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Abstract— This paper presents performance bounds in the
control of SIMO plant models, and the variation of those bounds
when input channels are added to the plant so as to make it
square. Our work focuses on discrete-time, linear time invariant
(LTI) MIMO systems, minimizing the squared regulation erro r
when an impulsive input disturbance is injected into the plant.
Closed form expressions for the optimal regulation performance
are developed, and the sensitivity of the performance to channel
addition is also investigated. Finally, a numerical example is
presented to illustrate the main results of the paper.

Index Terms— SIMO systems, Performance bounds, Optimal
control.

I. INTRODUCTION

This work deals with the computation of performance
bounds in the feedback control of MIMO plants. A per-
formance bound describes the best achievable performance,
measured by a specific cost function, that can be achieved in
the control of a given plant, without constraints and without
penalizing the control effort. When computing performance
bounds, one aims at finding benchmarks against which the
results of a design procedure can be compared.

Research on performance bounds and fundamental limita-
tions is rooted in Bode’s work [1], and has been the focus of
much recent research (see, e.g., [2], [3], [4], [5], and the ref-
erences therein). The contribution of these works has been to
develop closed form characterizations of the best achievable
performance for different set-ups. For instance, [3] writes the
optimal tracking performance of MIMO systems for several
references as a function of the unstable poles, non-minimum
phase zeros, and their directions. These results apply only
to right-invertible systems. Similar results are presented in
[6], where stable right-invertible systems with arbitrarydelay
structure are considered.

Other results related to performance bounds on right-
invertible systems have been presented in [7] and [8]. In
these works, performance bounds subject to closed loop pole
location constraints are computed.

In this paper we focus on SIMO plant models. A key
problem in the control of such systems is that their transfer
functions are not right-invertible. Performance bounds for
SIMO systems have been reported in [9]. In that work, it is
assumed that the reference direction belongs to the subspace
spanned by the plant gain at zero frequency, and a closed
form expression for the best tracking performance is derived.
Similar results are presented in [10], when the plant has
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integrators. In that case, closed form expressions for the
optimal tracking and regulation performances are presented,
with hard constraints on the reference direction.

Other relevant results have been presented in [11]. In
that work, regulation problems subject to impulsive input
disturbances are addressed for SIMO plants that have only
one zero at infinity. The approach in [11] might be extended
to accommodate multiple zeros at infinity, but this is not
explored in [11].

In despite of the recent work on SIMO systems, the
performance reached by them is limited, because the degrees
of freedom available to control is less than the number of
system outputs. One method to improve the performance in
SIMO systems is augmenting the number of control inputs
available in the model of such plants. A review of existing
methods to select system inputs and outputs is presented
in [12], where such selection is discussed from a control
perspective. However, these methods do not quantify the
advantages of adding more control inputs to a system.

As a first contribution of this paper, we develop a closed
form expression for the optimal regulation performance in
the control of SIMO systems, assuming impulsive input
disturbances. Our results are valid for plants that have non
repeated finite non-minimum phase (NMP) zeros, but that
are otherwise arbitrary. Thus, our results extend [11]. As
a second contribution, we study tall plants, i.e. plants that
have more outputs than inputs, which are augmented with
additional control inputs and made square. In this case, we
present a closed form characterization of the best achievable
regulation performance for stable plants. As expected, our
results show that additional control inputs are always useful
to improve performance. We also illustrate our results using
numerical simulations.

The remainder of this paper is organized as follow: Section
II presents notation. Section III derives an expression forthe
the optimal performance in the control of SIMO systems.
Section IV considers the case of tall plants that are squared
up by adding a control channel. Section V presents an
example, and Section VI draws conclusions.

II. N OTATION AND PRELIMINARIES

In this work, C denotes the complex numbers,Cn×m

denote the set of complexn×m matrices,R are the real
numbers andRn×m represents the set of realn×m matrices.
Given a matrixA∈ Cn×m, AT andAH denotes its transpose
and conjugate transpose respectively. Ifx ∈ C, then x and
|x| denote its conjugate and magnitude, respectively.RH∞
is the set of all transfer functions (scalar or matrix) which
are real rational, stable and proper.RH2 is the set of all



transfer functions (scalar or matrix) which are real rational,
stable and strictly proper, andRH ⊥

2 is the set of all functions
which are real rational and have no poles in{z∈ C : |z|< 1}.
For a functionX [z] ∈ Cn×m, we defineX [z]∼ , X

[
z−1
]H

,

which reduces toX [z]∼ , X
[
z−1
]T

in the real rational case.
A matrix transfer functionU [z] ∈Cn×m is said to be unitary
iff U [z]∼ U [z] = Im, where Im denotes them×m identity
matrix. All transfer functionsP[z] ∈ RH∞ admits an inner-
outer factorizationP[z], ΦP [z] ΘP [z], whereΦP [z] ∈ RH∞
is an inner factor, andΘP [z] ∈ RH∞ is right-invertible in
RH∞ (an outer function). A numberc∈C is a zero ofP[z]∈
Cn×m iff rank{P[c]} < normal rank{P[z]}. If |c| < 1, the
zero is called minimum phase (MP), otherwise it is a Non-
Minimum Phase (NMP) zero. We refer to the multiplicity of
a NMP zero at infinity as the delay or the relative degree
of P[z]. Any P[z] ∈ Cn×m, wheren ≥ m, can be factorized
as P[z] , P̂[z] Er

P [z], where P̂[z] ∈ C
n×m is real rational,

stable, biproper and MP, andEr
P [z] ∈ Cm×m is a unitary

function. Any stableH [z] ∈ Cn×m, where m ≥ n, can be
factorized asH [z],El

H [z] Ĥ [z], whereĤ [z]∈C
n×m is a real

rational, stable, biproper and MP matrix transfer function,
andEl

H [z]∈Cn×n is a left unitary interactor forH [z], defined
by El

H [z]−1
, El

zH
[z]−1 El

dH
[z]−1, whereEl

zH
[z] ∈ Cn×n and

El
dH

[z] ∈ Cn×n are given by (see [6] for details)

El
zH
[z]−1

,

nc

∏
k=1

{
1− ck

1− ck

1− zck

z− ck
ηkηH

k +UkU
H
k

}

, (1)

El
dH

[z]−1
,

nz

∏
k=1

{
zη∞kηH

∞k
+U∞kU

H
∞k

}
, (2)

whereηk ∈Cn andη∞ j ∈Cn are left unitary vectors associ-
ated to thek-th finite andj-th infinite NMP zero, respectively,
while Uk ∈Cn×(n−1) andU∞k ∈Cn×(n−1) are unitary matrices
satisfyingηk ηH

k +UkUH
k = η∞ j ηH

∞ j
+U∞ j U

H
∞ j

= In.
The symbolδ [k] denotes the Kronecker delta, whileE {·}

denotes the expectation operator. The 2-norm of a function
P[z], analytic for|z|= 1, is defined as usual [13], [3]. Under
the inner product that induces the 2-norm,RH2 andRH ⊥

2
are orthogonal sets. Thus,

‖ P[z] ‖2
2=
∥
∥
∥{P[z]}

RH ⊥
2

∥
∥
∥

2

2
+
∥
∥
∥{P[z]}

RH2

∥
∥
∥

2

2
, (3)

where{P[z]}
RH ⊥

2
∈RH ⊥

2 , and{P[z]}
RH2

∈RH2. Defining
{P[z]}

RH∞
as the part ofP[z] ∈ RH∞ and using (3), it is

possible to show that (see appendix A in [14])
∥
∥
∥{P[z]}

RH ⊥
2
+ {P[z]}

RH∞

∥
∥
∥

2

2
=

∥
∥
∥{P[z]}

RH ⊥
2
− {P[z]}

RH ⊥
2

∣
∣
∣
z=0

∥
∥
∥

2

2

+
∥
∥
∥{P[z]}

RH ⊥
2

∣
∣
∣
z=0

+ {P[z]}
RH∞

∥
∥
∥

2

2
. (4)

III. OPTIMAL REGULATION PERFORMANCE FOR
TALL SYSTEMS

A. Problem Formulation

In this section, we consider the closed loop configuration
of Figure 1, whereG[z] ∈ Cn×m is a MIMO plant, n ≥ m,

y[k]C [z] G[z]
−

di [k]

e[k]r [k] u[k]

Fig. 1. One degree of freedom feedback loop.

andC[z]∈Cm×n is the LTI controller. The signalsu[k]∈Rm,
r [k]∈Rn, e[k]∈Rn, di [k]∈Rm andy[k]∈Rn are the control
input, the reference, the tracking error, the input disturbance,
and the system response, respectively. For the system in
Figure 1, we measure the closed loop performance by using

J =
∞

∑
k=0

e[k]T e[k] , (5)

when di [k] = ν δ [k], and whereν ∈ Rm. If the closed loop
is internally stable, then

J = ‖E [z]‖2
2 ,

whereE [z] = −(I +G[z]C[z])−1G[z] ν is theZ -transform
of the tracking errore[k]. Thus,

J =
∥
∥
∥(I +G[z]C[z])−1G[z] ν

∥
∥
∥

2

2
. (6)

SinceG[z] is a rational matrix transfer function, it admits
a doubly coprime factorization given by

G[z], Ml [z]
−1 Nl [z] = Nr [z] Mr [z]

−1
,

whereNl [z], Ml [z], Nr [z], Mr [z] ∈ RH∞ satisfy
[

Xl [z] −Yl [z]
−Nl [z] Ml [z]

] [
Mr [z] Yr [z]
Nr [z] Xr [z]

]

= I , (7)

for some Xl [z], Yl [z], Xr [z], Yr [z] ∈ RH∞. All controllers
which internally stabilizeG[z] can be written as [15]

C[z], (Yr [z]−Mr [z]Q[z]) (Nr [z]Q[z]−Xr [z])
−1

= (Q[z]Nl [z]−Xl [z])
−1(Yl [z]−Q[z]Ml [z]) , (8)

whereQ[z] ∈ {Cm×n∩RH∞}. Using (8) and (7) in (6), we
have that

J = ‖(Xr [z]Nl [z]−Nr [z]Q[z]Nl [z]) ν‖2
2 . (9)

To simplify the analysis, we assume thatν is a random
vector satisfyingE {ν}= 0 andE

{
ννT

}
= Im. Applying the

expectation operator to (9), and considering our assumptions
on ν, we have that

E {J}= ‖Xr [z]Nl [z]−Nr [z]Q[z]Nl [z]‖
2
2 . (10)

The aim of this paper is minimizing the functional given
in (10), subject toQ[z] ∈ RH∞ for several plant types, i.e.,
we aim at finding

Jopt
1 , min

Q[z]∈RH∞
‖Xr [z]Nl [z]−Nr [z]Q[z]Nl [z]‖

2
2 . (11)



B. Optimal Regulation Performance: SIMO Case

The next theorem presents a closed form expression for
Jopt

1 in the SIMO plant case:
Theorem 1:Consider the problem in (11), a plantG[z] =

GA [z] ∈ C
n×1, with non repeated finite NMP zerosci (i =

1, . . . ,nc), and nz NMP zeros at infinity. Furthermore, sup-
pose thatGA [z] has no zeros on|z| = 1. Define N̂l [z] ,
Nl [z] Er

Nl
[z]−1, and a power series expansion forΘNr [z] Xl [z]

as

ΘNr [z] Xl [z],
∞

∑
k=0

αi z
−i
,

whereαi ∈R. Then, the optimal value of the functional given
by (11) is achieved withQ[z] = Qopt

t [z], where

Qopt
t [z], arg min

Q[z]∈RH∞
E {J}

= ΘNr [z]
−1(R12[0]+K2 [z]) N̂l [z]

†
,

K2 [z] ∈ RH∞ is given by

K2 [z],
nc

∏
i=1

1− zci

z− ci

∞

∑
i=nz

αi z
nz−i

−
nc

∑
j=1

{

mj
1− zc j

z− c j

∞

∑
i=nz

αi c
nz−i
j

}

,

and

R12[0],−
nc

∑
j=1

{

mj

∞

∑
i=nz

αi c
nz−i−1
j

}

,

mj ,

nc

∏
k=1
k6= j

1− c j ck

c j − ck
,

and N̂l [z]
† ∈ RH∞ is any left inverse ofN̂l [z]. On the other

hand, the optimal performance is given by

Jopt
1 =

nz−1

∑
i=0

α2
i +

nc

∑
h=1

nc

∑
l=1






mh ml

(

|ch|
2−1

)(

|cl |
2−1

)

chcl −1

×
∞

∑
i=nz

αi c
nz−i−1
h

∞

∑
j=nz

αi c
nz− j−1
l

}

,

where all symbols are as above.
Proof: We have from (7), thatXr [z]Nl [z] = Nr [z]Xl [z].

Then, pre-multiplying the expression (11) by the unitary
factor

U [z] =

[
ΦNr [z]

∼

I −ΦNr [z] ΦNr [z]
∼

]

,

we obtain

Jopt
1 = min

Q[z]∈RH∞
‖ΘNr [z] Xl [z]−ΘNr [z]Q[z]Nl [z]‖

2
2 .

If we next make use of the right unitary factorEr
Nl
[z], then

Jopt
1 =

min
Q[z]∈RH∞

∥
∥
∥ΘNr [z] Xl [z] Er

Nl
[z]−1−ΘNr [z]Q[z] N̂l [z]

∥
∥
∥

2

2
. (12)

Since, for SIMO systems,

Er
Nl
[z],

1
znz

nc

∏
i=1

z− ci

1− zci
,

we have that (12) reduces to

Jopt
1 = min

Q[z]∈RH∞

∥
∥W [z]+K [z]−ΘNr [z]Q[z] N̂l [z]

∥
∥

2
2 , (13)

where

W [z],
nc

∏
i=1

1− zci

z− ci

nz−1

∑
i=0

αi z
nz−i

,

K [z],
nc

∏
i=1

1− zci

z− ci

∞

∑
i=nz

αi z
nz−i

.

Now, we observe thatW [z] is analytic for|z|< 1. There-
fore, W [z] ∈ RH

⊥
2 . However,K [z] has stable and unstable

poles. Using the partial fraction described in [16] for expand-
ing K [z], we have that

K [z],
nc

∑
j=1

{

mj
1− zc j

z− c j

∞

∑
i=nz

αi c
nz−i
j

}

︸ ︷︷ ︸

R12[z]

+K2 [z] ,

where K2 [z] ∈ RH∞, and R12[z] has only unstable terms.
Therefore,R12[z] ∈ RH ⊥

2 . Since (W [z]+R12[z]) ∈ RH ⊥
2

and
(
K2 [z]−ΘNr [z]Q[z] N̂l [z]

)
∈ RH∞, we can use (4), to

write (13) as

Jopt
1 = ‖W [z]+R12[z]−W [0]−R12[0]‖

2
2

+ min
Q[z]∈RH∞

∥
∥W [0]+R12[0]+K2 [z]−ΘNr [z]Q[z] N̂l [z]

∥
∥

2
2 .

(14)

Since thatW [0] = 0 and the second term on the RHS of
(14) can be made zero choosingQ[z] = Qopt

t [z] ∈ RH∞, we
conclude that

Jopt
1 = ‖W [z]+R12[z]−R12[0]‖

2
2 . (15)

Applying the definition of the 2-norm, (15) reduces to

Jopt
1 =

1
2π j

∮

{W [z]+R12[z]−R12[0]}
∼

×{W [z]+R12[z]−R12[0]}
dz
z
,

where integral is over the unit circle, traveled counterclock-
wise. Using Lema 1 in [17], it is straightforward to prove
that Jopt

1 = γ1+ γ2− γ3, where

γ1 ,
1

2π j

∮

W [z]∼W [z]
dz
z
,

γ2 ,
1

2π j

∮

R12[z]
∼ R12[z]

dz
z
,

γ3 ,
1

2π j

∮

R12[z]
∼ R12[0]

dz
z
.

It is possible to show that

γ1 =
nz−1

∑
i=0

α2
i ,



and that

γ2− γ3 =
nc

∑
h=1

nc

∑
l=1






mh ml

(

|ch|
2−1

)(

|cl |
2−1

)

chcl −1

×
∞

∑
i=nz

αi c
nz−i−1
h

∞

∑
j=nz

αi c
nz− j−1
l

}

.

The proof is thus completed.
Theorem 1 gives a closed form expression for the optimal

regulation performance for SIMO systems that have non
repeated finite NMP zeros, but are otherwise arbitrary (cf.
[11]).

Our result are much simplified if one imposes additional
constraints on the plant. For instance, the next immediate
corollary of Theorem 1 presents the best achievable regula-
tion performance when the plant has one zero at infinity:

Corollary 1: Consider the setup, notation, and assump-
tions of Theorem 1. Ifnz = 1, then

Jopt
1 =

(

ΘNr [∞]Mr [∞]−1
)2

+
nc

∑
h=1

nc

∑
l=1






mh ml

(

|ch|
2−1

)(

|cl |
2−1

)

chcl −1

×
(

ΘNr [∞]Mr [∞]−1−ΘNr [ch]Mr [ch]
−1
)

×
(

ΘNr [∞]Mr [∞]−1−ΘNr [cl ]Mr [cl ]
−1
)}

.

�

The result of Corollary 1 is consistent with the results
in [11], when particularized to the performance measure
considered in this paper.

IV. OPTIMAL REGULATION PERFORMANCE FOR
SQUARED-UP PLANTS

A. Problem Formulation

In this section, we consider that an additional control
channel is added to a tall plantGA [z] ∈ C

n×(n−1). The
resulting transfer function, sayG[z], is thus square. The
structure of the augmented plantG[z], as a function of the
tall plant GA [z], is given by

G[z],
[

GA [z] Gn [z]
]

, (16)

where Gn [z] ∈ Cn×1 is the column associated to the new
(i.e., additional) control channel. As before, we considerthe
closed loop shown in Figure 1. We use the notation and
definitions presented in the previous section. However, the
dimensions of some signals and systems must be redefined:
the control inputu[k] ∈Rn, the input disturbancedi [k] ∈Rn,
the controllerC[z] ∈ Cn×n, and the plantG[z] ∈Cn×n.

As before, the performance is measured by (5). However,
we will assume that only the originaln−1 control channels
are perturbed bydi [k], i.e., we assume thatν ∈ R

n is such
that E {ν}= 0 and

E
{

ν νT}=

[
In−1 0

0 0

]

.

This assumption will allow us to fairly asses the benefits of
augmentingGA [z] with an additional control channel.

Proceeding as before, and assuming bothGA[z] and G[z]
to be stable, we can write the problem of interest in this
section as that of finding

Jopt
2 , min

Q[z]∈RH∞
‖(I −G[z]Q[z])GA [z]‖

2
2 . (17)

The solution to this problem is derived in the next subsection.

B. Optimal Regulation Performance: Augmented Plant Case

The next results presents a characterization ofJopt
2 , as

defined in (17):
Theorem 2:Consider the problem formulated in (17), a

plant G[z] = El
G [z] Ĝ[z] ∈ Cn×n, stable, with non repeated

finite NMP zerosci (i = 1, . . . ,nc), and nz NMP zeros at
infinity. Furthermore, assume that the plantG[z] has no zeros
on |z|= 1, and it has a partition given by (16). Also define
ĜA [z] = GA [z] Er

GA
[z]−1 ∈Cn×(n−1). Then, the optimal value

of the functional (17) is obtained by choosingQ[z] =Qopt
s [z],

where

Qopt
s [z], arg min

Q[z]∈RH∞
E {J}

= Ĝ[z]−1

(

R2 [z]−
nc

∑
k=1

Ak

ck

)

ĜA [z]
†
,

whereĜA [z]
† ∈ RH∞ is a left inverse ofĜA [z],

Ak , Mk

r

∑
i=0

∞

∑
j=i

Ci B j c
i− j
k ,

Ci ∈Rn×n andB j ∈Rn×(n−1) are the coefficients of the power
series expansions

ĜA [z],
∞

∑
j=0

B j z
− j

, El
dG

[z]−1
,

r

∑
i=0

Ci z
i
, (18)

R2 [z] ∈RH∞ is given by

R2 [z], El
zG
[z]−1

r

∑
i=0

∞

∑
j=i

Ci B j z
j−i −

nc

∑
k=1

Ak

z− ck
,

with El
zG
[z]−1 defined as in (1), and

Mk , Lk,1,k−1

{
1− ck

1− ck

(

1−|ck|
2
)

ηk ηH
k

}

Lk,k+1,nc ,

with

Lk, j ,h =
h

∏
i= j

{
1− ci

1− ci

1− ckci

ck− ci
ηi ηH

i +Ui U
H
i

}

.

Moreover, the optimal valueJopt
2 is given by

Jopt
2 = trace

{

T1+
nc

∑
l=1

nc

∑
k=1

AH
l Ak

cl ck (cl ck−1)

−
nc

∑
k=1

AH
k

ck
El

zG

[
ck

−1]−1
r

∑
i=0

i−1

∑
j=0

Ci B j ck
j−i

}

,



where

T1 ,
1

2π j

∮
(

r

∑
i=0

i−1

∑
j=0

BT
j CT

i zj−i ×
r

∑
i=0

i−1

∑
j=0

Ci B j z
i− j

)

dz
z
,

(19)
and the integral is over the unit circle, counterclockwise
oriented.

Proof: By definition of El
G [z]−1 andEr

GA
[z]−1,

Jopt
2 = min

Q[z]∈RH∞

∥
∥
∥El

G [z]−1 ĜA [z]− Ĝ[z]Q[z]ĜA [z]
∥
∥
∥

2

2
.

Writing El
G [z]−1 = El

zG
[z]−1El

dG
[z]−1 (see (1) and (2)), and

using the power series expansion in (18), we have that

Jopt
2 = min

Q[z]∈RH∞

∥
∥
∥El

G [z]−1 ĜA [z]− Ĝ[z]Q[z]ĜA [z]
∥
∥
∥

2

2

= min
Q[z]∈RH∞

∥
∥
∥
∥
∥
El

zG
[z]−1

r

∑
i=0

∞

∑
j=0

Ci B j z
i− j

−Ĝ[z]Q[z]ĜA [z]
∥
∥

2
2

= min
Q[z]∈RH∞

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

El
zG
[z]−1

r

∑
i=0

i−1

∑
j=0

Ci B j z
i− j

︸ ︷︷ ︸

O[z]

+El
zG
[z]−1

r

∑
i=0

∞

∑
j=i

Ci B j z
i− j

︸ ︷︷ ︸

V[z]

− Ĝ[z]Q[z]ĜA [z]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

. (20)

The termO[z] contains only improper and unstable terms.
ThereforeO[z] ∈ RH

⊥
2 . However, the termV [z] has stable

and unstable poles. For this reason, it is necessary to expand
V [z] in partial fractions:

V [z],
nc

∑
k=1

Ak

z− ck
︸ ︷︷ ︸

R1[z]

+R2 [z] , (21)

whereR2 [z] ∈ RH∞ and Ak , limz→ck (z− ck)V [z]. Substi-
tuting (21) in (20), we have that

Jopt
2 =

min
Q[z]∈RH∞

∥
∥O[z]+R1 [z]+R2 [z]− Ĝ[z]Q[z]ĜA [z]

∥
∥

2
2 . (22)

Since (O[z]+R1 [z]) ∈ RH ⊥
2 and

(
R2 [z]− Ĝ[z]Q[z]ĜA [z]

)
∈ RH∞, and noting thatO[0] = 0,

it is possible to use (4) into (22) to write

Jopt
2 = ‖O[z]+R1 [z]−R1 [0]‖

2
2

+ min
Q[z]∈RH∞

∥
∥R1 [0]+R2 [z]− Ĝ[z]Q[z]ĜA [z]

∥
∥

2
2 . (23)

The second term of the RHS in (23) can be made zero by
choosingQ[z] = Qopt

s [z]. Therefore, the optimal valueJopt
2 is

given by
Jopt

2 = ‖O[z]+R1 [z]−R1 [0]‖
2
2 . (24)

Applying the 2-norm definition to (24) we obtain

Jopt
2 = trace

{
1

2π j

∮

{O[z]+R1 [z]−R1 [0]}
∼

×{O[z]+R1 [z]−R1 [0]}
dz
z

}

,

where the integral is over the unit circle, traveled counter-
clockwise. In spite of the large number of cross products,
Jopt

2 = β1+β2+β3, where

β1 , trace

{
1

2π j

∮

O[z]∼ O[z]
dz
z

}

,

β2 , trace

{
1

2π j

∮

R1 [z]
∼ O[z]

dz
z

}

,

β3 , trace

{
1

2π j

∮

R1 [z]
∼ {R1 [z]−R1 [0]}

dz
z

}

.

It is straightforward to show (applying the techniques used
in [17]) that the above integrals become (see (19))

β1 = trace{T1} ,

β2 = trace

{

−
nc

∑
k=1

AH
k

ck
El

zG

[
ck

−1]−1
r

∑
i=0

i−1

∑
j=0

Ci B j ck
j−i

}

,

β3 = trace

{
nc

∑
l=1

nc

∑
k=1

AH
l Ak

cl ck (cl ck−1)

}

.

The result thus follows.
Remark 1: It is possible to extend Theorem 2 to more

general situations, where more than one additional control
channel is added. This extension can be obtained by changing
the assumption on the random disturbance vector covariance
matrix to

E
{

ννT}=

[
In−k 0

0 0

]

,

wherek is the number of additional control channels. With
this change, it is possible to develop a closed form forJopt

2
by proceeding as in the proof of Theorem 2. �

The result derived in this section shows that the presence
of NMP zeros and delays in the system worsen the regulation
performance of the augmented plant. However, as intuition
suggests, the performance achieved in that case is always
better than (or at least equal to) the one obtained when
controlling the original tall plant:

Corollary 2: Consider the setup and assumptions of Sec-
tions III and IV. If a stable plantGA [z] ∈ Cn×(n−1) is

augmented to a stable plantG[z] =
[

GA [z] Gn [z]
]

∈ Cn×n,

thenJopt
2 ≤ Jopt

1 .
Proof: It is straightforward to prove the inequality by

observing that there existsQ[z] ∈ Cn×n such that

Q[z] =

[

Qopt
t [z]

0

]

.

Therefore, the optimal valueJopt
2 is always less than or equal

to Jopt
1 , which ends the proof.

It would be useful to develop a closed form expression
for the difference∆J , Jopt

2 − Jopt
1 . We leave that for future



research. A numerical illustration of the benefits of adding
additional control channels is presented below.

V. EXAMPLE

Consider a SITO system defined as

GA [z] =

[
3 (z− c)

z2 (z−0.8)
2 (z− c)

z2 (z−0.2)

]T

,

wherec>1. The plantGA[z] has a NMP zero located atz= c,
and relative degreenz = 2. In order to improve achievable
performance, we propose to augment the system to

G[z] =







3 (z− c)
z2 (z−0.8)

(z−0.3)
z2

2 (z− c)
z2 (z−0.2)

2 (z−0.3)
z(z−0.2)






.

The augmented plantG[z] has a only one finite NMP zero
located at z = c, three NMP zeros at infinity, and two
additional MP zeros located atz= 0.3 andz=−0.4.

Under the conditions described above, the optimal value
Jopt

1 is given by

Jopt
1 =

1

∑
i=0

α2
i +
(
c2−1

)

{
∞

∑
i=2

αi c
1−i

}2

,

whereαi is defined as in Theorem 1. On the other hand, the
optimal valueJopt

2 is given by

Jopt
2 =

AH
1 A1

c2 (c2−1)

+
1

2π j

∮
(

2

∑
i=0

i−1

∑
j=0

BT
j CT

i zj−i ×
2

∑
i=0

i−1

∑
j=0

Ci B j z
i− j

)

dz
z
,

whereA1, B j , andCi are defined as in Theorem 2. Figure
2 shows the ratioR, (Jopt

1 − Jopt
2 )(Jopt

2 )−1 as a function of
c. Although the considered example is very simple, we see
that the dependence ofR on c is non-trivial. Consistent with
Corollary 2, Figure 2 shows thatR≥ 0.

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

c

R

(

Jopt

1
− Jopt

2

)

/Jopt

2

Fig. 2. Improving ratioR as a function of NMP zeroc.

This example illustrates briefly the two results presented
in this article: the optimal regulation performance for a
plantGA [z] ∈Cn×(n−1), and the same index in its augmented
structureG[z] ∈ Cn×n.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a closed form expression
for the best achievable regulation performance for SIMO
systems. This expression is a function of the NMP zeros,
and the plant structure. Our results apply to any SIMO plant
with non repeated finite NMP zeros. We have also derived an
expression for the best regulation performance for tall plants
that can be squared-up by the addition of one additional
control channel. Unsurprisingly, our result shows that the
addition of additional control inputs is always beneficial for
closed loop performance.

Future work on the subject should consider tall plants
of arbitrary dimensions, and situations where an arbitrary
number of additional control inputs is added.
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