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Abstract— This paper presents performance bounds in the integrators. In that case, closed form expressions for the
contro[ of SIMO plant models, and the variation of those bourds ~optimal tracking and regulation performances are presente
when input channels are added to the plant so as to make it with hard constraints on the reference direction.

square. Our work focuses on discrete-time, linear time inveant oth | ¢ Its h b ted in 111 1
(LTI) MIMO systems, minimizing the squared regulation error er relevant results have been presented in [11]. In

when an impulsive input disturbance is injected into the plat.  that work, regulation problems subject to impulsive input
Closed form expressions for the optimal regulation perfornance  disturbances are addressed for SIMO plants that have only

are developed, and the sensitivity of the performance to clmmel  one zero at infinity. The approach in [11] might be extended

addition is also investigated. Finally, a numerical exam@ is 5 accommodate multiple zeros at infinity, but this is not
presented to illustrate the main results of the paper. . ’
explored in [11].

Index Terms— SIMO systems, Performance bounds, Optimal .
control. In despite of the recent work on SIMO systems, the

performance reached by them is limited, because the degrees
I. INTRODUCTION of freedom available to control is less than the number of

This work deals with the computation of performanceyStem outputs. One method to improve the performance in
bounds in the feedback control of MIMO plants. A per_SIMO systems is augmenting the number of control inputs

formance bound describes the best achievable performang¥ailable in the model of such plants. A review of existing
measured by a specific cost function, that can be achievedfthods to select system inputs and outputs is presented
the control of a given plant, without constraints and withou'" [12], where such selection is discussed from a control
penalizing the control effort. When computing performanc@€rspective. However, these methods do not quantify the
bounds, one aims at finding benchmarks against which tfévantages of adding more control inputs to a system.
results of a design procedure can be compared. As a first cpntrlbutlon of th|s paper, we develop a close_d
Research on performance bounds and fundamental limitier™ expression for the optimal regulation performance in
tions is rooted in Bode’s work [1], and has been the focus g€ control of SIMO systems, assuming impulsive input
much recent research (see, e.g., [2], [3], [4], [5], and #fe r dlsturbancgg. Our resgl?s are valid for plants that have non
erences therein). The contribution of these works has een’€Peated finite non-minimum phase (NMP) zeros, but that
develop closed form characterizations of the best achievatfi® otherwise arbitrary. Thus, our results extend [11]. As
performance for different set-ups. For instance, [3] veritee & second contribution, we study taI_I plants, i.e. plantg th_a
optimal tracking performance of MIMO systems for severaf!l@V€ more outputs than inputs, which are augmented with

references as a function of the unstable poles, non-minimu@dditional control inputs and made square. In this case, we
phase zeros, and their directions. These results apply orl sent a closed form characterization of the best achievab

régulation performance for stable plants. As expected, our
results show that additional control inputs are always wlsef
to improve performance. We also illustrate our results gisin

to right-invertible systems. Similar results are preserite
[6], where stable right-invertible systems with arbitraglay
structure are considered. _ - )
Other results related to performance bounds on righfumerical simulations. _ _ _
invertible systems have been presented in [7] and [8]. In The remainder of this paper is organized as follow: Section

these works, performance bounds subject to closed loop pdléPreésents notation. Section Il derives an expressiorttier
location constraints are computed. the optimal performance in the control of SIMO systems.

In this paper we focus on SIMO plant models. A keySection IV considers the case of tall plants that are squared

problem in the control of such systems is that their transféf® Py adding a control channel. Section V presents an

functions are not right-invertible. Performance bounds fo€X@mple, and Section VI draws conclusions.

SIMO systems have been reported in [9]. In that work, it is II. NOTATION AND PRELIMINARIES

assumed that the reference direction belongs to the subspac , e
spanned by the plant gain at zero frequency, and a closed” this work, C denotes the complex numbers,
form expression for the best tracking performance is ddrivedenOte the set of complex> m matrices,R are the real

nxm i
Similar results are presented in [10], when the plant ha&qmbers an(R represenTts the sHet of relalxmmatrlces.
Given a matrixA € C™™ A" andA™ denotes its transpose
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transfer functions (scalar or matrix) which are real ragipn

stable and strictly proper, aiRl’%" is the set of all functions el [ ¢y uf ol "
which are real rational and have no poledie C: |7 < 1&. - ® Y
For a functionX [ € C™™, we defineX (7™ £ X [z71]",

which reduces tX [~ £ X [z*l}T in the real rational case.
A matrix transfer functiorJ [7 € C"™™ is said to be unitary Fig. 1.
iff U[Z™~U][Z = Im, wherely denotes them x m identity

matrix. All transfer functions? [z € R.%, admits an inner-

outer factorizatiorP[Z = ®p[Z ©p[Z, where®p[Z € R7%  andC|[Z € C™" is the LTI controller. The signals[k € R™,

is an inner factor, an®p (7 € R.%, is right-invertible in r[k] e R", e[kl € R, d; [k € R™ andy[k] € R" are the control
RJ%, (an outer function). A numbere Cis azero ofP[Z €  input, the reference, the tracking error, the input disinde,
C™M iff rank{P[c]} < normal ranKP[Z}. If |c| <1, the and the system response, respectively. For the system in

zero is called minimum phase (MP), otherwise it is @ NonFigure 1, we measure the closed loop performance by using
Minimum Phase (NMP) zero. We refer to the multiplicity of .

a NMP zero at infinity as the delay or the relative degree =y e[k el , (5)
of P[Z. Any P[Z € C™™, wheren > m, can be factorized o

as Pz £ P[4 EL[Z, where P[Z € C™™ is real rational,
stable, biproper and MP, anBj[Z € C™™ is a unitary
function. Any stableH [7 € C™™, wherem > n, can be

One degree of freedom feedback loop.

whend; [kl = vJ k], and wherev € R™. If the closed loop
is internally stable, then

factorized aH [Z] 2 E!, [7 H [2, whereH [7 ¢ C™ M is a real I=|E[EZ,
rational, stable, biproper and MP matrix transfer function
andE}, [ € C™"is a left unitary interactor foH [7], defined whereE [z = — (I + G[ZC[Z) *G[Z v is the Z-transform

by E4[2 "2 EL, 77 El,, [47", whereEL, [4 € C™" and of the tracking erroe[k]. Thus,
Ecle [7 € C™" are given by (see [6] for details)

M {l—Ck 1—zc,

E| 71%
2 12 le 1-C z—cx

2
3= |a+eEcE) ter |, . (6)

H H
+UUr, (@ . . . . S .
M Kk } @ SinceG|Z is a rational matrix transfer function, it admits

| L, e u y a doubly coprime factorization given by
E,l4 "= ZNooy Ney, + Uco, U, b, (2)
™ [ {20+ 05 GlZEM[Z T N[Z=N[ZM [,
whereng € C" andn., € C" are left unitary vectors associ- .
ated to thek-th finite andj-th infinite NMP zero, respectively, whereN, [z, Mi {2, Nr [2], Mr [7] € R satisfy
while Uy € C™ (=1 andUe, € C™ (1) are unitary matrices X[EZ Y] M2 Y] _,
satisfying NNy’ +UkUg' = N N8 4 Ueo UL, = I, -N[Z M[Z] [N[Z X[3]
The symbold [k] denotes the Kronecker delta, whife{-} )
denotes the expectation operator. The 2-norm of a functidf SOMeXi (2, Yi[2, X [4, Y;[Z € R%. All controllers
P[Z], analytic for|Z = 1, is defined as usual [13], [3]. Under Which internally stabilizeG[z] can be written as [15]
the inner product that induces the 2-noffn# andR75"

()

are orthogonal sets. Thus, ClZd2 (Y [4-M[Z2Q[Z) (N [4Q[4 - X [2) !
1P 15 [P, [+ | Pbn], @ = (QENE-XE) " ([d-QEM[E). @
4 I2= z il Z}p, ,
2 R (o R72||, whereQ|z € {C™"NR % }. Using (8) and (7) in (6), we

where{P(Z} .. € RA#5-, and{P[Z}y ,, € R7. Defining have that

{P[4}r4, as the part ofP[Z € RJ%, and using (3), it is
possibﬂféfto show that (see appendix A in [14]) I=(% 2N [F =N [ZQIZN [2) v]3. ©)

To simplify the analysis, we assume thatis a random

2
H{P[Z]}R%L +{P[d}rr, vector satisfyings’ {v} =0 and& {vv' } = Iy, Applying the

2_

2 expectation operator to (9), and considering our assumgtio
H{P[Z]}R%L —{PlZ} 2:0H2 on v, we have that
2

[P PEew, @ £} =X EANE-NEZQENEI3.  (10)

1. OPTIMAL REGULATION PERFORMANCE FOR The aim of this paper is minimizing the functional given
TALL SYSTEMS in (10), subject toQ[7 € R, for several plant types, i.e.,
A. Problem Formulation we aim at finding
In this section, we consider the closed loop configuration prté min % [ZN [2 =N [2Q[ZN, [Z]Hg . (11)

of Figure 1, whereG[z] € C™™M is a MIMO plant,n > m, QFeR



B. Optimal Regulation Performance: SIMO Case

The next theorem presents a closed form expression for

JPin the SIMO plant case:
Theorem 1:Consider the problem in (11), a pla@tz =
Ga[Z € C™1, with non repeated finite NMP zeras (i =

1,...,nc), andn; NMP zeros at infinity. Furthermore, sup-

pose thatGa [z has no zeros onz| = 1. Define N [7 £
Ni 2 Ef, [2~%, and a power series expansion @, [2 X [Z
as

onZXE2 Y oz,
k=0

wherea; € R. Then, the optimal value of the functional given

by (11) is achieved witlQ[Z = Q°"'[Z], where
optr_; & :
Q4= argQ[z]@ﬂégfwé” {3}
= 0N [ (Ru2[0] + Ko [2) N 47

Kz[2 € R, is given by

R

Kz[Z]érl
i1 2= G 5,
e l1-zt) 2 i
DAL= LT
—1 ] i=n,

(0§ 2

and

e 1-¢iT
K
mjén Ci Jc
k=1 “1 7 ™K
k#]

andN, [7" € R, is any left inverse of| [Z. On the other
hand, the optimal performance is given by

(1onl*~ 1) (laP 1)

che —1

n ne Ne
i

,—1
W=y a?+ Zl mym
oy 53
xi ai cﬂz’i’li ai clnzjl} ,

=Nz J=nz

where all symbols are as above.
Proof: We have from (7), thak; [z N, [ = N; [Z X [Z.

Then, pre-multiplying the expression (11) by the unitar

factor ® []N
_ N |2
ViEa=1i oy 7 oy [zr} :
we obtain
A= min_[[©n [4%[2-On [QEN -

If we next make use of the right unitary factsf, [z, then
WP =

min

12
QZeERH, ( )

on 2% [2 B}, [~ Oy £ QN (4]

Since, for SIMO systems,
1 . z—q
E 22 = [1—s
= ﬂ 1-z5°
we have that (12) reduces to

XM= _min |WZ+K[d-On QN ]}, (13)

Q[Z€R
where

Now, we observe thalV [z is analytic for|z] < 1. There-
fore, W[z € R#*-. However,K [z has stable and unstable
poles. Using the partial fraction described in [16] for exga
ing K[z, we have that

e l1-zgp 2 i
KZ=3% {mj z—cjj Y aicf* '}+Kz[Z],
I

=1 =1

Ri2[Z]
where K, [7 € Rs%,, and Ri2[Z] has only unstable terms.
Therefore,Ri2(7 € R Since (W (7 +Ri2[7)) € R
and (K2[4 —©y, [2Q[ZN [7) € R, we can use (4), to
write (13) as
3P = |W(Z + Rezlz ~ W[0] — Riz (0]
. RN
WI[0]+ R12[0] +K2[7 — © N .
+ i [W[O] + Riz[0] +Kal2 — O, [4QIZ R 2]
(14)

Since thatW [0] = 0 and the second term on the RHS of
(14) can be made zero choosi@gz = Q'"'[7 € R, we
conclude that

Jgpt: IIW[Z + Ry2[Z — Ri2[0] Hg : (15)

Applying the definition of the 2-norm, (15) reduces to
1 7 ~
RP= 5o f W+ Ruold - RuolO)}
dz
x {W[Z +Rui2[2 — Ri2[0]} —,

where integral is over the unit circle, traveled counterkio

)(Nise. Using Lema 1 in [17], it is straightforward to prove

that I2" = yi + y» — ys, where

1 N dz
We o fWiZTWE

a 17{ N dz
V2—2m- Ri2(Z" Ri2[Z o

2 1 7 N dz
3= o] lez[Z] Ry2[0] 7

It is possible to show that

>

nz—1

= i; a?,



and that This assumption will allow us to fairly asses the benefits of
augmentingGa [ with an additional control channel.

2 2
Ne Ne (|Ch| —1) (|CI| —1) Proceeding as before, and assuming b8z and G[Z
2—¥= Mhm che —1 to be stable, we can write the problem of interest in this
h=11=1 ) o
section as that of finding

x Y aicr 'ty a c.”zjl}. U o, ~GlZQ@)Galdl;. (A7)

=Nz j=nz Hoo
The proof is thus completed. m The solution to this problem is derived in the next subsectio

Theorem 1 gives a closed form expression for the optimﬂ
regulation performance for SIMO systems that have non’ o
repeated finite NMP zeros, but are otherwise arbitrary (cf. The next results presents a characterizationif, as
[11]). defined in (17):

Our result are much simplified if one imposes additional Theorem 2:Consider the problem formulated in (17), a
constraints on the plant. For instance, the next immediafdant G[z = Ei [ G[Z € C™", stable, with non repeated
corollary of Theorem 1 presents the best achievable reguf#dite NMP zerosc; (i = 1,...,nc), andn; NMP zeros at
tion performance when the plant has one zero at infinity: infinity. Furthermore, assume that the pl@iz has no zeros

Corollary 1: Consider the setup, notation, and assumgRn |Z =1, and it has a partition given by (16). Also define

Optimal Regulation Performance: Augmented Plant Case

tions of Theorem 1. If, = 1, then Gal[4=GalZ Eg, (2™t e c™(™1) Then, the optimal value
, of the functional (17) is obtained by choosifjz] = Q2*'[2,
IPt— (e,\,r [o0] M [oo]*l) where
c N 2 2_ Pl Larg min &{J
33 fom (Ion*~2) (jal*~2) QP4 Larg min & {3}
h=1151 ChC —1 . oA\ A
=G4 ' |R[g- > = Galz",
-1 -1 P
< (@ [oo] M [oo] Oy [en] M [cn] ) 1 %
x ((aNr [oo] My [00] " — @, ] M [c|]*1) } whereGa[7" € R is a left inverse ofGa [z,
[ | row o
The result of Corollary 1 is consistent with the results A= My ZJZCI Bj CL g
in [11], when particularized to the performance measure i=0j=i
considered in this paper. Ci € R™" andB;j € R™ ("1 are the coefficients of the power

IV. OPTIMAL REGULATION PERFORMANCE FOR Series expansions

SQUARED-UP PLANTS G L2 Byl El gls r C 18
7= iz 7 = j

A. Problem Formulation Al ZO iz Ea 2 i; ' (18)
In this section, we consider that an additional contr

channel is added to a tall plar®a[g € C™(™ Y. The

resulting transfer function, sa%(z], is thus square. The el leemn i e A

structure of the augmented pla@{z, as a function of the Rel7 =B3[4 izOJZICI Bj 2 _k;z_ck’

tall plantGa[Z, is given by

th [4 € R, is given by

U P R .
G2 |GalZ G [z]} 7 (16 with E}_ [~ defined as in (1), and

a —Ck 2 H
where G, [z € C™? is the column associated to the new Mic= Lkt { 1-o (1_ e ) Mk Mk } LiktLne
(i.e., additional) control channel. As before, we consither ith
closed loop shown in Figure 1. We use the notation antf’

definitions presented in the previous section. However, the h (1-¢ 1l-&T H H
dimensions of some signals and systems must be redefined: Lijn= [l { 1-G c—¢ nini+ Uiy } :
the control inputu[k] € R", the input disturbance; [k] € R", =
the controllerC |z € C™", and the planG[z] € C™". Moreover, the optimal valug® is given by

As before, the performance is measured by (5). However,
we will assume that only the original— 1 control channels opt T N A A
are perturbed byl [K], i.e., we assume that € R" is such & =trac T1+|;kzlm

that& {v} =0 and

| 0 _ < A_kHE| [C—fl}*l 4 iilci B'C_in
g{va}:[nl ] k;CR Z K |;J;) I ’

0 O



where Applying the 2-norm definition to (24) we obtain

ot @iﬁ“dz" iIZzQBf ) 37— wrace] 5 f {0+ Rild - Rufo)”

(19) z
and the integral is over the unit circle, counterclockwise x{0[7+Ri[4-Ru [0]}7},
oriented.
Proof: By definition of EIG [Z]fl andEL [z]’l, where _the integr_al is over the unit circle, traveled counter
) cI0<t:kW|se. In spite of the large number of cross products,
R A A opt _
B~ min |[E5[4 TGald-G[4Q[ZGA [z]H . 3P = 1+ B2+ B3, where
QlZeR A% 2
N 2 trace] -+ {012~ 0[7 %2
Writing E5[4 = E}, [z]’lEc'jG [Z7! (see (1) and (2)), and Py 21] z [’
using the power series expansion in (18), we have that 1 dz
t . 2 Bz_trace{ ]{Rl ~ z—},
XP'= min ||E5[Zd 1 Gald-G4Q[4GalZ
7= min [[E6[2 Gald -Gl QAGA LA ) .
Bs £ trac ]( Ru[Z™ {Ref2 ~Ra[0}} .
= i iBjz~! . . .
Q[Z?Q];{n% % i; J-;)Q ! It is stra|ghtforward to show (applying the techniques used
- . 2 in [17]) that the above integrals become (see (19))
~G[Z4Q[ZGalZ]f;
B = trace{Ty}
Z AkH | 1 L j— |}
ri-1 o B> = trac Ex _* G Bjtck
. _ _ 2 ] k )
= min ||E' 47t CBiZ !
L i;}j;) : o on A|H Z)Z)
=trac )
) Pe |Zlkz gek(Te—1 }
The result thus follows. [ |
| i Remark 1:1t is possible to extend Theorem 2 to more
+Es ZjZC‘Blzl [4Q[4Gal2|| . (20) general situations, where more than one additional control
channelis added. This extension can be obtained by changing
viZ 2 the assumption on the random disturbance vector covariance
The termOJz] contains only improper and unstable termsmatrix to | 0
ThereforeO|[z] € Rs#". However, the ternV [Z has stable g{w'} = { n—k 0} ,
and unstable poles. For this reason, it is necessary to dxpan
V [Z] in partial fractions: wherek is the number of additional control channels. With
oA this change, it is possible to develop a closed form\ﬁf’lI
V(g2 Z +R:1[4, (21) by proceeding as in the proof of Theorem 2. |
&1 2 G The result derived in this section shows that the presence
N—— . .
RilZ of NMP zeros and delays in the system worsen the regulation

AL . performance of the augmented plant. However, as intuition
Wh_ereRz [z]_e R and Aq = limz,q (2—C) V 2. Substi- suggests, the performance achieved in that case is always
tuting (21) in (20), we have that better than (or at least equal to) the one obtained when
Jopt _ controlling the original tall plant:
Corollary 2: Consider the setup and assumptions of Sec-
(22) tions Nl and IV. If a stable plantGa[g € C™("1 s

augmented to a stable pla@fz] = {GA 4 GnlZ } e Ccm™n,
then J9P' < J9PL

Proof: It is straightforward to prove the inequality by
observing that there exist3[7 € C"™" such that

omin |01+ Ru[z+Reld - GZQIAGAL,.
Since (O[2+Ru(2) € R and
(R[4 -G[ZQ[4GalZ) € R, and noting thaD|[0] =0,
it is possible to use (4) into (22) to write

3" =02 +Rulz — Ra[0]]13 oz
+min_ [[Ru[0]+ Refd) - 612Q1Z Gald|?. (23) QlZ =57
The second term of the RHS in (23) can be made zero biyherefore, the optimal valuisz’pt is always less than or equal
choosingQ [z = Q"' [Z. Therefore, the optimal valug™ is  to 3™, which ends the proof. n
given by It would be useful to develop a closed form expression

IP'=(|0[Z +Ru[Z —Re[0]]3. (24)  for the differencedd £ J3P'— I, We leave that for future



research. A numerical illustration of the benefits of adding

additional control channels is presented below.

V. EXAMPLE
Consider a SITO system defined as
[ 3(z—¢) 2(z—c) T
Calz = 2(z-08) Z2(z-02)] ’

wherec > 1. The planGa[z] has a NMP zero located at=c,

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a closed form expression
for the best achievable regulation performance for SIMO
systems. This expression is a function of the NMP zeros,
and the plant structure. Our results apply to any SIMO plant
with non repeated finite NMP zeros. We have also derived an
expression for the best regulation performance for talhsla
that can be squared-up by the addition of one additional
control channel. Unsurprisingly, our result shows that the

and relative degrea; = 2. In order to improve achievable
performance, we propose to augment the system to

3(z—c) (z—0.3)

2 (7_ 2
Glg= Zz((zz—oc')S) 2(2-03)

2(z-02) z(z-0.2)

The augmented plar® |z has a only one finite NMP zero [1]
located atz = ¢, three NMP zeros at infinity, and two [2]
additional MP zeros located at= 0.3 andz= —0.4.

Under the conditions described above, the optimal valuerg]
JPtis given by

opt 1 ) ) o 1_2 [4]
g =Yoo +(c"-1 aic 'y,
L s

whereaq; is defined as in Theorem 1. On the other hand, the
optimal valueJ;™ is given by (6]

opt __ Al A
2 c2(e2-1)
1 2 i-1 2 i-1 dz

+2—m.7{ i;};s{dzi*ixi;j;qgjﬁ o

whereA;, Bj, andC; are defined as in Theorem 2. Figure
2 shows the raticR 2 (3% — 3%(39") 1 as a function of
c. Although the considered example is very simple, we see
that the dependence Bfon c is non-trivial. Consistent with [10]
Corollary 2, Figure 2 shows th& > 0.

(7]

(8]

(14
(7 = a5) J a3

[12]

[13]

[14]

[15]

[16]

[17]

Fig. 2.

Improving ratioR as a function of NMP zerae.

This example illustrates briefly the two results presented
in this article: the optimal regulation performance for a
plantGa [ € C™ ("1 and the same index in its augmented
structureG|[z] € C™".

addition of additional control inputs is always beneficiai f
closed loop performance.

Future work on the subject should consider tall plants
of arbitrary dimensions, and situations where an arbitrary
number of additional control inputs is added.
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