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What:

Automatic discovery of useful feature patterns in the observed data.

Why: 

An AI system should be able to identify and structure the underlying semantic information hidden in the 
observed data, and leverage that information for subsequent reasoning.
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To learn useful data representations, we need to consider the following two problems: 

1. How to design representation learning models that identify semantically useful information and encode 
it into structured low dimensional representations? 

- Paper D - ICML: Geometric Multimodal Contrastive Learning
- Paper E - T-RO: Latent Space Roadmap

2. How to design reliable evaluation frameworks for assessing the quality of the resulting 
representations?

- Paper A - ICML: Geometric Component Analysis
- Paper B - ICLR: Delaunay Component Analysis
- Paper C - preprint: GraphDCA
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Evaluation of learned data representations

Typically on pre-designed downstream tasks that:

- either rely on labelled data  
- classification tasks [1, 2, 3]
- prediction tasks [4]

- or are handcrafted
- robotics task [5, 6]
- performance of the policy in reinforcement learning [7, 8]

Limitations of such 
evaluation:

● time consuming 

● data hungry

● often no potential 
downstream tasks

● too many potential 
downstream tasks 
bias the evaluation

● handcrafted tasks 
bias the learning 

[1] Chen et al. “Big self-supervised models are strong semi-supervised learners”, Advances in Neural Information Processing Systems 2020.
[2] Ermolov et al. “Whitening for self-supervised representation learning”, International Conference on Machine Learning 2021.
[3] Bevilacqua et al. "Size-invariant graph representations for graph classification extrapolation”, International Conference on Machine Learning 2021.
[4] Li et al. “Learning object-centric representations of multi-object scenes from multiple views”, Advances in Neural Information Processing Systems 2020.
[5] Chamzas et al. “Comparing reconstruction-and contrastive-based models for visual task planning”, arXiv preprint arXiv:2109.06737, 2021.
[6] Lippi et al. “Latent space roadmap for visual action planning of deformable and rigid object manipulation”, International Conference on Intelligent Robots and Systems 2020.
[7] Ghadirzadeh et. al. “Data-efficient visuomotor policy training using reinforcement learning and generative models”, arXiv preprint arXiv:2007.13134, 2020.
[8] Laskin et al “ CURL: Contrastive unsupervised representations for reinforcement learning”, International Conference on Machine Learning 2020.
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Geometric evaluation of representations

Paper A
GeomCA: Geometric Evaluation of Data Representations, 
Petra Poklukar, Anastasia Varava, Danica Kragic, ICML 2021

Paper B
Delaunay Component Analysis for Evaluation of Data 
Representations, Petra Poklukar, Vladislav Polianskii, Anastasiia Varava, 
Florian T. Pokorny, Danica Kragic, ICLR 2022
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GeomCA: limitation

original points 𝜀-proximity graph

Relies on 𝜀-proximity graphs

Limitation #1
- single value of 𝜀 

does not always 
capture clusters 
of different 
shape and 
density

Limitation #2
- no functionality 

to evaluate the 
quality of a 
single query 
representation

R - reference set
E - evaluation set



Paper B
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1. Evaluation of generative models [9, 10]

4. Comparing large input 
graphs [14] (Paper C)

2. Analysis of semantic similarity 
in representation spaces [9, 10]

3. Evaluation of contrastive 
representations of multimodal 

data [13] (Paper D)

[9] Poklukar et al. "GeomCA: Geometric Evaluation of Data Representations," 2021 International Conference on Machine Learning (ICML).
[10] Poklukar et al. "Delaunay Component Analysis for Evaluation of Data Representations," 2022 International Conference on Learning Representations (ICLR).
[13] Poklukar et al. "GMC: Geometric Multimodal Contrastive Representation Learning," 2022 International Conference on Machine Learning (ICML).
[14] Ceylan et al. "GraphDCA: A Framework for Node Distribution Comparison in Real and Synthetic Graphs," (under review).

Applications of GeomCA and DCA



Goal: learn representations of multimodal data that are (informative and) robust to missing modalities at test time

Paper D
GMC: Geometric Multimodal Contrastive 
Representation Learning
Petra Poklukar*, Miguel Vasco*, Hang Yin, Francisco S. Melo, Ana Paiva, Danica Kragic
International Conference on Machine Learning 2022
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Quantify the 
geometric alignment 
with DCA (Paper B)

R - complete representations

E - image modality representations
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To learn useful data representations, we need to consider the following two problems: 
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Paper E
Enabling Visual Action Planning for Object 
Manipulation through Latent Space Roadmap
Martina Lippi*, Petra Poklukar*, Michael C. Welle*, Anastasiia Varava, 
Hang Yin, Alessandro Marino and Danica Kragic
Conditionally accepted to IEEE Transactions of Robotics

Goal: visual action planning of complex 
manipulation tasks with high-dimensional state 

spaces such as deformable objects

Approach: use representations learned by a VAE



Paper C
GraphDCA: a Framework for Node Distribution 
Comparison in Real and Synthetic Graphs
Ciwan Ceylan*, Petra Poklukar*, Hanna Hultin, Alexander Kravberg, Anastasia 
Varava, Danica Kragic
Preprint

Goal: develop an evaluation procedure for comparing input graphs in terms of their node structural features 
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1. Extract local structural 
properties as node 
representations

2. Analyze their alignment 
with DCA (Paper B)



Future directions

- Geometric regularization of deep learning models
- Extension of GMC to a subset of modalities during test time

- Applications of the geometric evaluation frameworks to
- other data domains,  e.g., biology
- non-Euclidean representation spaces

- Develop an approximate DCA that scales to very large sets



Key takeaways

1. Well-structured representation spaces improve the performance of 
downstream tasks 

2. Geometry-based evaluation of representation spaces can offer valuable 
insights into semantic similarities of representations



Learning and Evaluating the Geometric 
Structure of Representation Spaces
PhD Thesis Defense

36

Petra Poklukar
poklukar@kth.se
https://people.kth.se/~poklukar/ 

mailto:poklukar@kth.se
https://people.kth.se/~poklukar/

