KTH ROYAL INSTITUTE OF TECHNOLOGY

Learning and Evaluating Representations: Geometric and Topological Aspects

Outline

Data Representations: Learning and Evaluation

Geometric Aspects of Evaluation and Representation Learning

- Paper A ICML: Geometric Component Analysis
- Paper B ICLR: Delaunay Component Analysis
- Work In Progress: Geometric Multimodal Contrastive Learning
- Work In Progress: Improved Training of Generative Models

- Applications

- Paper C & D IROS, T-RO: Latent Space Roadmap
- Paper E JMLR: Data-Efficient Visuomotor Policy Training using Reinforcement Learning and Generative Models
- Work In Progress: Evaluation of Graph Generative Models

Theoretical contributions

Practical contributions

Data Representations: Learning and Evaluation

Representation Learning: what and why

What:

Learning more *general* and *abstract* representations of the data that make it easier to extract useful information when building *deep learning models*

Why:

An AI system should learn to *identify* and *structure* the underlying semantic information hidden in the observed data

Learning and Evaluating Representations

Learning and Evaluating Representations: Geometric and Topological Aspects

~ ICML 2022

My work so far: statistics

- # conference publications: 3
- # workshops: 5
- # journal submissions: 2
- # collaborators: 15+
- # submissions in pipeline: 2

Personal website: https://people.kth.se/~poklukar/

Evaluating *Learned* Data Representations

Evaluation of learned data representations

Typically on pre-designed downstream tasks that:

- either rely on labelled data
 - classification tasks [1, 2, 3]
 - prediction tasks [4]
- or are handcrafted
 - robotics task [5, 6]
 - performance of the policy in reinforcement learning [7, 8]

Limitations of such evaluation:

- time consuming
- data hungry
- often no potential downstream tasks
- too many potential downstream tasks bias the evaluation

^[1] Chen et al. "Big self-supervised models are strong semi-supervised learners", Advances in Neural Information Processing Systems 2020.

^[2] Ermolov et al. "Whitening for self-supervised representation learning", International Conference on Machine Learning 2021.

^[3] Bevilacqua et al. "Size-invariant graph representations for graph classification extrapolation", International Conference on Machine Learning 2021.

^[4] Li et al. "Learning object-centric representations of multi-object scenes from multiple views", Advances in Neural Information Processing Systems 2020.

^[5] Chamzas et al. "Comparing reconstruction-and contrastive-based models for visual task planning", arXiv preprint arXiv:2109.06737, 2021.

^[6] Lippi et al. "Latent space roadmap for visual action planning of deformable and rigid object manipulation", International Conference on Intelligent Robots and Systems 2020.

^[7] Ghadirzadeh et. al. "Data-efficient visuomotor policy training using reinforcement learning and generative models", arXiv preprint arXiv:2007.13134, 2020.

^[8] Laskin et al " CURL: Contrastive unsupervised representations for reinforcement learning", International Conference on Machine Learning 2020.

What if we cannot define an evaluation task?

Example: generative models

neural net

How to evaluate the quality of the generated images?

Image source: Kynkäänniemi et. al., Improved Precision and Recall Metric for Assessing Generative Models in Advances in Neural Information Processing Systems (NeurIPS) 2019

What if we cannot define an evaluation task?

Example: generative models

Image source: Kynkäänniemi et. al., Improved Precision and Recall Metric for Assessing Generative Models in Advances in Neural Information Processing Systems (NeurIPS) 2019

Geometry to the Rescue

Geometric evaluation frameworks

Idea: compare topological and geometrical properties of two sets of representations

training

generated

Needed:

- 1. "give volume to points"
- 2. "compare orange volume with the blue one"

Image source: Kynkäänniemi et. al., Improved Precision and Recall Metric for Assessing Generative Models in Advances in Neural Information Processing Systems (NeurIPS) 2019

Ways to approximate data manifolds

graphs

simplicial complexes

spherical approximations

Khrulkov & Oseledets Geometry Score: A Method For Comparing Generative Adversarial Networks. ICML 2018 Kynkäänniemi et al., *Improved precision and* recall metric for assessing generative models, NeurIPS 2019

Once we have a manifold...

VS

What to compare?

- Number of connected components (0-dim holes)
- Number of 1-dim (or n-dim) holes
- Alignment of points
- Statistics on edges

properties related to distance, shape, size and relative position

Geometry

Topology

properties preserved under continuous deformations, such as stretching, twisting, crumpling, and bending

Geometric evaluation frameworks: related work

GeomCA: Geometric Evaluation of Data Representations

<u>Petra Poklukar</u>, Anastasia Varava, Danica Kragic Proceedings of the 38th International Conference on Machine Learning

How to evaluate the quality of *any* data representations without relying on downstream tasks?

How to evaluate the quality of learned data representations?

An evaluation framework should be

- General and independent of:
 - downstream evaluation task
 - the model generating representations
 - *dimensionality* of representations
- Informative and provide insights into:
 - the *global structure* of learned representation space
 - local areas where potential failures arise

Idea: compare topological and geometrical properties of two sets of representations

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive <u>GeomCA scores</u> by analysing its connected components

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- <u>diversity of *points*</u> from both sets

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- <u>diversity of *points*</u> from both sets

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- <u>diversity of *points*</u> from both sets

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- diversity of *points* from both sets
- <u>diversity of edges</u> among points from each of the sets

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- diversity of *points* from both sets
- <u>diversity of edges</u> among points from each of the sets

Idea: compare topological and geometrical properties of two sets of representations

Simple approach: build a graph and derive GeomCA scores by analysing its connected components in terms of

- diversity of *points* from both sets
- <u>diversity of edges</u> among points from each of the sets

GeomCA scores can be used for both ...

global evaluation ...

for example, to investigate mode collapse

Investigating mode collapse in StyleGAN trained on the FFHQ dataset [1]

... and *local* evaluation

for example, to detect outliers and identify points in specific components

Investigating individual ImageNet points in VGG16 representation space [2, 3]

Karras et. al., "A style-based generator architecture for generative adversarial networks." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2019.
 Liu et al. "Very deep convolutional neural network based image classification using small training sample size," 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR).
 Deng et al. "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition.

GeomCA: graph construction

Relies on ε -proximity graphs

- two points connected by an edge if they are at most ε distance apart

• R - reference set

GeomCA: limitation

Relies on ε -proximity graphs

- two points connected by an edge if they are at most ε distance apart

Delaunay Component Analysis for Evaluation of Data Representations

<u>Petra Poklukar</u>, Vladislav Polianskii, Anastasiia Varava, Florian T. Pokorny, Danica Kragic *International Conference on Learning Representations 2022*

Delaunay Component Analysis (DCA)

Relies on natural neighbourhood graphs called Delaunay graphs

TENSKA

- two points connected by an edge if they are "spatial" neighbours, i.e., if their Voronoi cells intersect
 - R reference set
 - E evaluation set

Delaunay graph

Delaunay Component Analysis (DCA): contributions

Relies on natural neighbourhood graphs called Delaunay graphs

two points connected by an edge if they are "spatial" neighbours, i.e., if their Voronoi cells intersect
 R - reference set

Delaunay graph

1. Approximate Delaunay graph

DCA framework

- 1. Approximate Delaunay graph
- 2. Distill Delaunay graph into connected components

DCA framework

- 1. Approximate Delaunay graph
- 2. Distill Delaunay graph into connected components
- 3. Apply GeomCA scores on the obtained connected components
 - diversity of nodes
 - diversity of edges

DCA framework

- 1. Approximate Delaunay graph
- 2. Distill Delaunay graph into connected components
- 3. Apply GeomCA scores on the obtained connected components
 - diversity of nodes
 - diversity of edges
- 4. Evaluate graph neighbourhood of the query representation

DCA: evaluation

DCA

- is more **stable and reliable** in presence of outliers and components of varying density compared to benchmark methods [4, 5, 6]
- detects peculiar geometric arrangements of points in high dimensional spaces

Query point DCA

- various use cases, e.g. evaluation of single GAN generated image, cluster assignments or semantic similarity in the representation space

similar semantic information

[4] Poklukar et al. "GeomCA: Geometric evaluation of data representations," 2021 28th International Conference on Machine Learning (ICML).
[5] Kynkäänniemi et al. "Improved Precision and Recall Metric for Assessing Generative Models," 2019 Conference on Neural Information Processing Systems (NeurIPS).
[5] Khrulkov et al. "Geometry Score: {A} Method For Comparing Generative Adversarial Networks," 2018 28th International Conference on Machine Learning (ICML).

Work in progress Geometric Multimodal Contrastive Learning

Miguel Vasco, Petra Poklukar *Plan: International Conference on Machine Learning 2022*

Geometric Multimodal Contrastive Learning

Geometric Multimodal Contrastive Learning

Geometric Multimodal Contrastive Learning

Work in Progress Improved Training of Generative Models

Yonk Shi, Michael Welle, Petra Poklukar

Improved Training of Generative Models

Improved Training of Generative Models

Improved Training of Generative Models

Applications

Enabling Visual Action Planning for Object Manipulation through Latent Space Roadmap

Martina Lippi*, <u>Petra Poklukar*</u>, Michael C. Welle*, Anastasiia Varava, Hang Yin, Alessandro Marino and Danica Kragic *Conditionally accepted to IEEE Transactions of Robotics*

Goal: visual action planning of complex manipulation tasks with high-dimensional state spaces such as deformable objects

Enabling Visual Action Planning for Object Manipulation through Latent Space Roadmap

Martina Lippi*, <u>Petra Poklukar*</u>, Michael C. Welle*, Anastasiia Varava, Hang Yin, Alessandro Marino and Danica Kragic *Conditionally accepted to IEEE Transactions of Robotics*

using representations learned by a VAE

Data-Efficient Visuomotor Policy Training using Reinforcement Learning and Generative Models

Ali Ghadirzadeh*, <u>Petra Poklukar*</u>, Karol Arndt, Chelsea Finn, Ville Kyrki, Danica Kragic and Mårten Björkman *In revision for Journal of Machine Learning Research*

Arndt, Karol, et al. "Meta reinforcement learning for sim-to-real domain adaptation." IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020

Goal: use deep generative models to reduce the complexity of the problem

Data-Efficient Visuomotor Policy Training using Reinforcement Learning and Generative Models

Ali Ghadirzadeh*, <u>Petra Poklukar*</u>, Karol Arndt, Chelsea Finn, Ville Kyrki, Danica Kragic and Mårten Björkman *In revision for Journal of Machine Learning Research*

Arndt, Karol, et al. "Meta reinforcement learning for sim-to-real domain adaptation." IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

Relate the policy performance with characteristics of representations learned by deep generative models

Plan ICML 2022

Work in progress Evaluation of Graph Representations and Graph Generative Models Petra Poklukar, Ciwan Ceylan, Hanna Hultin

Goal: develop an evaluation procedure for assessing the quality of graph representations and graph generation models (in collaboration with SEB)

Evaluation of Graph Representations and Graph Generative Models

Goal: develop an evaluation procedure for assessing the quality of graph representations and graph generation models (in collaboration with SEB)

Evaluation of Graph Representations and Graph Generative Models

Goal: develop an evaluation procedure for assessing the quality of graph representations and graph generation models (in collaboration with SEB)

Learning and Evaluating Representations: Geometric and Topological Aspects

80% seminar

Petra Poklukar poklukar@kth.se https://people.kth.se/~poklukar/

