

Lifetime-Aware Provisioning in Green Optical Backbone Networks

<u>Carlos Natalino</u>¹, Luca Chiaraviglio², Filip Idzikowski³, Paolo Monti⁴,

Marco Listanti², Carlos R. L. Francês¹, and Lena Wosinska⁴

¹Federal University of Pará (UFPA), Belém, Pará, Brazil

⁴KTH Royal Institute of Technology, Stockholm, Sweden

²University of Rome Sapienza, Rome, Italy

³Poznan University of Technology, Poznań, Poland

Outline

- Goal
- Optical Line Amplifier (OLA) Lifetime Model
- Network Model
- Least Acceleration Factor (LAF) Model
- Network Scenario
- Results
- Conclusions and Future Work

Outline

- Goal
- Optical Line Amplifier (OLA) Lifetime Model
- Network Model
- Least Acceleration Factor (LAF) Model
- Network Scenario
- Results
- Conclusions and Future Work

Goal

- Green networking as a well established topic [1]
- Focus:
 - Setting unused network devices into Sleep Mode (SM) keeping other devices in Active Mode (AM)
 - Optical backbone network with Optical Line Amplifiers (OLAs) targeted for energy saving
- Tradeoff between
 - Energy saving and
 - Devices lifetime
- Research question:
 - Is it possible to save energy and avoid OLA lifetime decrease?

[1] Vereecken et al., "Power Consumption in Telecommunication Networks: Overview and Reduction Strategies," IEEE Com. Mag., 2011.

OLA Lifetime Model [2]

Metric called Acceleration Factor (AF) based on HardWare (HW)
parameters
Lifetime increase
Lifetime decrease

$$AF = \frac{\gamma^{on}}{\gamma^{tot}} = 1 - (1 - AF^{sleep})\frac{\theta}{T} + \chi \frac{c}{2}$$

Symbol	Description
γ^{on}	Mean lifetime when OLA always at full power
γ^{tot}	Mean lifetime when OLA periodically set into SM
AF^{sleep}	AF when OLA is in sleep mode
heta	Time an OLA spent in sleep mode up to the previous time period [h]
T	Total observation time [h]
χ	HW parameter accounting for the AF increase due to power state transitions
^c / ₂	Total number of AM – SM cycles

[1] Chiaraviglio et al., "Is green networking beneficial in terms of device lifetime?," IEEE Com. Mag., 2015.

Network Model

Outline

- Goal
- Optical Line Amplifier (OLA) Lifetime Model
- Network Model
- Least Acceleration Factor (LAF) Model
- Network Scenario
- Results
- Conclusions and Future Work

Given:

- Network topology [G(V, E)]
- Set of fiber links K_{ij} on physical link $(i, j) \in E$
- Set of OLAs OLA_{ijk} installed at fiber link (i, j, k)
- Previous power state of each fiber link (X_{ijk})
- Hardware and energy information about each OLA (e.g., AF_{ijkq}^{sleep} and χ_{ijkq})
- Traffic matrix (lightpath requests) and duration for the next traffic period $(t^{sd} \forall (s, d) \in V \times V \text{ and } \delta_t)$

Calculate:

- Routing of each lightpath (f_{ijk}^{sd})
- Power state of each fiber link (x_{ijk})

- LAF modeled with Mixed Integer Linear Programming (MILP)
- Objective Function

$$min \ AF_{avg} = \frac{\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} \sum_{k=1}^{|K_{ij}|} \sum_{q=1}^{|OLA_{ijk}|} AF_{ijkq}}{\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} \sum_{k=1}^{|K_{ij}|} |OLA_{ijk}|}$$

- Subject to
 - Flow conservation constraints
 - Maximum number of wavelengths on each fiber
 - Number of transitions of the OLAs on each fiber link (i, j, k)
 - Total number of power state transitions
 - Total time spent in SM up to current time period
 - AF value for each OLA up to current time period

Network Scenario

- Abilene-based topology (designed for the IP traffic measured [5])
- Traffic demands (number of lightpath requests)
 - Low-traffic period (12:00 am 05:45 am)
 - High-traffic period (06:00 am 11:45 pm)

based on logical topologies [6], repeating over 15 days.

- Amplification span: 80 km
- Power of an OLA: 18 W [2]
- Hardware parameters (equal for all OLAs)

- $\chi_{ijkq} = 0.5$
- Purely Energy-Aware (EA) strategy [4] used as a reference

Results – average AF and Energy consumption

- Lifetime increase of 40% after 15 days with LAF (average AF equal to 0.6)
- Lifetime decrease of 80% with EA
- Energy Consumption (and saving) identical for EA and LAF

	EA	LAF ($AF_{ijkq}^{sleep}=0.2$ and $\chi_{ijkq}=0.5$)
Energy Consumption [kWh]	2967.84	2967.84
Energy Savings [%]	62	62

Results – variation of HW parameters

- When AF_{ijkq}^{sleep} is increased, the gain of putting OLAs into SM is reduced (final average AF increases, because the gain of putting OLA into SM is lower in terms of AF)
- When χ_{ijkq} is increased, the impact of power state transitions on AF is higher, and hence the final average AF increases

Conclusions

- Framework to optimize the OLA lifetime in green optical networks
- LAF able to
 - efficiently avoid the OLA lifetime decrease, and
 - save energy by putting selected OLAs into SM during low-traffic periods
- Future work
 - Maximizing electricity savings while minimizing the reparation costs driven by lifetime variation
 - Measurement analysis of the HW parameters impacting the lifetime in an operator network

References

- [1] W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lanoo, W. Joseph, D. Colle, L. Martens, and P. Demeeste, "Power Consumption in Telecommunication Networks: Overview and Reduction Strategies," IEEE Communications Magazine, vol. 49, no. 6, pp. 62–69, June 2011.
- [2] L. Chiaraviglio, P. Wiatr, P. Monti, J. Chen, J. Lorincz, F. Idzikowski, M. Listanti, and L. Wosinska "Is green networking beneficial in terms of device lifetime?," IEEE Communications Magazine, vol. 53, no. 5, pp. 232–240, May 2015.
- [3] P. Wiatr, J. Chen, P. Monti, and L. Wosinska, "Energy efficiency versus reliability performance in optical backbone networks," IEEE/OSA Journal of Optical Communications and Networking, vol. 7, no. 3, pp. A482–A491, March 2015.
- [4] L. Chiaraviglio, M. Mellia, and F. Neri, "Minimizing ISP Network Energy Cost: Formulation and Solutions", IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 463–476, April 2012.
- [5] A. Ahmad, A. Bianco, E. Bonetto, L. Chiaraviglio, and F. Idzikowski, "Energy-Aware Design of Multilayer Core Networks," IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 10, pp. A127–A143, October 2013.
- [6] E. Bonetto, L. Chiaraviglio, F. Idzikowski, and E. Le Rouzic, "Algorithms for the Multi-Period Power-Aware Logical Topology Design with Reconfiguration Costs," IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 5, pp. 394–410, May 2013.

Thank you

• Questions?

Acknowledgements

- ICT DISCUS (FP7 program, grant agreement n° 318137)
- The University of Rome Sapienza project LIFETEL
- The Polish National Science Center Grant (decision DEC-2014/12/S/ST7/00415)
- FAPESPA Grant no. 005/2011
- For more information:
- Carlos Natalino cns@ufpa.br

