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Deep Generative Models (DGM): definition
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input spaceinput space

https://openai.com/blog/generative-models/

https://openai.com/blog/generative-models/


DGMs: taxonomy
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[1] Generative adversarial nets, 
Goodfellow, et al., 2014.

[2] Auto-encoding variational bayes, 
Kingma, et al, 2013.

[3[ Stochastic backpropagation and 
variational inference in deep latent 
gaussian models, Rezende, et al, 2014.

[4] Conditional image generation 
with pixelcnn decoders, Van den 
Oord, et al., 2016.

[5] Density estimation using 
realNVP, Dinh, et al, 2017



DGMs: the big picture
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[7] Glow: Generative flow with invertible 1x1 
convolutions, Kingma et al. NeurIPS 2018.

[12] Residual flows for invertible generative 
modelling, Chen et al. NeurIPS 2019

[9] Neural discrete representation learning, 
van den Oord et al. NIPS 2017

[11] Continuous Hierarchical Representations 
with Poincaré Variational Auto-Encoders, 
Emile, et al. NeurIPS 2019.

[6] Adaptive Density Estimation for Generative Models, Lucas et al. NeurIPS 2019

[8] Manifold-Valued Image Generation with 
Wasserstein Generative Adversarial Nets, 
Huang et al. AAAI  2019.

[13] Explicitly disentangling image content from translation and rotation with spatial-VAE, Bepler et 
al. NeurIPS 2019.

[10] Improved precision and recall metric for assessing generative models, Kynkäänniemi et al. 
NeurIPS 2019.



Representation learning: why?
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“The performance of machine learning methods is heavily dependent on the 
choice of data representation (or features) on which they are applied.” [14]

• eliminate manual feature engineering

• extract useful non-linear information 

[14] Bengio, Yoshua, et al. "Representation learning: A review and new perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.



What is a good representation?
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“The one that makes the subsequent learning tasks easier.”

• Low dimensional

• Captures similarities

• View invariant

• Disentangled 

• Reflects input manifold

Evaluation depends on our goal



Representation learning with DGMs
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samplingrepresentation 
learning

“if generated data samples are realistic, then the underlying structure of the 
explanatory factors must be captured”

Horita, Daichi, et al. "SLGAN: Style-and Latent-guided Generative 
Adversarial Network for Desirable Makeup Transfer and 

Removal." arXiv preprint arXiv:2009.07557 (2020).

Arvanitidis, Georgios, et al. "Latent space oddity: on the curvature 
of deep generative models." arXiv preprint 

arXiv:1710.11379 (2017).
Yang, Tao, et al. "Geodesic clustering in deep generative 

models." arXiv preprint arXiv:1809.04747 (2018).

Aumentado-Armstrong, Tristan, et al. "Geometric disentanglement for generative latent shape 
models." Proceedings of the IEEE International Conference on Computer Vision. 2019.

Arvanitidis, Georgios, et al. ”Geometrically enriched latent 
spaces." arXiv preprint arXiv:2008.00565 (2020).

Esmaeili, Babak, et al. "Structured disentangled representations." The 22nd 
International Conference on Artificial Intelligence and Statistics. PMLR, 2019.



My work so far: statistics
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# collaborators: 12+

# submissions in pipeline: 3

Personal website: https://people.kth.se/~poklukar/
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Latent Space Roadmap for Visual Action Planning of Deformable 
and Rigid Object Manipulation
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Martina Lippi*, Petra Poklukar*, Michael C. Welle*, Anastasiia Varava, Hang Yin, 
Alessandro Marino and Danica Kragic

• published at IROS 2020
• journal extension to be submitted 

by the end of November



Latent Space Roadmap for Visual Action Planning of Deformable 
and Rigid Object Manipulation
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Martina Lippi*, Petra Poklukar*, Michael C. Welle*, Anastasiia Varava, Hang Yin, 
Alessandro Marino and Danica Kragic

using low-dimensional 
representations learned by a VAE



What is a good representation for visual action planning?
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• low-dimensional
• extracts features representing each state
• cluster the extracted features



Latent Space Roadmap (LSR): challenges
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1. How to extract the states 
from observations fulfilling 

our expectations?

representation 
learning



Latent Space Roadmap (LSR): challenges
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2. How to navigate in the latent 
space to generate paths 

containing meaningful states?
representation 

learning
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Latent Space Roadmap (LSR): contributions
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How did we succeed?
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squeeze the dataset



LSR: overview
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Contributions:
• augmented the VAE loss for better representation learning
• defined the LSR for informed sampling
• used representations to learn actions
• evaluated the method in simulation and real world 

Lippi, Martina, et al. "Latent Space Roadmap for Visual Action Planning of Deformable and Rigid Object Manipulation." arXiv preprint arXiv:2003.08974 (2020).



LSR: overview
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Contributions:
• augmented the VAE loss for better representation learning
• defined the LSR for informed sampling
• used representations to learn actions
• evaluated the method in simulation and real world 

Extra in the journal:
• removed a bunch of 

hyperparameters
• extensive ablation study 

on all components

Lippi, Martina, et al. "Latent Space Roadmap for Visual Action Planning of Deformable and Rigid Object Manipulation." arXiv preprint arXiv:2003.08974 (2020).



Outline

2020-11-10 23

• Representation learning with deep generative models

• Applications
– Latent Space Roadmap for Visual Action Planning of Deformable and Rigid Object 

Manipulation
– Data-Efficient Visuomotor Policy Training using Reinforcement Learning and 

Generative Models
– Variational Model-Agnostic Meta-Learning with Compact Task Embeddings

• Theory
– A framework for evaluating disentangled representations
– Manifold Approximation using Two Discrete Datasets

• What is missing?

past

present 
& 

future



2020-11-10 24

Data-Efficient Visuomotor Policy Training using Reinforcement 
Learning and Generative Models

Ali Ghadirzadeh*, Petra Poklukar*, Ville Kyrki, Danica Kragic and Mårten Björkman

• Submitted to the Journal of Machine Learning Research

Arndt, Karol, et al. "Meta reinforcement learning for sim-to-real domain adaptation." 2020 
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

Ghadirzadeh, Ali, et al. "Data-efficient visuomotor policy training using reinforcement learning and generative models." arXiv preprint arXiv:2007.13134 (2020).
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Data-Efficient Visuomotor Policy Training using Reinforcement 
Learning and Generative Models

Ali Ghadirzadeh*, Petra Poklukar*, Ville Kyrki, Danica Kragic and Mårten Björkman

Arndt, Karol, et al. "Meta reinforcement learning for sim-to-real domain adaptation." 2020 
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

use DGMs to reduce the 
complexity of the problem



How to integrate DGMs into RL?
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What is a good representation for data-efficient policy training?
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• low dimensional 
• captures similarities ?
• disentangled ?
• reflects input manifold ?

!′ #′ $′
Sub-policy Environment

Initial
state

Action
latent variable

Terminal
reward

%′

Generative 
model

Trajectory of 
motor actions

{'(,*}

%, ∼ ./ % !′)
!, ∼ 1(!)

.3 # !′) %, = 56(#′) 1($|!′, %′)

Deep action-selection policy ./



What is a good representation for data-efficient policy training?
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• low dimensional 
• captures similarities ?
• disentangled ?
• reflects input manifold ?

Let’s try to relate the policy performance 
with characteristics of DGMs
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Good representation for data-efficient policy training: hypothesis
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1. Enable generating trajectories that:
• resemble training motion trajectories
• are distinct and valid

2. Are disentangled 
3. Are “locally simple”
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Good representation for data-efficient policy training: evaluation
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1. Enable generating trajectories that:
• resemble training motion trajectories
• are distinct and valid

2. Are disentangled 
3. Are “locally simple”

[15] Kynkäänniemi, Tuomas, et al. "Improved precision and recall metric for assessing generative models.” Advances in Neural Information Processing Systems. 2019.

precision and recall [15]

disentangling precision and recall
latent local linearity representation 

learning

distribution
quality



What is a disentangled representation?
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≈ Definition [disentanglement]: one independent factor of variation or an 
underlying generative factor, present in the data, is associated with exactly one 
latent dimension. [14]

[14] Bengio, Yoshua, et al. "Representation learning: A review and new perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.

representation space object on a table

DGM + Environment



Disentangling precision and recall: idea
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representation space object on a table

DGM + Environment

• fixing one latent dimension yields a limited set of end states
• compare it to the training dataset to estimate how limited 



Disentangling precision and recall: intuition
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representation space object on a table

DGM + Environment

• disentangling precision (DiP): quantifies the effect of limiting representations on the 
end states. 

• disentangling recall (DiR): measures how many different aspects of the end states are 
captured in the latent space

DiP

DiR
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Variational Model-Agnostic Meta-Learning with Latent Task 
Embeddings
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prior

latent 
distributions

inputs

outputs a meta-model

meta
generator

meta
encoder

representation 
learning

informed 
sampling

”fast adaptation to a new meta-task using only a 
few datapoints and training iterations“

Petra Poklukar*, Ali Ghadirzadeh*, Xi Chen*, 
Chelsea Finn, Mårten Björkman and Danica Kragic
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Challenges with learning disentangled representations
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≈ Definition [disentanglement]: one independent factor of variation or an underlying 
generative factor, present in the data, is associated with exactly one latent dimension. [14]

• No unified definition of neither generative factor nor disentangled 
representation

[14] Bengio, Yoshua, et al. "Representation learning: A review and new perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.



Challenges with learning disentangled representations
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≈ Definition [disentanglement]: one independent factor of variation or an underlying 
generative factor, present in the data, is associated with exactly one latent dimension. [14]

• No unified definition of neither generative factor nor disentangled 
representation

• Current disentanglement metrics [BetaVAE, FactorVAE, MIG, DCI, …] have 
many issues:
– Rely on ground truth labels for generative factors
– Tuned for the specific model
– Not consistent [16]

[14] Bengio, Yoshua, et al. "Representation learning: A review and new perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.

[16] Locatello, Francesco, et al. "Challenging common assumptions in the unsupervised learning of disentangled representations." international conference on machine learning. 2019.



A framework for evaluating disentangled representations 
[with Michael]
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Aim is to build a controlled environment for evaluation:

• Model independent

• Enables to “set the definitions”
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Precision and recall for assessing generative models
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[15] Kynkäänniemi, Tuomas, et al. "Improved precision and recall metric for assessing generative models.” Advances in Neural Information Processing Systems. 2019.



Precision and recall: manifold estimation
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[15] Kynkäänniemi, Tuomas, et al. "Improved precision and recall metric for assessing generative models.” Advances in Neural Information Processing Systems. 2019.



Nearest neighbor based manifold estimation: example



Nearest neighbor based manifold estimation: example



Relative manifold estimation: choose the radius wisely 
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Representation learning with DGMs: missing parts
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samplingrepresentation 
learning

1. Coverage of the 
representation space

2. Hierarchical probabilistic
view of similarities among 
representations



PhD roadmap: Representation Learning with DGMs
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PhD roadmap: Representation Learning with DGMs
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Study representations
given an application

Applications
- Latent Space Roadmap for Visual Action Planning of 

Deformable and Rigid Object Manipulation
- Data-Efficient Visuomotor Policy Training using 

Reinforcement Learning and Generative Models
- Variational Model-Agnostic Meta-Learning with 

Latent Task Embeddings

Theoretical 
improvements

Theory
- A Framework for Evaluating Disentangled Representations
- Relative Manifold Approximation using Two Discrete Dataset
- and more…

Study improvements 
given an application
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