
SIAM J. SCI. COMPUT. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. B250--B272

OPTIMAL CLOSURES IN A SIMPLE MODEL
FOR TURBULENT FLOWS\ast 

PRITPAL MATHARU\dagger AND BARTOSZ PROTAS\dagger 

Abstract. In this work we introduce a computational framework for determining optimal clo-
sures of the eddy-viscosity type for large-eddy simulations (LESs) of a broad class of PDE models,
such as the Navier--Stokes equation. This problem is cast in terms of PDE-constrained optimization
where an error functional representing the misfit between the target and predicted observations is
minimized with respect to the functional form of the eddy viscosity in the closure relation. Since
this leads to a PDE optimization problem with a nonstandard structure, the solution is obtained
computationally with a flexible and efficient gradient approach relying on a combination of modified
adjoint-based analysis and Sobolev gradients. By formulating this problem in the continuous setting
we are able to determine the optimal closure relations in a very general form subject only to some
minimal assumptions. The proposed framework is thoroughly tested on a model problem involving
the LES of the one-dimensional Kuramoto--Sivashinsky equation, where optimal forms of the eddy
viscosity are obtained as generalizations of the standard Smagorinsky model. It is demonstrated that
while the solution trajectories corresponding to the direct numerical simulation and LES still diverge
exponentially, with such optimal eddy viscosities the rate of divergence is significantly reduced as
compared to the Smagorinsky model. By systematically finding optimal forms of the eddy viscosity
within a certain general class of closure models, this framework can thus provide insights about the
fundamental performance limitations of these models.
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1. Introduction and problem statement. Turbulent flows at high Reynolds
numbers continue to challenge both scientists studying their fundamental properties
and engineers interested in diverse technical applications involving fluid mechanics. In
particular, accurate and efficient numerical simulation of turbulent flows will for the
foreseeable future remain an open problem in computational science, despite advances
in both algorithms and computer architectures. This is because the solutions of
the three-dimensional (3D) Navier--Stokes equation, which is the main mathematical
model assumed to describe the motion of viscous incompressible fluids, are chaotic
and exhibit extreme spatiotemporal complexity at Reynolds numbers characterizing
developed turbulence. With the Reynolds number defined as Re = UL/\nu N , where U
and L are the characteristic velocity and length scale and \nu N is the coefficient of the
kinematic viscosity of the fluid, a simple dimensional argument leads to the conclusion
that the number of discrete degrees of freedom, e.g., Fourier modes, necessary to
resolve a statistically isotropic and homogeneous turbulent flow down to the smallest
active length scales \eta scales as \scrO (Re(9/4)) [14]. This hints at fundamental limitations
on the largest Reynolds numbers for which direct numerical simulation (DNS) can be
performed on the 3D Navier--Stokes system.
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An approach which allows one to get around the aforementioned difficulty and
obtain approximate solutions of the flow problem in some practical situations relies
on the so-called large-eddy simulation (LES) in which one solves a suitably filtered
version of the governing equations. To define this approach, we consider the linear
filtering operation \widetilde \bfitv (x) := (G\delta  \star \bfitv )(x) =

´
\Omega 
G\delta (| | x  - x\prime | | )\bfitv (x\prime ) dx\prime , x \in \Omega , where

\bfitv = [v1, v2, v3]
T and \widetilde \bfitv = [\widetilde v1, \widetilde v2, \widetilde v3]T represent the original and filtered velocity fields,

defined in terms of some convolution kernel G\delta : \BbbR + \rightarrow \BbbR + in which \delta > 0 denotes
the cutoff length scale (the symbol ``:="" means ``equal to by definition""). The LES
formulation system is then obtained by applying this filtering operation to the Navier--
Stokes system and takes the form

\partial \widetilde vi
\partial t

+ \widetilde \bfitv \cdot \bfnabla \widetilde vi =  - 1

\rho 

\partial \widetilde p
\partial xi

+ \nu N
\partial 2\widetilde vi

\partial xj \partial xj
+

\partial 

\partial xj
Mij , i, j = 1, 2, 3,(1.1a)

\partial \widetilde vi
\partial xi

= 0,(1.1b)

where \widetilde p is the filtered pressure field and \rho denotes the constant density (here and
below, Einstein's convention is used with repeated indices implying summation; in
addition, for brevity, we omit here the specification of the flow domain \Omega together with
the initial and boundary conditions which are assumed generic). The quantity Mij :=\widetilde vi\widetilde vj - \widetilde vivj , i, j = 1, 2, 3, is by analogy with the dissipative term already present in the
Navier--Stokes system referred to as the ``subgrid-scale"" (SGS) stresses [10]. System
(1.1) describes the evolution of the filtered (large-scale) velocity field \widetilde \bfitv and, evidently,
is not closed because the SGS stresses depend on the original (unfiltered) velocity field
\bfitv . Since the filtering operation defined by G\delta typically involves attenuation of velocity
components with length scales smaller than \delta , the SGS stresses thus represent the
averaged effect of these neglected motions on the evolution of the resolved flow field\widetilde \bfitv . In order to close system (1.1) one therefore needs to represent the SGS stresses in
terms of the resolved field \widetilde \bfitv in some way, which constitutes the celebrated ``turbulence
closure problem"" [35].

There is a very large body of results concerning the closure problem formulated in
different flow conditions, especially in the engineering literature. Even a brief survey
of these results would be outside the scope of the present study, and we refer the reader
to the monographs [35, 41] for more information. Arguably, the most commonly used
family of closure models is of the eddy-viscosity type in which the SGS stresses are
expressed as [44]

(1.2) Mij = \nu \widetilde Sij , where \widetilde Sij :=
1

2

\biggl( 
\partial \widetilde vi
\partial xj

+
\partial \widetilde vj
\partial xi

\biggr) 
,

in which \nu is the eddy viscosity (to simplify the notation used below and in con-
trast to the commonly employed convention, we choose to adopt a simple symbol for
the eddy viscosity and put a subscript on the kinematic viscosity). The approaches
to determining this quantity can be classified as algebraic, in which some algebraic
relation is postulated between the filtered field \widetilde \bfitv and the eddy viscosity \nu (such as
the celebrated Smagorinsky model discussed below), and differential, in which the
eddy viscosity is assumed to depend on some additional quantities whose transport
is described by suitable partial-differential equations (PDEs), such as, e.g., the fluc-
tuating kinetic energy k and dissipation \epsilon in the k  - \epsilon model often used as a closure
in Reynolds-averaged Navier--Stokes equations. Since the SGS stresses are assumed
in (1.2) to depend on the strain field \widetilde Sij , the eddy-viscosity models have a similar
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structure to the dissipative term \nu N\Delta \bfitv already present in the Navier--Stokes, so its
inclusion in the equation has the effect of changing the coefficient of this term from
\nu N to (\nu N + \nu ). We note, however, that, unlike the kinematic (molecular) viscosity
coefficient \nu N which is constant, the eddy viscosity \nu depends on the resolved field\widetilde \bfitv and therefore introduces an additional nonlinearity. In addition to the classical
Smagorinsky model, there exist many other approaches to approximate the eddy vis-
cosity, including dynamic Smagorinsky models [25] relying on Germano's commutator
identity [16] and the structure-function models [24], to mention just two. For a survey
of recent progress in the field of turbulence modelling we refer the reader to [13]. Re-
gardless of details, in all cases these closure models are postulated based on empirical
grounds, albeit usually with a strong physical justification, with a small number of
parameters requiring calibration from data.

Since most closure models are derived in a heuristic manner, such approaches to
turbulence modelling have been sometimes criticized as lacking scientific rigor and
therefore difficult to generalize to flows different from the ones for which they have
been calibrated. The objective of the present study is to provide insights about
how well eddy-viscosity closure models can in principle perform. This is achieved by
finding, via solution of a suitable optimization problem, a mathematically optimal
form of the eddy viscosity for a given flow. More precisely, while in algebraic closure
models a simple relationship is typically postulated for the dependence of the eddy
viscosity \nu on the resolved flow field \widetilde \bfitv involving a small number of free parameters,
in our proposed approach we will determine the functional form of this dependence
optimally in a very general setting subject only to some minimal assumptions.

To fix attention, we will consider what is arguably the most common algebraic clo-
sure model, namely, the Smagorinsky model postulating the eddy viscosity in the form
\nu = C2

s \delta 
2 (2\widetilde Sij

\widetilde Sij)
1/2 in which Cs is an adjustable constant known as the Smagorin-

sky coefficient [44]. Although the Smagorinsky model is rather simple, it is quite
popular and serves as the ``workhorse"" for many LES computations. It is known,
however, to possess certain deficiencies such as assuming the eddy viscosity to be zero
if the resolved strain \widetilde S vanishes and the fact that the eddy viscosity is positive other-
wise, implying that the closure is strictly dissipative [40]. In our study we introduce
a computational framework for determining an optimal Smagorinsky model in which
the eddy viscosity is allowed to have a very general functional dependence on the
magnitude of the resolved strain field (2\widetilde Sij

\widetilde Sij)
1/2 found by matching the predictions

of the LES model against a given ``target"" field (e.g., obtained by solving the original
Navier--Stokes problem via DNS or from an experiment). Since this eddy viscosity
is optimal within the class of Smagorinsky-type models, its properties will provide
insights about how well this class of models can in principle perform.

There have been earlier attempts to determine turbulence closure models with
some optimality properties. Langford and Moser [23] and then Das and Moser [9]
developed an approach for isotropic turbulence in which motions at subgrid scales
were treated as stochastic and the closure was determined by minimizing the modelling
error using stochastic estimation techniques. This approach was tested on a range of
models, including a stochastically forced one-dimensional (1D) Burgers equation and
3D Navier--Stokes system.

An emerging family of approaches uses various machine-learning techniques such
as neural networks to deduce closure models with certain optimality properties from
data. In this context we mention the investigations [15, 26, 34], whereas the state of
the art in this field is discussed in the review papers [12, 19, 22]. Data-driven machine-
learning methods, in addition to other data-driven techniques, have been utilized for
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computational prediction, modelling, and diagnosis of various turbulent flows [29, 33,
47]. We note that, while the approach developed in the present study can also be
classified as ``data-based,"" it does not rely on machine learning but rather on the
calculus of variations and rigorous methods of PDE-constrained optimization. More
specifically, recognizing that closure models are in fact forms of constitutive relations,
we extend the method developed in [4, 5] to infer optimal constitutive relations from
data. In the context of hydrodynamics such techniques have already been used to
tackle the simpler problem of finding optimal closures for finite-dimensional reduced-
order models in [38, 39] and in vortex dynamics [8]. Applications of this approach in
the field of electrochemistry are discussed in [42].

Since our goal here is to provide a ``proof of the concept"" for the proposed ap-
proach by introducing and validating it in a general context, we shall focus on a 1D
model problem which will allow us to avoid the technical complexities inherent in
dealing with the 3D Navier--Stokes system. We will thus consider the Kuramoto--
Sivashinsky equation defined on the periodic domain \Omega = [0, 2\pi ]

\partial w(t, x)

\partial t
+ \nu 4

\partial 4w(t, x)

\partial x4
+ \nu 2

\biggl[ 
\partial 2w(t, x)

\partial x2
+ w(t, x)

\partial w(t, x)

\partial x

\biggr] 
= 0, (t, x) \in (0, T ]\times \Omega ,

(1.3a)

\partial (i)w

\partial x(i)
(t, 0) =

\partial (i)w

\partial x(i)
(t, 2\pi ), i = 0, . . . , 3,

(1.3b)

w(0, x) = w0(x),
(1.3c)

where T > 0 is the length of the time window considered, \nu 4, \nu 2 \in \BbbR + are param-
eters whereas w0 is an appropriate initial condition. The reason for choosing this
particular model problem is that its solutions are known to exhibit important fea-
tures characteristic of actual turbulence governed by the 3D Navier--Stokes system,
namely, chaotic and multiscale dynamics with significant spatiotemporal complexity.
These properties arise from an interplay between the linear and nonlinear terms in
(1.3a): the second-order negative diffusion term injects energy at large scales which
is then transferred by the nonlinear interactions to small scales where it is eventu-
ally dissipated by the fourth-order dissipative term. Unlike the Burgers equation, in
which a similar behavior may only arise from the inclusion of a somewhat artificial
stochastic forcing term [2], the Kuramoto--Sivashinsky equation intrinsically exhibits
a more turbulence-like behavior. Originally, this equation was proposed as a model
for instabilities of interfaces and flame fronts [43] and ``phase turbulence"" in chemical
reactions [21]. Beyond its original purpose, this equation has been used as a model
for hydrodynamic turbulence and is commonly employed as a testbed to study new
approaches [18].

The structure of the paper is as follows: in the next section we introduce the prob-
lem of finding an optimal form of the eddy viscosity in the context of the Kuramoto--
Sivashinsky equation (1.3); its solution based on a gradient approach is described in
a general context in section 3, whereas the set-up of the particular problem consid-
ered here is described in section 4; details of the numerical approach are presented in
section 5; our computational results are discussed in section 6, whereas a summary
and final conclusions are deferred to section 7; proof of a key result is provided in an
appendix.
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2. Eddy-viscosity closures for the Kuramoto--Sivashinsky equation. In
this section we formulate an LES system corresponding to the Kuramoto--Sivashinsky
system (1.3) where the closure uses a Smagorinsky-type eddy-viscosity model of the
general form (1.2) reduced to 1D. We must first define the filtering operation to extract
the resolved scales from the solutions, and for this purpose we shall use a sharp spectral
filter also employed in [9]. It is defined in terms of the Fourier transform \widehat G\delta (k) of its
kernel (hats ``\widehat \cdot "" will hereafter denote Fourier coefficients):

(2.1) \widehat G\delta (k) =

\Biggl\{ 
1, | k| \leq kmax,

0, otherwise,

where the cutoff length scale \delta = 2\pi /kmax and kmax is the maximum resolved wavenum-
ber. Clearly, (2.1) defines a low-pass filter which removes all Fourier components with
wavenumbers larger than kmax. Applying this filter to (1.3a), we obtain the filtered
version of the Kuramoto--Sivashinsky equation

(2.2)
\partial \widetilde w
\partial t

+ \nu 4
\partial 4 \widetilde w
\partial x4

+ \nu 2

\Bigl[ \partial 2 \widetilde w
\partial x2

+
1

2

\partial (\widetilde \widetilde w \widetilde w)
\partial x

\Bigr] 
+

\partial M(w)

\partial x
= 0,

where \widetilde w := G\delta  \star w and the last term represents the effect of the SGS stresses

(2.3) M(w) :=
\nu 2
2

\Bigl[ \widetilde ww  - \widetilde \widetilde w \widetilde w \Bigr] 
.

The reason for the sign difference with respect to the corresponding expression in
(1.1a) is the sign of the dissipative term in (2.2). For clarity, we will hereafter use the
symbol \widetilde u to denote the solution of the LES problem for the Kuramoto--Sivashinsky
equation, which should be contrasted with \widetilde w obtained by filtering the solution w of
the DNS problem (1.3). Since expression (2.3) depends on the original unresolved
field w, it must be modelled in terms of \widetilde w in order to close (2.2). For this purpose
we will use a 1D analogue of the eddy-viscosity closure model (1.2) adapted to the
Kuramoto--Sivashinsky equation, namely,

(2.4) M = \nu (| s| ) \partial 
3\widetilde u

\partial x3
, where s :=

\partial \widetilde u
\partial x

,

in which \nu (| s| ) is the eddy viscosity. The ansatz in (2.4) is chosen such that the order
of derivatives in the resulting model term will match the order (four) of the dissipative
term in the Kuramoto--Sivashinsky system (1.3). The filtered Kuramoto--Sivashinsky
system (2.2) equipped with such a closure model then becomes the LES system with
the following form:

\partial \widetilde u
\partial t

+ \nu 4
\partial 4\widetilde u
\partial x4

+ \nu 2

\Bigl[ \partial 2\widetilde u
\partial x2

+
1

2

\partial (\widetilde \widetilde u\widetilde u)
\partial x

\Bigr] 
+

\partial 

\partial x

\Bigl[ 
\nu (| s| ) \partial 

3\widetilde u
\partial x3

\Bigr] 
= 0,(2.5a)

\partial (i)\widetilde u
\partial x(i)

(t, 0) =
\partial (i)\widetilde u
\partial x(i)

(t, 2\pi ), i = 0, . . . , 3,(2.5b)

\widetilde u(0, x) = \widetilde w0(x).(2.5c)

We now introduce two important definitions:
\bullet \scrI := [\alpha , \beta ], where \alpha := minx\in \Omega , t\in [0,T ] | s| and \beta := maxx\in \Omega , t\in [0,T ] | s| , re-

ferred to as the ``identifiability interval,"" is the range of values attained by
the magnitude of the resolved strain | s| in the solution of the LES problem
(2.5) with the initial data \widetilde w0 over the time interval [0, T ];
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\bullet \scrL := [a, b], where a < \alpha and b > \beta , will serve as the domain of definition
of the function defining the eddy viscosity, i.e., \nu : \scrL \rightarrow \BbbR ; since the
identifiability interval will in general depend on the initial data \widetilde w0 and the
length of the time window T , i.e., \scrI = \scrI ( \widetilde w0, T ), it is important to choose the
domain \scrL such that it will contain all possible identifiability intervals, that
is, such that \cup \widetilde w0,T\scrI ( \widetilde w0, T ) \subset \scrL , as this will ensure that the eddy viscosity
is always defined; in practice, it is convenient to adopt a larger domain \scrL 
possibly also including points outside any identifiability interval \scrI ( \widetilde w0, T ), i.e.,
\scrL \setminus \cup \widetilde w0,T\scrI ( \widetilde w0, T ) \not = \varnothing ; with this in mind, we shall set a = infx\in \Omega , t\in [0,T ] | s| =
0 and b > supx\in \Omega , t\in [0,T ] | s| .

The counterpart of the Smagorinsky model in the present setting will then take
the form

(2.6) \nu (s) = C2
s \delta 

2| s| .

Our goal now is to find an optimal form for the eddy viscosity as a function of the
resolved strain s, \nu = \nu (| s| ), generalizing the Smagorinsky model (2.6). This eddy
viscosity will be optimal in the sense that the corresponding solutions of the LES
system (2.5) will be as close as possible (in a suitable least-squares sense) to solutions
of the original Kuramoto--Sivashinsky system (1.3) obtained for the same initial data
w0. Formulation and solution of this optimization problem are presented below.

3. Optimization approach to finding eddy viscosity. In this section we
first state the optimization problem which will be used to determine the optimal form
of the eddy viscosity. It is formulated here in a very general continuous setting, and
to solve this problem we use a gradient-descent approach in which the key element
is a suitably defined gradient representing the sensitivity of solutions to the LES
system (2.5) to modifications of the functional form of the eddy viscosity. Finally,
we ensure that these gradients are sufficiently smooth such that the resulting optimal
eddy viscosity will be well defined.

Starting from some initial guess \nu 0, the optimization procedure will iteratively
adjust the eddy viscosity such that the corresponding solutions \widetilde u of the LES problem
(2.5) will match as closely as possible the ``true"" evolution governed by the original
Kuramoto--Sivashinsky system (1.3), i.e., the DNS. To fix attention, this matching
will be determined in terms of N ``observations"" made by applying suitably defined
observation operators Hi : H1(\Omega )  - \rightarrow \BbbR , i = 1, . . . , N , to the LES and DNS
solutions, \widetilde u(t, \cdot ) and w(t, \cdot ), continually for all t \in [0, T ]. The symbol H1(\Omega ) denotes
the Sobolev space of continuous functions with square-integrable gradients [1]. We will
use this general formulation to introduce our approach here and will define specific
forms of these observation operators in section 4 which will then be used in our
computational examples in section 6. The ``target"" observations will thus have the
form mi(t) := Hiw(t, \cdot ), i = 1, . . . , N .

We see that in order for the LES system (2.5) to be satisfied in the classical
(strong) sense, the eddy viscosity \nu (| s| ) must possess certain minimum regularity as
a function of s. Due to some technical reasons which will become apparent below, we
must have

(3.1) \nu (| s| ) piecewise C3 on \scrL .

Since optimization problems are most conveniently formulated in Hilbert spaces [28],
we will assume the eddy viscosity \nu (| s| ) to be an element of the Sobolev spaceH3(\scrL ) of
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functions defined on \scrL with square-integrable third derivatives [1] (a precise definition
of the inner product in this space will be provided below). The objective functional
\scrJ : H3(\scrL ) \rightarrow \BbbR will therefore have the form of the least-squares error between the
target observations \{ mi(t)\} Ni=1 and the corresponding observations of solutions \widetilde u of
the LES problem (2.5) obtained for the given eddy viscosity \nu , i.e.,

(3.2) \scrJ (\nu ) = 1

2

ˆ T

0

N\sum 
i=1

[mi(t) - Hi\widetilde u(t, x; \nu )]2 dt,

such that the optimization problem takes the form

(3.3) q\nu :=argmin
\nu \in H3(\scrL )

\scrJ (\nu ),

where q\nu is the optimal eddy viscosity.
To find a local minimizer of (3.2), we shall use a gradient-based optimization

approach in which the optimal eddy viscosity q\nu can be computed iteratively as q\nu =
lim
n\rightarrow \infty 

\nu (n), where

\Biggl\{ 
\nu (n+1) = \nu (n)  - \tau (n)\nabla \nu \scrJ (\nu (n)), n = 1, 2, . . . ,

\nu (1) = \nu 0,
(3.4)

in which \nabla \nu \scrJ (\nu ) is the gradient of the cost functional (3.2) with respect to the eddy
viscosity \nu , \tau (n) is the step length along the descent direction at the nth iteration,
and \nu 0 is the initial guess for the eddy viscosity. An optimal step size \tau (n) can be
found by solving the following line-minimization problem [32]:

(3.5) \tau (n) = argmin
\tau >0

\scrJ (\nu (n)  - \tau \nabla \nu \scrJ (\nu (n))).

We add that due to the local nature of this approach, iterations (3.4) can only produce
local minimizers, and determining whether any of them is also a global minimizer is
in general not possible. A key element of the gradient-descent approach (3.4) is
evaluation of the gradient \nabla \nu \scrJ (\nu (n)), and this step is discussed below.

3.1. Adjoint-based gradients. While adjoint calculus has had a long history
in PDE-constrained optimization starting with [27], the optimization problem defined
by (2.5), (3.2), and (3.3) has in fact a somewhat nonstandard structure and therefore
requires special techniques. The reason is that the control variable \nu in (3.3) is a
function of s, which itself is a function of the dependent variable \widetilde u in (2.5) (cf. (2.4)),
whereas standard adjoint-based methods allow one to solve PDE optimization prob-
lems in which the control is a function of the independent variables only (here, x
and t). A generalization of the adjoint-based approach overcoming this limitation
was developed in [4, 5], and in the present study we adopt a variant of this technique
with a number of modifications. Most importantly, here the eddy viscosity is a func-
tion of the magnitude of the gradient of the state variable (cf. (2.4)) rather than of the
state variable itself, which leads to additional steps in the derivation of the adjoint
sensitivities. Moreover, increased regularity requirements imposed on the eddy vis-
cosity (cf. (3.1)), result in a more complicated form of the system defining the Sobolev
gradients whose solution in turn necessitates a more refined numerical approach than
used in [4, 5]. Here we present key elements only of our approach, and the reader is
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referred to Appendix A for a proof of the main result. We begin by computing the
G\^ateaux (directional) differential of the cost functional (3.2) with respect to \nu :

\scrJ \prime (\nu ; \nu \prime ) := lim
\epsilon \rightarrow 0

\scrJ (\nu + \epsilon \nu \prime ) - \scrJ (\nu )
\epsilon 

=
d

d\epsilon 
\scrJ 
\Bigl( 
\nu + \epsilon \nu \prime 

\Bigr) \bigm| \bigm| \bigm| 
\epsilon =0

=

ˆ T

0

N\sum 
i=1

[Hi\widetilde u(t, x; \nu ) - mi(t)]Hi\widetilde u\prime (t, x; \nu , \nu \prime ) dt,(3.6)

where \nu \prime is a perturbation of the eddy viscosity \nu and \widetilde u\prime (t, x; \nu , \nu \prime ) satisfies the cor-
responding linear perturbation system obtained from (2.5); cf. relations (A.1)--(A.2)
in Appendix A. The (local) minimizer q\nu of (3.3) requires the directional derivative
(3.6) to vanish for all perturbations \nu \prime , i.e., for all \nu \prime \in H3(\scrL ) \scrJ \prime (q\nu ; \nu \prime ) = 0. Away
from the minimizer q\nu we can use the G\^ateaux differential to obtain the gradient \nabla \nu \scrJ 
required by the descent algorithm (3.4). To do this, we invoke the Riesz representa-
tion theorem [3] and the fact that the directional derivative (3.6) is a bounded linear
functional when viewed as a function of \nu \prime to obtain

(3.7) \scrJ \prime (\nu ; \nu \prime ) = \langle \nabla \nu \scrJ , \nu \prime \rangle \scrX (\scrL ) ,

where \langle \cdot , \cdot \rangle \scrX is an inner product in the Hilbert space \scrX . As regards the choice of this
space, we will consider \scrX = L2(\scrL ) and \scrX = H3(\scrL ) endowed with the following inner
products:

\forall p1,p2\in L2(\scrL ) \langle p1, p2\rangle L2(\scrL ) =

ˆ b

a

p1 p2 ds,

(3.8a)

\forall p1,p2\in H3(\scrL ) \langle p1, p2\rangle H3(\scrL ) =

ˆ b

a

p1 p2 + \ell 21
dp1
ds

dp2
ds

+ \ell 42
d2p1
ds2

d2p2
ds2

+ \ell 63
d3p1
ds3

d3p2
ds3

ds,

(3.8b)

where \ell 1, \ell 2, and \ell 3 in (3.8b) are ``length-scale"" parameters (we note that as long
as 0 < \ell 1, \ell 2, \ell 3 < \infty , the corresponding inner products are equivalent in the precise
sense of norm equivalence). While the Sobolev gradient obtained in the space H3(\scrL )
must be used in computations in (3.4), it is convenient to first derive the gradient
defined with respect to the L2 topology.

We note that relation (3.6) is not consistent with the Riesz form (3.7), because
the perturbation \nu \prime does not appear in it explicitly as a factor but is instead hidden in
the perturbation equation (A.2a). However, as demonstrated by the theorem stated
below, relation (3.6) can be transformed to the desired Riesz form (3.7) in which
\scrX = L2(\scrL ), allowing us to identify the corresponding gradient of the cost functional.

Theorem 3.1. Suppose \nu \prime \in H3(\scrL ) and \scrX = L2(\scrL ). Then, the G\^ateaux differ-
ential admits a Riesz representation (3.7) in which the L2 gradient is given by
(3.9)

\nabla L2

\nu \scrJ (s) =  - 
d

ds

ˆ T

0

ˆ 2\pi 

0

\Xi [\alpha , \partial \widetilde u
\partial x (t,x)](s)

\partial \widetilde u\ast (t, x)

\partial x

\partial 3\widetilde u(t, x)
\partial x3

dx dt, s \in \scrI ( \widetilde w0, T ),
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where \Xi [a1,a2](s) is the characteristic function of the interval [a1, a2] \in \scrI , whereas the
adjoint state \widetilde u\ast : [0, 2\pi ]\times [0, T ]\rightarrow \BbbR is the solution of the following system:

 - \partial \widetilde u\ast 

\partial t
+ \nu 4

\partial 4\widetilde u\ast 

\partial x4
+ \nu 2

\Bigl[ \partial 2\widetilde u\ast 

\partial x2
 - \widetilde u\partial \widetilde u\ast 

\partial x

\Bigr] 
+

\partial 

\partial x

\Bigl[ 
2
d\nu 

ds

\partial \widetilde u
\partial x

\partial 3\widetilde u
\partial x3

\partial \widetilde u\ast 

\partial x

\Bigr] 
+

\partial 3

\partial x3

\Bigl[ 
\nu 
\partial \widetilde u\ast 

\partial x

\Bigr] 
=

N\sum 
i=1

H\ast 
i [Hi\widetilde u - mi],(3.10a)

\partial (i)\widetilde u\ast 

\partial x(i)
(t, 0) =

\partial (i)\widetilde u\ast 

\partial x(i)
(t, 2\pi ), i = 0, . . . , 3,(3.10b)

\widetilde u\ast (T, x) = 0(3.10c)

in which H\ast 
i are the adjoints of the observation operators Hi, i = 1, . . . , N .

Proof. See Appendix A.

We remark that the adjoint system (3.10) is a terminal-value problem and must
be therefore integrated backwards in time whereas its coefficients are determined by
the solution \widetilde u(t, x) of the (forward) LES problem (2.5) around which linearization
is performed (see Appendix A). When the adjoint system is properly defined, its
solutions contain information about the sensitivity of the solutions to the LES problem
(2.5), and hence also the error functional (3.2), to perturbations of the functional form
of the eddy viscosity in (2.4). From the structure of the last term on the left-hand
side in (3.10a) it is also clear that in order for the adjoint system to be satisfied in
the classical (strong) sense, the eddy viscosity must possess the minimum regularity
specified in (3.1).

As defined in (3.9), the L2 gradient may not be used in optimization algorithm
(3.4) because it does not possess the required regularity (cf. (3.1)) and is defined
only on the identifiability interval \scrI which in general is smaller than the domain of
definition \scrL of the eddy viscosity (this latter issue could in principle be remedied
by extending the L2 gradient (3.9) onto \scrL \setminus \scrI with zeros). In order to get around
these difficulties we will derive the corresponding Sobolev gradients [31, 37] by setting
\scrX = H3(\scrL ) in the Riesz identity (3.7) which, upon noting (3.8b), leads to

\scrJ \prime (\nu ; \nu \prime ) =
\Bigl\langle 
\nabla L2

\nu \scrJ , \nu \prime 
\Bigr\rangle 
L2(\scrL )

=
\Bigl\langle 
\nabla H3

\nu \scrJ , \nu \prime 
\Bigr\rangle 
H3(\scrL )

=
\Bigl\langle 
\nabla H3

\nu \scrJ , \nu \prime 
\Bigr\rangle 
L2(\scrL )

+ \ell 21

\biggl\langle 
d(\nabla H3

\nu \scrJ )
ds

,
d\nu \prime 

ds

\biggr\rangle 
L2(\scrL )

+ \ell 42

\biggl\langle 
d2(\nabla H3

\nu \scrJ )
ds2

,
d2\nu \prime 

ds2

\biggr\rangle 
L2(\scrL )

+ \ell 63

\biggl\langle 
d3(\nabla H3

\nu \scrJ )
ds3

,
d3\nu \prime 

ds3

\biggr\rangle 
L2(\scrL )

.(3.11)

Sobolev gradients are determined subject to certain boundary conditions imposed on
s = a and s = b [4, 5] which in turn determine the behavior of the corresponding
properties of the optimal eddy viscosity q\nu (s) at s = a, b. There is some freedom as
regards this choice, and we shall use

(3.12)
d(2i+1) (\nabla H3

\nu \scrJ )
ds(2i+1)

\bigm| \bigm| \bigm| 
s=a

=
d(i) (\nabla H3

\nu \scrJ )
ds(i)

\bigm| \bigm| \bigm| 
s=b

= 0, i = 0, . . . , 2,

which implies that in the gradient iterations (3.4) the odd-degree derivatives of the
eddy viscosity with respect to s will remain unchanged with respect to the initial guess
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\nu 0 at s = a and the value of \nu and its first two derivatives will remain unchanged
at s = b. We remark that, in particular, the gradient iterations (3.4) are allowed to
modify the value of q\nu at s = a. It should be noted, however, that when the domain \scrL 
is much larger than the identifiability interval \scrI , i.e., a\ll \alpha and \beta \ll b, the boundary
conditions such as (3.12) have little effect on the optimal eddy viscosity q\nu . Performing
integration by parts with respect to s in (3.11) required number of times and noting
that due to the judicious choice of the boundary conditions (3.12) all boundary terms
vanish we obtain

\scrJ \prime (\nu ; \nu \prime ) =

ˆ b

a

\nabla L2

\nu \scrJ \nu \prime ds

=

ˆ b

a

\Bigl[ 
\nabla H3

\nu \scrJ  - \ell 21
d2(\nabla H3

\nu \scrJ )
ds2

+ \ell 42
d4(\nabla H3

\nu \scrJ )
ds4

 - \ell 63
d6(\nabla H3

\nu \scrJ )
ds6

\Bigr] 
\nu \prime ds

which because of the arbitrariness of the perturbation \nu \prime \in H3(\scrL ) implies

(3.13)

\biggl[ 
Id - \ell 21

d2

ds2
+ \ell 42

d4

ds4
 - \ell 63

d6

ds6

\biggr] 
\nabla H3

\nu \scrJ (s) = \nabla L2

\nu \scrJ (s), s \in \scrL .

In (3.13) the L2 gradient appearing on the right-hand side is extended from the
identifiability interval \scrI to the entire domain \scrL with zeros. We note that extraction
of Sobolev gradients by solving the boundary-value problem (3.12)--(3.13) can be
interpreted as applying a low-pass filter to the L2 gradient. Indeed, the Fourier

transform of (3.13) yields [ \widehat \nabla H3

\nu \scrJ ]k = \scrF (k) [\widehat \nabla L2

\nu \scrJ ]k, where \scrF (k) := (1 + \ell 21 k
2 +

\ell 42 k
4 + \ell 63 k

6) - 1, which shows that the cutoff for filtering is determined by the length
scales \ell 1, \ell 2, and \ell 3. Adjusting these parameters will have a significant effect on the
rate of convergence of gradient iterations (3.4) [37].

4. Problem set-up. The formulation in section 3 was introduced in a quite
general setting, and in this section we first provide concrete definitions of the observa-
tion operators Hi, i = 1, . . . , N , (and their adjoints H\ast 

i ) and then discuss the choice
of the various parameters defining the problem of finding the optimal eddy viscosity
q\nu ; cf. (3.3).

4.1. Observation operators. We start by defining the observation operators
and consider two choices corresponding to observations in the physical and in the
spectral (Fourier) space.

4.1.1. Physical-space observations. We will assume here that for all times
t \in [0, T ] the solution \widetilde u(t, x) of the LES system (2.5) is observed at a certain number
of observation points \{ xi\} Ni=1 uniformly distributed over the spatial domain [0, 2\pi ].
The observation operator Hi : H1(0, 2\pi ) \rightarrow \BbbR associated with the ith point is then
given by (we express it here in an integral form in order to facilitate obtaining its
adjoint H\ast 

i )

Hi\widetilde u(t, \cdot ) := ˆ 2\pi 

0

\delta (xi  - x) \widetilde u(t, x) dx, i = 1, . . . , N.

The adjoint system (3.10) also involves the adjoints H\ast 
i : \BbbR \rightarrow H - 1(0, 2\pi ) of Hi,

i = 1, . . . , N , which can be obtained from the following duality relations:

\langle f,Hi\widetilde u(t, \cdot )\rangle \BbbR = f

ˆ 2\pi 

0

\delta (xi  - x) \widetilde u(t, x) dx =

ˆ 2\pi 

0

[f \delta (xi  - x)] \widetilde u(t, x) dx
= \langle H\ast 

i f, \widetilde u(t, \cdot )\rangle H - 1(\Omega )\times H1(\Omega ) ,
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where f \in \BbbR and \langle \cdot , \cdot \rangle \BbbR denotes the (scalar) product of two real numbers. From this
we thus deduce

\forall f \in \BbbR , H\ast 
i f := f \delta (xi  - x), i = 1, . . . , N.

4.1.2. Fourier-space observations. Since the periodic Kuramoto--Sivashinsky
system (1.3) is employed here as a ``toy model"" for homogeneous turbulence, another
natural way to define the observation operators Hi is in terms of the Fourier (e.g.,
cosine) transform of the state and this is the second choice we shall consider

(4.1) Hi\widetilde u(t, \cdot ) := ˆ 2\pi 

0

cos(kix) \widetilde u(t, x) dx, ki \in \BbbK , i = 1, . . . , N,

where \BbbK is the set of wavenumbers corresponding to the observed Fourier components
(with cardinality | \BbbK | = N). The adjoints H\ast 

i of these observation operators are then
obtained by considering the duality relations

\langle f,Hi\widetilde u(t, \cdot )\rangle \BbbR = f

ˆ 2\pi 

0

cos(kix) \widetilde u(t, x) dx
=

ˆ 2\pi 

0

[f cos(kix)] \widetilde u(t, x) dx = \langle H\ast 
i f, \widetilde u(t, \cdot )\rangle L2(\Omega ) ,

from which we deduce

\forall f \in \BbbR , H\ast 
i f := f cos(kix), i = 1, . . . , N.

4.2. Physical parameters. The long-time behavior of the solutions w of the
Kuramoto--Sivashinsky system (1.3) is determined by the parameters \nu 4 and \nu 2 [18].
In our study we shall use the values \nu 4 = 1 and \nu 2 = 100 chosen such that, after
an initial transient, the solution w will on average feature 7 waves (``coherent struc-
tures"") present in the domain during the evolution (this number coincides with the
wavenumber k0 of the most (linearly) unstable mode of the Kuramoto--Sivashinsky
system (1.3) linearized about the zero state w(t, x) = 0 [18]). Given the chaotic na-
ture of the Kuramoto--Sivashinsky system in this parameter regime and our interest
in the long-time evolution, as the initial condition w0 we will take a certain state on
the turbulent attractor. When defining the LES system (2.5) we will take the cutoff
wavenumber in filter (2.1) to be kmax = 16, which falls in the ``inertial range"" not too
far from the wavenumber k0 = 7 characterizing the most unstable modes (which can
be interpreted as ``forcing""); cf. Figure 1. In the solution of the optimization problem
(3.2)--(3.3) we will use N = 8 observations, and in the case when the observation
operators are defined in the Fourier space (cf. section 4.1.2), we will consider two sets
\BbbK of observed wavenumbers:

\bullet equispaced: \BbbK = \{ 1, 3, . . . , 15\} ,(4.2a)

\bullet clustered around k0: \BbbK = \{ 4, 5, . . . , 11\} .(4.2b)

The number of observations N is chosen to be smaller than the number kmax of the
Fourier components resolved in the LES (2.5); cf. Figure 1. As regards the initial guess
\nu 0 for the eddy viscosity in the gradient descent (3.4) we will take the Smagorinsky
model (2.6) with Cs = 0.002. The domain \scrL = [a, b] will have boundaries a = 0 and
b = 400 which for the given problem set-up ensures that b > supx\in \Omega , t\in [0,T ] | s| .
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Fig. 1. (a) The spectra of representative solutions of the DNS problem (black solid lines) and the
LES problem (dashed red lines) together with the Fourier components whose real parts are recorded
by the observation operators Hi, i = 1, . . . , 8, defined in section 4.1.2; cf. (4.1) and (4.2b) (black
circles). (b) Magnification of the wavenumber region around k0. The green vertical line in panel
(a) represents the cutoff wavenumber kmax. The DNS and LES problems (1.3) and (2.5) are solved
numerically as described in section 5.1.

5. Numerical approach. The gradient-descent approach (3.4) is formulated in
the continuous (``optimize-then-discretize"") setting [17], and evaluation of the gradient
expression (3.9) requires solutions of the LES and the adjoint systems (2.5) and (3.10).
In this section we first discuss the numerical solution of these PDE problems and
the computation of the Sobolev gradients via (3.12)--(3.13). Then we describe the
implementation of the gradient-descent algorithm (3.4).

5.1. Discretization. The LES and adjoint systems (2.5) and (3.10) involve
model terms with state-dependent eddy viscosity \nu (| s| ), and in order to represent
this expression, in addition to discretizing the space and time domains [0, 2\pi ] and
[0, T ], we also need to discretize the state domain \scrL . The former two domains are dis-
cretized using grids with equispaced points and steps sizes \Delta x = 2\pi /Nx and \Delta t, where
Nx is the number of grid points in space, whereas the state domain \scrL is discretized
with Ns Chebyshev points. The original Kuramoto--Sivashinsky system (1.3), its LES
version (2.5), and the adjoint system (3.10) are solved using the standard Fourier
pseudo-spectral method [6] where dealiasing based on the 3/2 rule is performed in
the case of the Kuramoto--Sivashinsky system (1.3), but due to aggressive filtering
(cf. (2.1)) is unnecessary in the latter two problems. Evaluation of the model terms in
(2.5) and (3.10) requires differentiation of the eddy viscosity \nu (| s| ) with respect to s
which is performed using spectrally accurate Chebyshev differentiation matrices [45]
defined in the state domain \scrL . The eddy viscosity \nu (| s| ) and its derivative d\nu (| s| )/ds
are then interpolated from the state space to the physical space using the barycentric
formulas which are also spectrally accurate [46]. This step ensures that the regularity
required of the eddy viscosity (cf. (3.1)) is maintained. The time-discretization of
systems (1.3), (2.5), and (3.10) is performed using the exponential time-differencing
fourth-order Runge--Kutta method [20], originally introduced in [7], which is fourth-
order accurate. The different integrals are approximated using Gaussian quadratures,
which are given by the trapezoidal rule on the periodic domain \Omega (e.g., in (3.2)),
and by the Clenshaw--Curtis formula on the bounded domain \scrL (e.g., in (3.8)). The
boundary-value problem (3.12)--(3.13) defining the Sobolev gradients is solved using
the chebop feature of Chebfun [11], where the discretization is performed based on
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Fig. 2. Dependence of (a) \kappa and (b) log10 | 1 - \kappa | on \epsilon (cf. (5.1)) for two different perturbations
\nu \prime (blue circles vs. red triangles) and two different time steps (empty symbols) \Delta t = 3.0\times 10 - 6 and
(filled symbols) \Delta t = 1.0\times 10 - 6 used in the solution of the PDE problems (2.5) and (3.10).

ultraspherical polynomials. With most computations carried out with spectral accu-
racy, approximation errors are dominated by time-stepping errors where the accuracy
is \scrO ((\Delta t)4). Unless mentioned otherwise, in our computations we use Nx = 1024,
Ns = 4096, and \Delta t = 3.0\times 10 - 6.

In order to validate the discretization techniques discussed above, we verify the ac-
curacy of the cost functional gradients evaluated as described in section 3.1 (cf. (3.9))
by computing the G\^ateaux differential \scrJ \prime (\nu ; \nu \prime ) in terms of the Riesz identity (3.7) and
comparing it with its approximation obtained with a simple forward finite-difference
formula. The ratio of these two expressions is thus given by

(5.1) \kappa (\epsilon ) :=
\epsilon  - 1 [\scrJ (\nu + \epsilon \nu \prime ) - \scrJ (\nu )]\bigl\langle 

\nabla L2

\nu \scrJ , \nu \prime 
\bigr\rangle 
L2(\scrL )

,

where \nu \prime is an arbitrary perturbation and \epsilon > 0 its magnitude. We expect \kappa (\epsilon ) to be
close to unity, and this is indeed evident in Figure 2 for a range of \epsilon spanning sev-
eral orders of magnitude. The large deviations of \kappa (\epsilon ) from unity observed for very
small and very large values of \epsilon are due to, respectively, the round-off and truncation
errors in the finite-difference formula, both of which are well-known effects [4, 5]. In
Figure 2(b) we also note that, as expected, for intermediate values of \epsilon , \kappa (\epsilon ) \rightarrow 1 as
the discretization parameter \Delta t used in the numerical solution of the PDE systems
(2.5) and (3.10) is refined. These results demonstrate the consistency of the cost
functional gradients evaluated as discussed in section 3.1 and also show that when
sufficient numerical resolution is used, discretization errors will have a vanishing effect
on the accuracy of the gradients and therefore also on the accuracy of the obtained
optimal forms of the eddy viscosity. Thus, with the values of the discretization param-
eters Nx, Ns, and \Delta t indicated above, our computations are fully resolved such that
further refinements of these parameters would not produce appreciable changes of the
results.

5.2. Gradient descent. While for simplicity of presentation in section 3 the
steepest-descent (simple gradient) approach was used in (3.4), in actual computations
we use the conjugate-gradients method [32] which is known to significantly accelerate
convergence. The gradient \nabla \nu \scrJ (\nu (n)) in (3.4) is then replaced with the descent
direction g(n) defined as
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(5.2)
g(n) = \nabla \nu \scrJ (\nu (n)) - \gamma n g

(n - 1), n = 1, 2, . . . ,

g(0) = \nabla \nu \scrJ (\nu (0)),

where the ``momentum"" term \gamma n is evaluated using the Polak--Ribi\`ere formula

(5.3) \gamma n =

\Bigl\langle \bigl( 
\nabla \nu \scrJ (\nu (n)) - \nabla \nu \scrJ (\nu (n - 1))

\bigr) 
,\nabla \nu \scrJ (\nu (n))

\Bigr\rangle 
H3(\scrL )\Bigl\langle 

\nabla \nu \scrJ (\nu (n - 1)),\nabla \nu \scrJ (\nu (n - 1))
\Bigr\rangle 
H3(\scrL )

.

It is a good practice [32] for the conjugate-gradients approach (5.2) to be periodi-
cally restarted with a gradient step after a certain number of iterations. The line-
minimization problem (3.5) is efficiently solved using Brent's algorithm [36], which
is a standard approach. Gradient iterations (3.4) are declared converged when the
following termination condition is satisfied:

(5.4)
| \scrJ (\nu (n+1)) - \scrJ (\nu (n))| 

\scrJ (\nu (n))
< \epsilon \scrJ ,

where \epsilon \scrJ is a prescribed tolerance (we will use \epsilon \scrJ = 10 - 7). The choice of the length-
scale parameters \ell 1, \ell 2, and \ell 3 defining the Sobolev inner product (3.8b) will be
discussed in the next section. The different steps in the solution of the optimization
problem (3.3) are summarized as Algorithm 5.1.

Algorithm 5.1 Implementation of the conjugate-gradients variant of descent
approach (3.4).
Input:
\{ m(t)\} Ni=1 --- target observations (e.g., of the DNS (cf. (1.3)); N is number of

observations)
Nx, Ns,\Delta t --- numerical discretization parameters
\ell 1, \ell 2, \ell 3 --- Sobolev length scales; cf. (3.8b)
\epsilon \scrJ --- tolerance in the termination criterion (5.4)
\nu 0 --- initial guess for the eddy viscosity (e.g., (2.6))

Output:
q\nu --- optimal eddy viscosity

\bullet set n = 0
\bullet set \nu (0) = \nu 0
repeat
\bullet set n = n+ 1
\bullet solve the LES problem (2.5)
\bullet solve the adjoint problem (3.10)

\bullet determine the L2 gradient \nabla L2

\nu \scrJ (\nu (n)); cf. (3.9)
\bullet determine the Sobolev gradient \nabla H3

\nu \scrJ (\nu (n)) via (3.12)--(3.13)
\bullet determine the ``momentum"" coefficient \gamma n via (5.3)
\bullet determine the conjugate descent direction g(n) via (5.2)
\bullet determine the optimal step length \tau (n) by solving (3.5) with Brent's algorithm
\bullet update the eddy viscosity \nu (n) \leftarrow \nu (n)  - \tau n g

(n)

until termination criterion (5.4) is satisfied
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Table 1
Summary information about the different cases considered in our computations.

Observations Physical space Fourier space --- equispaced Fourier space --- clustered

T 1.5\times 10 - 3 3.0\times 10 - 3 9.0\times 10 - 3 1.5\times 10 - 3 3.0\times 10 - 3 9.0\times 10 - 3 1.5\times 10 - 3 3.0\times 10 - 3 9.0\times 10 - 3

\ell 2 103 103 106 103 103 105 103 103 103

\ell 3 101 101 105 101 101 105 101 101 101

\scrJ (\nu 0)
\scrJ (q\nu )

1.51 8.21 1.80 3.51 2.75 1.49 5.02 6.76 2.22

Note Case A Case B

6. Results. In this section we present and analyze the results obtained with our
approach to determining optimal eddy-viscosity closure models (cf. Algorithm 5.1)
and compare them to the results obtained with other closure models including the
approach of Das and Moser [9], where the closure model also has some optimality
properties. We consider observation operators Hi, i = 1, . . . , N , defined both in the
physical space (cf. section 4.1.1) and in the Fourier space (cf. section 4.1.2), the lat-
ter with different distributions of the observed wavenumbers (4.2). With most other
problem parameters fixed as discussed in section 4.2, there remains one key charac-
teristic defining the optimization problem (3.2)--(3.3), namely, the length of the time
window and different values of T are considered, covering from a few to several typi-
cal events in the evolution of the Kuramoto--Sivashinsky system (1.3) (these ``events""
are the merging of crests or formation of new ones). Summary information about
these computations is compiled in Table 1, where we also indicate the values of the
length-scale parameters \ell 2 and \ell 3 (\ell 1 = 0) used to determine the Sobolev gradients;
cf. (3.8b). The values of these parameters are chosen by trial and error to maximize
the convergence of iterations in Algorithm 5.1. We conclude from the data compiled
in Table 1 that in all cases optimization reduces the observation error (3.2) by a factor
\scrO (1) with its specific value depending on the length of the optimization window T ,
and there tends to be an optimal value of T for which the largest reduction of the
error functional (3.2) is achieved. To fix attention, we will henceforth focus on two
representative configurations, namely, one with observations in the physical space and
one with observations in the Fourier space, denoted, respectively, ``Case A"" and ``Case
B"" in Table 1.

The decrease of the normalized objective functional (3.2) with iterations n in
Cases A and B is shown in Figure 3(a). In this figure we observe a reduction of
the observation error by close to one order of magnitude over \scrO (10) iterations. We
note, however, that the convergence rate of iterations (3.4) is rather nonuniform. The
corresponding optimal eddy viscosities q\nu (s) are shown as functions of the resolved
strain s together with the Smagorinsky model (2.6) used as the initial guess in (3.4)
in Figure 3(b). We see that while the optimal eddy viscosities q\nu (s) are defined on a
larger domain \scrL , the deviations from the initial guess \nu 0 produced by the gradient
iterations (3.4) are essentially confined to a smaller identifiability interval \scrI . Most
importantly, in contrast to the original Smagorinsky model (2.6), the optimal eddy
viscosities are negative for small strains such that q\nu (0) < 0. It is encouraging to note
that the optimal eddy viscosities obtained in Cases A and B exhibit a qualitatively
similar dependence on s, despite rather different forms of observations used to define
the optimization problem (3.2)--(3.3) in these two cases.

In order to obtain insights about the spatiotemporal evolution of solutions to the
LES problems (2.5) with different closure models (no closure at all, the Smagorinsky
model (2.6), and the optimal eddy viscosity q\nu (| s| ) from Cases A and B; cf. Table 1),
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Fig. 3. (a) Dependence of the normalized error functional \scrJ (\nu (n))/\scrJ (\nu 0) on the iteration
count n and (b) dependence of the optimal eddy viscosity q\nu (| s| ) on the resolved strain s for Case A
(blue dash-dotted line) and Case B (red dashed line); cf. Table 1. In panel (b) we also indicate the
Smagorinsky model (2.6) used as the initial guess \nu 0 (green dotted line).

in Figure 4 these evolutions are compared as functions of space and time to the DNS
solution w(t, x) of the original Kuramoto--Sivashinsky system (1.3). In this figure we
also include the evolution obtained with the optimal closure model proposed by Das
and Moser [9] based on a stochastic estimator. In order to assess the performance
of the proposed approach at times t > T extending beyond the ``training window""
[0, T ], the evolutions in Figure 4 are shown for t \in [0, 2T ]. We observe that with
the exception of the LES solution with no closure model (cf. Figure 4(b)), all LES
solutions are qualitatively quite similar to the DNS solution, especially for short times
(cf. Figures 4(c)--4(f) vs. Figure 4(a)), although the solutions obtained for Cases A
and B arguably best correlate with the DNS results.

To quantify these observations, we will now analyze the behavior of the following
two diagnostic quantities:

\scrC (t) := 1

| | w(t)| | L2(0,2\pi )| | \widetilde u(t)| | L2(0,2\pi )

ˆ 2\pi 

0

w(t, x) \widetilde u(t, x) dx,(6.1a)

\scrK (t) :=
| | \widetilde u(t)| | 2L2(0,2\pi )

| | w(t)| | 2L2(0,2\pi )

=
1

| | w(t)| | 2L2(0,2\pi )

ˆ 2\pi 

0

\widetilde u(t, x)2 dx,(6.1b)

which can be interpreted as, respectively, the correlation of the LES solution \widetilde u with the
DNS solution w and the normalized kinetic energy. The LES with the optimal eddy-
viscosity closures obtained in Cases A and B are compared in terms these diagnostic
quantities for t \in [0, 2T ] to the LES with no closure model, with the Smagorinsky
model (2.6), and with the closure model of Das and Moser [9] in Figure 5. Given the
chaotic nature of the Kuramoto--Sivashinsky system (1.3) resulting in an exponentially
fast divergence of initially nearby trajectories, in all cases the correlation (6.1a) drops
very rapidly such that for short times t\rightarrow 0 we approximately have \scrC (t) \approx 1 - r ept for
some r, p > 0 different in each case; cf. Figure 5(a). The growth rate p, characterizing
the exponential divergence of the solutions to the DNS and LES problems, is smallest
when the optimal eddy-viscosity closure models q\nu (| s| ) from Cases A and B are used.
As a result, the time t0 when the DNS and the LES solutions become uncorrelated,
i.e., when \scrC (t0) \approx 0, is nearly twice as large for the optimal eddy-viscosity closures
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Space-time evolution of solutions to (a) the DNS problem (1.3) and the LES problems
(2.5) with (b) no closure model, with (c) the Smagorinsky model (2.6), with (d) the optimal closure
proposed by Das and Moser [9], with (e) the optimal closure from Case A, and with (f) the optimal
closure from case B. Grayscale indicates the solution value at given (x, t). In panel (a) the green,
dashed horizontal lines indicate the cutoff length scale \delta characterizing filter (2.1).

from Cases A and B than for the Smagorinsky model (2.6) and the closure model of
Das and Moser [9]. As regards the behavior of the normalized energy (6.1b), from
Figure 5(c) and (d) we see that the optimal eddy viscosity q\nu (| s| ) on average tends to
reduce the kinetic energy relative to its levels in the DNS. This is in contrast to the
approach of Das and Moser [9] in which the normalized energy is increased to levels
higher than in the DNS; cf. Figure 5(d).
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Fig. 5. Dependence of the diagnostic quantities (a), (b) \scrC (t) (cf. (6.1a)) and (c), (d) \scrK (t)
(cf. (6.1b)), on time t for the LES solutions with (purple dot-dashed line) no closure model, with
(green dotted line) the Smagorinsky model (2.6), with (blue dash-dotted line) the optimal eddy vis-
cosity q\nu from Case A, with (red dashed line) the optimal eddy viscosity q\nu from Case B, and with
(yellow solid-dotted line) the optimal closure proposed by Das and Moser [9]. Bold and thin lines
correspond to time in the ``training window"" t \in [0, T ] and beyond the ``training window"" t \in (T, 2T ],
respectively.

While the analysis above focused on ``a posteriori"" tests involving the results of
solving the LES system (2.5) with different closure models, we close this section with
a brief discussion of an ``a priori"" test where the errors in approximations of the SGS
stresses (2.3) with different closure models are analyzed. In this context, comparing
the SGS dissipation rate with the modeled SGS dissipation rate is often used as a
standard diagnostic to assess the energetics in the LES flow [30]. We thus focus on
the following normalized least-squares measure of this error:

(6.2) \scrS (t) := 1

| | \partial \widetilde u\partial x M(t)| | 2L2(0,2\pi )

ˆ 2\pi 

0

\biggl[ 
\partial \widetilde u
\partial x

[M(w(t, x)) - M(\widetilde u(t, x))]\biggr] 2 dx

and show its dependence on time t \in [0, 2T ] for different models in Figure 6. We note
in this figure that the normalized SGS stress error \scrS (t) tends to be quite large in all
cases, which is a known property of Smagorinsky-type models [15], and is smallest in
the case of Das and Moser's approach [9].

7. Discussion and conclusions. In this study we have introduced a compu-
tational framework for determining optimal eddy-viscosity closures for a broad class
of PDE models, such as the Navier--Stokes equation in hydrodynamics. This inverse
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Fig. 6. Dependence of the normalized SGS stress error \scrS (t) (cf. (6.2)) on time t for the LES
solutions with (green dotted line) the Smagorinsky model (2.6), with (blue dash-dotted line) the
optimal eddy viscosity q\nu from Case A, with (red dashed line) the optimal eddy viscosity q\nu from Case
B, and with (yellow solid-dotted line) the optimal closure proposed by Das and Moser [9]. Bold and
thin lines correspond to time in the ``training window"" t \in [0, T ] and beyond the ``training window""
t \in (T, 2T ], respectively.

problem is framed here as a PDE optimization problem where an error functional
representing the misfit between the target and predicted observations is minimized
with respect to the functional form of the eddy viscosity in the closure relation which
determines the ``shape"" of the nonlinearity of the model term. Because of this latter
aspect, such a problem is not amenable to solution using standard adjoint-based tools
for PDE optimization, and an extension of the recently developed generalization of
these techniques [4, 5] needs to be used. In addition, by formulating the problem in
the ``optimize-then-discretize"" setting we are able to determine the optimal forms of
the eddy viscosity in a very general manner subject only to some minimal assump-
tions on smoothness (cf. (3.1)) and the behavior for small and large values of the
state variable. Solution of this problem using a ``discretize-then-optimize"" approach
often employed to solve PDE optimization problems [17] is an interesting alternative.
Such formulations ought to be contrasted with some earlier approaches in which opti-
mal closures were determined by fitting a small number of parameters in an assumed
ansatz. Thus, our proposed approach does not suffer from the limitations of such an
assumed ansatz.

To provide a proof of the concept for this approach, we have focused here on
the 1D Kuramoto--Sivashinsky equation (1.3) as a model problem computationally
more tractable than the two-dimensional (2D) or 3D Navier--Stokes system we are
ultimately interested in. In being chaotic and multiscale [18], the solutions of the
Kuramoto--Sivashinsky system arguably better resemble actual hydrodynamic tur-
bulence than solutions of the Burgers equation often used as a simplified model in
similar situations [9]. Such a simplified setting allows us to study the properties of
our proposed approach more thoroughly. We find that it is possible to determine
a particular dependence of the eddy viscosity on the resolved strain, q\nu = q\nu (| s| ),
generalizing Smagorinsky's relation (2.6) in a LES model, such that the LES model
provides a systematically improved approximation of the DNS. More precisely, while
the trajectories corresponding to the DNS and LES still diverge exponentially, they
do so at a much slower rate than in the case of the LES based on the standard
Smagorinsky model; cf. Figure 5(a). Importantly, the functional form of the optimal
eddy viscosity q\nu (| s| ) appears to depend little on the particular form of the obser-
vations used to set up the optimization problem (cf. Figure 3(b)), and we empha-
size here that our approach can be formulated based on very general measurements
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(changing the observation operator Hi (cf. section 4.1) will only result in a modifica-
tion of the source term in the adjoint system (3.10a)). In particular, it is also possible
to simultaneously use several different sets of measurements coming, for example,
from different DNS or experiments, and a natural way to formulate such a problem
is in terms of multiobjective optimization.

The LES with the optimal eddy-viscosity closure models determined with the
proposed approach produces solutions which better match the DNS than the LES so-
lutions obtained with the closure model of Das and Moser [9]; cf. Figure 5(b). On the
other hand, that latter model leads to a more accurate prediction of the SGS stresses;
cf. Figure 6. This can be understood by recognizing that the closure model of Das
and Moser is formulated to optimally reconstruct the SGS stresses rather than some
other a posteriori quantities. We have also considered a formulation with observation
operators involving SGS stresses, but the results obtained were inferior to the results
presented here. In our computations the numerical parameters Nx, Ns, and \Delta t were
chosen such that the LES and the adjoint systems (2.5) and (3.10), the gradient ex-
pression (3.9) as well as the system (3.12)--(3.13) for determining the Sobolev gradients
were fully resolved; cf. section 5.1. The effect of insufficient numerical resolution on
the computed optimal eddy-viscosity closures is an important question which merits
investigation; however, the answer will likely be problem dependent.

In addition to providing optimal eddy-viscosity closure models which can be useful
in many situations, the present approach serves another, more basic purpose; namely,
by identifying the ``best"" closure models within a certain family it can offer information
about their fundamental performance limitations. More specifically, it can provide
insights about how well closure models based on the eddy-viscosity ansatz (1.2) can
perform in the best case and thus how much room there is in principle for improvement
of standard approaches such as the Smagorinsky model (2.6).

Moving forward, our next main goal is to consider an analogous problem of finding
optimal eddy-viscosity closure models for the 2D and 3D Navier--Stokes system as
generalizations of the Smagorinsky model (1.2), first in the periodic setting and then
in more realistic geometries. In that latter context related questions also arise as
regards wall models. We are also interested in studying closure models based on
formulations other than eddy viscosity.

Appendix A. Proof of Theorem 3.1. Here we derive expression (3.9) for
the L2 gradient of the cost functional (3.2). In order to avoid technical complications
related to the nondifferentiability of the absolute value | \cdot | in the argument of the
eddy viscosity, we change the variable from | s| to \sigma := | s| 2 = s2 (for simplicity and
with a slight abuse of notations we will still use the same symbol \nu = \nu (\sigma ) to denote
the eddy viscosity). First, we must determine the perturbation of the LES system
(2.5) resulting from perturbing the functional form of the eddy viscosity \nu with some
perturbation \nu \prime . This is done by replacing \widetilde u and \nu with the following representations
in which 0 < \epsilon \ll 1:

\widetilde u \leftarrow  - \widetilde u+ \epsilon \widetilde u\prime +\scrO (\epsilon 2),(A.1a)

\nu (\sigma ) \leftarrow  - \nu (\sigma ) + \epsilon 
d\nu (\sigma )

d\sigma 

d\sigma 

ds

\partial \widetilde u\prime 

\partial x
+ \epsilon \nu \prime (\sigma ) +\scrO (\epsilon 2).(A.1b)

The second term on the right-hand side in (A.1b) reflects the change of the value of the
(squared) strain \sigma for which the eddy viscosity is evaluated as a result of perturbing
its functional form [4, 5]. Substituting representations (A.1a)--(A.1b) into the LES
system (2.5) and collecting terms of \scrO (\epsilon ) we obtain the following perturbation system:
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\partial \widetilde u\prime 

\partial t
+ \nu 4

\partial 4\widetilde u\prime 

\partial x4
+ \nu 2

\Bigl[ \partial 2\widetilde u\prime 

\partial x2
+

\partial (\widetilde u\widetilde u\prime )

\partial x

\Bigr] 
(A.2a)

+
\partial 

\partial x

\Bigl[ d\nu (\sigma )
d\sigma 

d\sigma 

ds

\partial 3\widetilde u
\partial x3

\partial \widetilde u\prime 

\partial x
+ \nu 

\partial 3\widetilde u\prime 

\partial x3

\Bigr] 
=  - \partial 

\partial x

\Bigl[ 
\nu \prime 
\partial 3\widetilde u
\partial x3

\Bigr] 
,

\partial (i)\widetilde u\prime 

\partial x(i)
(t, 0) =

\partial (i)\widetilde u\prime 

\partial x(i)
(t, 2\pi ), i = 0, . . . , 3,(A.2b)

\widetilde u\prime (0, x) = 0(A.2c)

describing the leading-order effect \widetilde u\prime of perturbing the functional form of the eddy
viscosity \nu (\sigma ) on solutions of the LES system (2.5) [4, 5]. Now we integrate (A.2a)
against the adjoint field \widetilde u\ast over the space-time domain [0, 2\pi ]\times [0, T ] and then perform
integration by parts with respect to both space and time to obtain

0 =

ˆ T

0

ˆ 2\pi 

0

\biggl[ 
\partial \widetilde u\prime 

\partial t
+ \nu 4

\partial 4\widetilde u\prime 

\partial x4
+ \nu 2

\biggl[ 
\partial 2\widetilde u\prime 

\partial x2
+

\partial (\widetilde u \widetilde u\prime )

\partial x

\biggr] \biggr] \widetilde u\ast dx dt

+

ˆ T

0

ˆ 2\pi 

0

\partial 

\partial x

\biggl[ 
d\nu 

d\sigma 

d\sigma 

ds

\partial 3\widetilde u
\partial x3

\partial \widetilde u\prime 

\partial x
+ \nu 

\partial 3\widetilde u\prime 

\partial x3
+ \nu \prime 

\partial 3\widetilde u
\partial x3

\biggr] \widetilde u\ast dx dt

=

ˆ T

0

ˆ 2\pi 

0

\biggl[ 
 - \partial \widetilde u\ast 

\partial t
+ \nu 4

\partial 4\widetilde u\ast 

\partial x4
+ \nu 2

\biggl[ 
\partial 2\widetilde u\ast 

\partial x2
 - \widetilde u\partial \widetilde u\ast 

\partial x

\biggr] 
+

\partial 

\partial x

\biggl[ 
d\nu 

d\sigma 

d\sigma 

ds

\partial 3\widetilde u
\partial x3

\partial \widetilde u\ast 

\partial x

\biggr] 
+

\partial 3

\partial x3

\biggl[ 
\nu 
\partial \widetilde u\ast 

\partial x

\biggr] \biggr] \widetilde u\prime dx dt\underbrace{}  \underbrace{}  
\scrJ \prime (\nu ;\nu \prime )

 - 
ˆ T

0

ˆ 2\pi 

0

\partial \widetilde u\ast 

\partial x

\partial 3\widetilde u
\partial x3

\nu \prime dx dt = 0,

where all the boundary terms vanish due to periodicity. Using the definition of the
adjoint system (3.10) together with the aforementioned change of variables \sigma = \sigma (s)

we then obtain for the G\^ateaux differential \scrJ \prime (\nu ; \nu \prime ) =
´ T
0

´ 2\pi 
0

\partial \widetilde u\ast 

\partial x
\partial 3\widetilde u
\partial x3 \nu 

\prime dx dt, which
now contains the perturbation \nu \prime as a factor but is still not in the Riesz form (3.7)
because this form involves an inner product defined with integration with respect to
the resolved strain s rather than space x and time t (we shall now return back to
the original variable via the substitution \sigma = s2). The required change of variables is

introduced by the representation [4, 5] \nu \prime (| \partial \widetilde u(t,x)\partial x | ) =
´ b
a
\delta (| \partial \widetilde u(t,x)\partial x |  - s) \nu \prime (s) ds, where

\delta (\cdot ) is the Dirac delta distribution, such that using Fubini's theorem to swap the order
of integration we finally arrive at a Riesz representation of the G\^ateaux differential
(3.6),

\scrJ \prime (\nu ; \nu \prime ) =

ˆ T

0

ˆ 2\pi 

0

\partial \widetilde u\ast (t, x)

\partial x

ˆ b

a

\delta 
\Bigl( \bigm| \bigm| \bigm| \partial \widetilde u(t, x)

\partial x

\bigm| \bigm| \bigm|  - s
\Bigr) \partial 3\widetilde u(t, x)

\partial x3
\nu \prime (s) ds dx dt

=

ˆ b

a

\Biggl[ ˆ T

0

ˆ 2\pi 

0

\partial \widetilde u\ast (t, x)

\partial x
\delta 
\Bigl( \bigm| \bigm| \bigm| \partial \widetilde u(t, x)

\partial x

\bigm| \bigm| \bigm|  - s
\Bigr) \partial 3\widetilde u(t, x)

\partial x3
dx dt

\Biggr] 
\nu \prime (s) ds,(A.3)

from which after selecting \scrX = L2(\scrL ) in (3.7) we deduce the following expression for
the L2 gradient:

(A.4) \nabla L2

\nu \scrJ (s) =
ˆ T

0

ˆ 2\pi 

0

\partial \widetilde u\ast (t, x)

\partial x
\delta 
\Bigl( \bigm| \bigm| \bigm| \partial \widetilde u(t, x)

\partial x

\bigm| \bigm| \bigm|  - s
\Bigr) \partial 3\widetilde u(t, x)

\partial x3
dx dt.



OPTIMAL CLOSURES IN A MODEL FOR TURBULENT FLOWS B271

We note that evaluation of this expression for a given value of s requires computa-

tion of an integral defined on the level set | \partial \widetilde u(t,x)\partial x | = s in the space-time domain
[0, 2\pi ]\times [0, T ] which is rather difficult. A computationally more convenient approach
is obtained using the following identity (in which the differentiation is understood in
the distributional sense):

\delta 
\Bigl( \bigm| \bigm| \bigm| \partial \widetilde u(t, x)

\partial x

\bigm| \bigm| \bigm|  - s
\Bigr) 
=  - d

ds
\Xi \Bigl[ 

\alpha ,
\bigm| \bigm| \partial \widetilde u(t,x)/\partial x\bigm| \bigm| \Bigr] (s)

such that (A.4) becomes

(A.5) \nabla L2

\nu \scrJ (s) =  - 
d

ds

ˆ T

0

ˆ 2\pi 

0

\Xi \Bigl[ 
\alpha ,
\bigm| \bigm| \partial \widetilde u(t,x)

\partial x

\bigm| \bigm| \Bigr] (s) \partial \widetilde u\ast (t, x)

\partial x

\partial 3\widetilde u(t, x)
\partial x3

dx dt

and expression (3.9) is finally obtained.
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