ ] NDi [)\ ] }) = Jspt,
(35)
and thus (34) becomes
Jopt _ J;)pt
112
+ inf (P [2] = Npo [2] Q[2] D1 [2]) ,
Qz]ERHL*" z =My
(36)

with P [z] defined by (22). On the other hand, if we

consider the factorizatiody[2] £ Dri rm (2] Ep,c[2],
where Dy, g 2] IS biproper, stable and MP, afdp . [7]
is unitary, then

JOPE— JOP 4 inf

(Pz]Ep,c[z] ™
Q[zlERH ™"

2
(37)

~Npo 5] Q =) Dy ewt )

2

The expressiol? [z] Ep . [z] ' contains stable and unstable
terms. Therefore, it is necessary to make a partial fraction
expansion. Given that the unstable terms arerthenstable

plant poles (with multiplicity one), then

P[z]Ep.c[2] ' 2 P[]+ Py 2] , (38)
where
P2y A (39)
i=1 Z = DPi
Py (2] 2P[2]Ep.c[2] " —Pi[7] , (40)

with A; defined as (23). According to the definitions given

in (22) and (23), it follows thatP; [z] € RHL ™" and
P; [z] € RHL ™. Therefore,

Jovt — gont . H(p1 2]~ Py ) 2
2
v inf (Py [\ + Ps [2]
QJeERHZ™™
2
~Noo []QEIDrem ) | - (4D)
2

We can then note from (41) thaf) [z] can be chosen
according to (21) to obtain

1 2

z —

JoPt & Jort L I(Py [2] — Py [)]) (42)

2

To complete this proof, we need to prove that the second
term in the right hand side of the equality in (42).J§P*,
with JoPt defined as (28). For this purpose, consider

2

1
2= Al
1 (P1[z] = P1[A)”
trace{% ?{ Y X
(P1[z] = P1[A])
sz} , (43)

where the integral is ofz| = 1, counterclockwise oriented.
The expression (43) can be computed using the Cauchy’s
Residue Theorem [11]. We thus obtain

2

(LSRR S

1
zZ—A

(CACER A 2

ﬁtrace{Pl " Py [/\]}

1 Pl [Z]N P1 [Z] — P1 [Z]N P1 [)\]
“race{%’fé { CEVIEESY

—P, [\ Py [2]
(1=2)\) (z =\

dz} . (44)

which can be rewritten as

1 2

z=All,

1 Pl [Z]N Pl [Z] — Pl [Z]N P1 [A]
vl o § P ey

== _1)\2 trace{Pl NPy [/\]}

1 P1 [Z]N Pl [Z]
+trace{ 5 7{ TSN IEESY) dz ;. (45)
The term inside the integral in (45) has, at least, two NMP

at infinity. This allows one to use the result reported in [12]
to compute (45) as

1= P )

2

2

1
zZ—A

](Pl 2= Py ) ——

2trace{ (P [N =Py [/\])T P, [)\]}

1—A
P1 [Z]Npl [Z]
1{<1—zx><z—A>}}’ “o

Np

+ trace Res
i=1 =P~
and, therefore,

1
zZ—A

H<P1 BEAN)
:

T

trace{ (P [A'=PL[N]) Py [/\]}

1—A2



r[k] u [K]

[Cl )i Ca [Z]] Gl y[kl ~ whenr[k] £ vA\*, v € R® and A € R, |\ < 1. Using

Parseval’'s Theorem, (49) can be written as

J =R [e] = Y[:]5 - (50)

The closed loop transfer matrices are non linear on parame-
tersC; [z] andCs;, [z]. Therefore, we use the double coprime
factorization forG [z], given by

+ trace{zp ZPE- e (AﬁAj _ G[z2] 2Np[z]Dp[z] ' =Di[z] 'Ni[z],  (51)

BN @ip 1)

(47) where Ny 2], Np [z] € RHX™, Dr[z] € RHL™ and
; : . . , Dp [2] € RHI" satisfy
Using (47) into (42) we obtain (26), concluding this proof.

] |: XI [Z] —YI [Z]] [DD [Z] YD [Z]:| o |:Im 0:|
The result presented in Theorem 1 shows that the optimal [—=N1[2] Di[z] | [Np[2] Xplz]|] [0 In|’
tracking performance for an unstable plant can be analysed (52)
by parts. The first term in (26) is a function of the finiteWhere Y [z], Yp [2] € RHI™™, Xq[2] € RHIZ™ and
and the infinite NMP zeros o [2]. On the other hand, the XD [2] € R} The above definitions allow to build a
second term in (26) is a function of the unstable poles cit@bilizing controller as [13]
G [z]. The termJ¢P* shows that, when\ — p; ', the index ‘ N .
goes to infinity. This can be understood when we consider | C1[z]| C2 [Z]} = (X1l =R [2]Np[z]) %
Assumption 1, because this assumption takes an average over !
all possible values of the reference vector. Finally, we tmus [Q [2]{ Y1 [e] - R[] D1 [2]} - (59)
note thatJ°Pt depends explicitly on the reference parametef i Q[2], R[z] € RH™ ™. This factorization can be used
A, and on the number of output channels to write J as
Note that we can simplify Theorem 1 when= m, i.e.,

we consider an unstable square system. In this case, we can _ v
use an explicit form for the inner factd¥p; [2], given by /= H(I“ ~No [F]Q[z) = A
the left unitary NMP zeros interactor & p [2], defined as

Fig. 2. Two Degree of freedom control scheme.

i=1 j=1

2

, (54)
2

where theZ-Transform ofr [k] is used. If we assume that

(5)—(7). e .
The results presented in this section are obtained l:')/yER satisfies Assumption 1, thefi{./} becomes

2

assuming that the closed loop system has onlgesign 1
parameter. The next section studies the optimal tracking € {/} = H(In ] =Np [2]Q[z]) — (55)
performance when a parameter controller scheme is used _ o
in a closed loop configuration. The problem to be tackled in the coming section is stated
next.
IV. TRACKING PERFORMANCE BOUNDS FOR PERFECT Problem 2: Given G [z] € R™*™, n > m, find
AND DELAYED CONTROL CHANNELS: 2-DOF CONTROL P
LOOP opt & " 1 N 17

In this section, we study the optimal tracking performance n Q[Z]elleﬂgxn (In[s] = No [5]Q[2]) z—=Ally

in a 2-dof control loop, when an exponentially decaying (56)

reference is used. This section will allow to discuss thand, if J°P is achievable, findQ°P* [z] stable and proper
benefits of adding control inputs, when the closed loop habat achieves/°Pt.

2 parameters to be designed. ] ]
B. Optimal tracking performance: 2-dof control scheme

A. Problem formulation . . .
This section presents a closed form expression for the

.Consider the 2-dof control loop depicted in Figure 2. Irbptimal tracking performance given in Problem 2, when a
this schemeG [z] € Ry ™ (n > m) is the plant model, decaying reference is used:

r[k] € R" is the referencey [k] € R™ is the system output,  cyro)iary 1: Consider the Problem 2, a pla [2] €
andu [k] € R™ is the control signal, defined as RIX™, 5 > m, with no zeros onfz| = 1, and its coprime
U] 2C[2]R[z] + Co[2] Y [2] , (48) factorization given by (51). ConsiderAan inner-outer facto

mxn mxn ization for Np [z], given by Np [z2] £ Np;[2]Np, [2].
where Cylz] € RH™, Cx[e] € R;¥, and Then, the solution of Problem 2 is achieved by choosing
R[z], Y [z], U[z] are the Z-Transforms ofr [k], y [k], Q[+] 2 QoPt [2], where
and u [k], respectively. In this control configuration, the o '
performance will be measured by QP [2] 2 arg inf g}

s QzleRH ™"

TEN @l -y k) K -y (k). (49) ~ Now [ Nos 1T 57
k=0



and the optimal performance is given by 0.85 Evolution of A as a function of p
1 T 0.8 B : : 4
opt __ —1 —1
Jopt Y (n — trace{NDi (A Np; [A] }) ) ol
(58)
Proof: Direct from the proof of Theorem 1, replacing 4 .71
Y1[z] =0 andDx [z] = L,,. [ | 0.65

The result presented in Corollary 1 can be particularized 1
square plants, by using the left unitary NMP zeros interactc
E1 4c [2] as the inner factoNp; [z].

The result given in Corollary 1 shows that the optima 05— 3 4 s s 7 8 9 10
tracking performance only depends on plant NMP zeros, p
which are included irNp; [z]. If we compare this results
with those obtained in Section Ill, we can observe that
the optimal tracking cost is smaller in a 2-dof control
configuration than in a 1-dof control scheme, only when the T study the benefits of adding this new control input,
plantis unstable. Indeed, when the plant is stable, théteesuye consider a reference defined @] 2 (0.9)* v, with
(26) and (58) are equal, which is consistent with previoug ¢ N, andv € R2. Defining JP* as the optimal tracking
results [14], [15]. performance ofG 4 [z], and J¢** as the optimal tracking
performance ofGg [z], we study the evolution oA as a
function of p, where

The previous results are presented to allow an analysis of opt opt
the improvement achieved when we control an augmented A2 Ja —Js
system, which is obtained by adding new control inputs to a Jff;pt

tall system. Conversely, these results can be used to dtedy t Figure 3 shows the evolution ok as a function of the

effect of deleting control inputs of a square system to be&eom,siaple pole. We can observe that the benefits of adding
a tall plant. This study will be focused in cases studiesgWhi 5 new control input are always ovéb% for this case. In

allow to compare the benefits (or deterioration) of adding (0, gition, these benefits are always nonzero, even if thesqua
deleting) control inputs, under different structures. system has new finite NMP zeros, which worsen the tracking
performance of the augmented system.

0.6

0.55 J

Fig. 3. Evolution of A as a function ofp.

V. CASE STUDY

(61)

A. Effect of unstable poles on tracking performance improve-

ment B. Effect of number of design parameters on tracking per-
Apart from NMP zeros, other system dynamics that affedormance improvement

tracking performance are the unstable poles. As we canas we study in this paper, an additional degree of freedom
find in the literature, the unstable poles worsen the trarkinmproves the tracking performance of a control system. This
performance, when a 1-dof control scheme is considereglfect is explored in the following example.

In this section , we study the improvement on tracking Example 2: Consider a tall planG 4 [z] € R2x1 defined
performance, when a new control channel is added to g3 !

unstable tall plant. A 2—05 z—05 17
Example 1. Consider a tall planG 4 [z] € RZ<" defined Gal= z(z —p) 2(z2—08)| (62)
as
L[ 2z—05 2—05 17 with p € R, such thatp| > 1. The system presented in (62)
Galz] = — — , (59) has 1 unstable pole in= p, and 1 NMP zero at infinity. To
z(z—p) z(2—0.8)

improve the tracking performance of the system, we propose
with p € R, such thatp| > 1. The system presented in (59)to add 1 control channel to get
has 1 unstable pole in= p, and 1 NMP zero at infinity. To

improve the tracking performance of the system, we propose | =02
to add 1 control channel to get K (z—0.6)
v — 0.9 Gs[z] £ | Ga[2]! . (63)
o006 AL
A 1 1 2(2—0.6)
Gs[z] = | Ga 2] . (60) _
2 0.4 The augmented system (63) has the same unstable pole in
m z = p, 2 NMP zeros at infinity and, possibly, 1 finite NMP

zero. Thus, the tall and augmented systems are the same as
The augmented system (60) has the same unstable polewia use in Example 1.
z = p, 2 NMP zeros at infinity and, possibly, 1 finite NMP  On the other hand, we defir.llf;jf’t as the optimal tracking
zero. performance of the tall system in a 1-dof control scheme,



Future work will be focused on study of benefits of using
augmented systems when control channels with energy con-
straints are considered, and when data losses are presented

(1]

(2]

[3]
Fig. 4. Evolution ofA; as a function ofp.

(4

Jgf’f as the optimal tracking performance of the augmenteql5]
system in a 1-dof control scheme, arigf’g as the optimal
tracking performance of the augmented system in a 2-dof
control architecture. To quantify the benefits of using theg
augmented system, we define

opt
S, i

JoP — (7]

A; &
opt
JA

: (64)

(8]
wherei € {1, 2}. This index allows to compare the benefits
of adding a new control input in a closed loop system. Also, g
we can study the effect of a new design parameter in the
system performance. [10]

Figure 4 presents the evolution &; as a function of
unstable pole, for i € {1, 2}. The results show that a new [11]
design parameter improves tracking performance better th
1-dof control scheme, when the same augmented system is
used. Indeed, in a 2-dof control scheme, the unstable pole
p does not appear into the optimal tracking performanc&g’]
however, the optimal tracking performance in a 1-dof cdntrqagj
scheme worsen gsincreases.

VI. CONCLUSIONS [15]

This paper presented the best achievable performance for
tall and squared-up systems, when a decaying reference is
considered. This reference guarantees the tracking esror t
have finite energy and, therefore, closed form expressians a
computed for both tall and squared-up models. The results
show that unstable poles and NMP zeros have a deleterious
effect on the tracking performance in 1-dof control schemes

To compare the performance with other control architec-
tures, in this paper we also derive expressions for the best
achievable tracking performance for 2-dof control schemes
As we can expect, the closed form expressions depend only
on NMP zeros, which is consistent with known results [14],
[15].

The previous results have been studied through specific
examples. The expressions obtained in each case show that
new control channels are beneficial for control purposes,
when an initial unstable plant is considered. Moreover, the
tracking performance is improved if two degrees of freedom
are used.

in such channels.
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