
Brauer groups of moduli
of hyperellictic curves,
via cohomological invariants

Roberto Pirisi
KTH Royal Institute of Technology

12/06/2020



Notation

Unless otherwise stated, every scheme and stack is of finite type over a base field k. We
denote c = char(k).

By ` we will always mean a positive integer not divisible by c.

If A is an abelian torsion group:
A` is the subgroup of `-torsion.
cA is the subgroup of elements whose order is not divisible by c.

Unless otherwise stated, by Hi(X,F ) we mean étale cohomology, or lisse-étale for Artin
stacks.
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Azumaya algebras

An Azumaya algebra over a Noetherian scheme X is a sheaf of algebras that is étale-locally
isomorphic to the sheaf of n× n matrices Mn for some n.

We say that two Azumaya algebras E , E ′ are equivalent if E ⊗X End(F) ' E ′ ⊗X End(F ′)
for some free sheaves F ,F ′.
The set of (equivalence classes of) Azumaya algebras forms a group with respect to tensor
product. The identity is the class of Mn for any n and the inverse to E is the dual E∨. We
call it the Brauer group of X, denoted Br(X).
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The cohomological Brauer group

Azumaya algebras of rank n2 are in a natural bijection with PGLn-torsors. A trivial
Azumaya algebra comes from a GLn-torsor. Consider the exact sequence

1→ Gm → GLn → PGLn → 1.

It induces an exact sequence

H1(X,GLn)→ H1(X,PGLn)→ H2(X,Gm)

which shows that the Brauer group of X injects into H2(X,Gm).
Moreover, we know that for a Noetherian scheme the Brauer group is always torsion.
Motivated by this, Grothendieck defined the cohomological Brauer group Br′(X) as the
torsion subgroup of H2(X,Gm).
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Surjectivity of the Brauer map

An important question is in which cases the inclusion Br(X) ⊆ Br′(X) is an equality.
There are some known counterexamples, among which:

A proper three dimensional algebraic space over an algebraically closed field (Mathur).
A normal but non-separated surface over the complex numbers
(Edidin-Hasset-Kresch-Vistoli).

These counterexamples are (almost) “minimal”. Surjectivity is known for a large class of
schemes:

Theorem (Gabber, de Jong)
Let X be a quasi-compact and separated scheme equipped with an ample invertible sheaf.
Then

Br(X) = Br′(X).
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The `-torsion of Br′(X)

If we restrict to the `-torsion of Br′(X) we can use the étale exact sequence
1→ µ` → Gm

·`−→ Gm → 1
to get the exact sequence

Pic(X)/`→ H2(X,µ`)→ Br′(X)` → 0.

Reducing the study of cBr′(X) to understanding H2(X,µ`).

There is an important class of elements of Br′(X) which come from the Brauer group.
Given a µ`-torsor α ∈ H1(X,µ`) and a Z/`Z torsor β ∈ H1(X,Z/`Z), we can form the
cyclic algebra Aα,β ∈ Br(X). The class of Aα,β in H2(X,µ`) is the cup product α · β.
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Brauer groups of algebraic stacks

It makes perfect sense to consider the Brauer group and cohomological Brauer group of an
algebraic stack X . We just have to use the Lisse-étale topology rather than the étale one.

Everything we said before holds true for algebraic stacks.

Regarding surjectivity of the Brauer map, we can put together results of
Edidin-Hasset-Kresch-Vistoli and Kresch-Vistoli to obtain:

Theorem (EHKV, KV)
Let X be a smooth, separated, generically tame Deligne-Mumford stack with
quasi-projective coarse moduli space. Then

cBr(X ) = cBr′(X ).

This holds in particular for the stacksM1,1 and Hg in characteristic different from 2.
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The main result

Theorem (DL–P)
Let rg be the remainder of g mod 2. Recall that the Picard group of Hg is cyclic of order
2rg (4g + 2). We have:

cBr(Hg) = cBr(k)⊕ cH1(k,Pic(Hg))⊕ (Z/2Z)1+rg

Where
The cH1(k,Pic(Hg)) component is given by cyclic algebras.
The common Z/2Z comes from BS2g+2.
The Z/2Z appearing only for g odd comes from BPGL2. It is the class of the
universal conic over Hg.
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Cohomological invariants

Given an algebraic stack X/k, let PtX : (Field/k)→ (Set) be the functor of isomorphism
classes of points of X .

Given an `-torsion Galois module D over k, let H•(−, D) : (Field/k)→ (Set) be the
functor defined by H•(K,D) =

⊕
i Hi

Gal(K,D(i)).
A cohomological invariant of X with coefficients in D is a natural transformation

α : PtX → H•(K,D)

satisfying a continuity condition.
Another way to see it is that α functorially assigns to each point P ∈M(K) an element
α(P ) ∈ H•(K,D). The continuity condition requires α to “respect specialization”.
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Basic properties

The set Inv•(X , D) of cohomological invariants with coefficients in D inherits a group
structure from H•(−, D).
If D = Z/`Z, the cup product

Hi(−,Z/`Z(i))⊗Hj(−,Z/`Z(j)) ·−→ Hi+j(−,Z/`Z(i+ j))

endows the group of cohomological invariants with the structure of a graded-commutative
ring.
In general, Inv•(X , D) is a Inv•(X ,Z/`Z)-module.

There is a map H•(X , D)→ Inv•(X , D) sending an element h to the cohomological
invariant h̃ defined by h̃(P ) = h |P∈ H•(K,D).
In general this map is neither injective nor surjective.
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Cohomological invariants as a sheaf

For a map X → Y, we have an obvious pullback of cohomological invariants given by
composition.

Definition
A smooth-Nisnevich morphism X f−→ Y is a smooth representable morphism of algebraic
stacks such that for every point Spec(K)→ Y there is a lifting Spec(K)→ X → Y.
The smooth-Nisnevich site of X is the site where the objects are smooth representable
morphisms to X and the coverings are smooth-Nisnevich morphisms.

Theorem (–)
The functor Inv•(−, D) is a smooth-Nisnevich sheaf.
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Cohomological invariants as unramified cohomology

Let X be a smooth scheme over k. The unramified cohomology of X with coefficients in
D is defined as:

H•nr(X,D) = Ker
⊕

x∈X(1)

∂x : H•(k(X), D)→ H•(k(X), D)

By Bloch-Ogus-Gabber we know that unramified cohomology is the sheafification of
H•(−, D) in the Zariski site of X.

Theorem (–)
Let X be a smooth scheme over k. Then

Inv•(X,D) = H•nr(X,D).

Let X be a smooth algebraic stack over k. Then Inv•(−, D) is the sheafification of
H•(−, D) on the smooth-Nisnevich site of X .
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Invariance results

Corollary
Let f : Y → X be a map of smooth algebraic stacks. If one of the following holds:

f is an affine bundle.
f is an open immersion whose complement has codimension at least 2.

We have Inv•(X , D) = Inv•(Y, D).

Proposition
Let f : Y → X be a map of smooth algebraic stacks. If one of the following holds:

f is an affine bundle.
f is an open immersion whose complement has codimension at least 2.

We have Br′(X )` = Br′(Y)`.
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Cohomological Brauer as a sheaf

Let X be a smooth scheme over k. Consider the morphism of sites (i∗, i∗) : Xét → XZar.
It induces a Leray spectral sequence

Hp
Zar(X,R

qi∗Gm)⇒ Hp+q(X,Gm).

Now note that as X is regular we have R1i∗Gm = 0 and H2
Zar(X,Gm) = 0. This shows

that
H2(X,Gm) = H0

Zar(X,R2i∗Gm).

Using the exact sequence

Pic(X)→ H2(X,µ`)→ H2(X,Gm)` → 0

we conclude that

H2
nr(X,Z/`Z(−1)) ' H0

Zar(X,R2i∗µ`) ' H2(X,Gm)`.
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Comparing Inv2 and Br′

We just showed that for a smooth scheme X we have

Inv2(X,Z/`Z(−1)) = Br′(X)`.

Let G be an affine algebraic group acting on a smooth scheme X, and V a representation
of G, free on an open subset U whose complement has codimension >> 0. Then
X ′ = (X × U)/G is a smooth scheme. We call it an equivariant approximation of
X = [X/G]. Note that:

Br′(X )` = Br′(X ′)`.
Inv•(X , D) = Inv•(X ′, D).

This shows

Theorem (DL–P)
Let X = [X/G] be as above. Then

Br′(X )` = Inv2(X ,Z/`Z(−1)).
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Quotient conics, Weierstrass divisors

A family of hyperelliptic curves C → S comes equipped with an hyperelliptic involution
ι : C → C. The quotient C ′ = C/ι is a family of smooth conics over S.
The critical locus WC of the map C → C ′ is finite and étale over S, of degree 2g + 2. We
call it the Weierstrass divisor of C.

The functor sending C to C ′ induces a map from Hg to the stack BPGL2, which classifies
smooth families of conics. The map is trivial if g is even and smooth-Nisnevich if g is odd.
The functor sending C to WC induces a map from Hg to the stack BS2g+2, which classifies
finite étale schemes of degree 2g + 2. The map is always smooth-Nisnevich.
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S2g+2 and PGL2

We want to understand the cohomological invariants of BS2g+2 and BPGL2.
Consider the stack BOn. The K-points of BOn are in correspondence with couples (V, q)
where V is an n-dimensional K-vector space and q a nondegenerate quadratic form.

We may diagonalize q to obtain q ∼ (a1, . . . , an). The coefficients a1, . . . , an ∈ K∗.
Consider a1, . . . , an as elements of K∗/(K∗)2 = H1(K,µ2), and let
αi(V, q) = λi(a1, . . . , an), where λi is the i-th standard symmetric function.

Theorem (Garibaldi, Merkurjev, Serre)

Inv•(BOn, D) = H•(k,D)⊕ α1 ·H•(k,D)2 ⊕ . . .⊕ αnH•(k,D)2.
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We may diagonalize q to obtain q ∼ (a1, . . . , an). The coefficients a1, . . . , an ∈ K∗.
Consider a1, . . . , an as elements of K∗/(K∗)2 = H1(K,µ2), and let
αi(V, q) = λi(a1, . . . , an), where λi is the i-th standard symmetric function.

Theorem (Garibaldi, Merkurjev, Serre)
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S2g+2 and PGL2

Now consider the inclusion S2g+2 ⊂ O2g+2 given by permutation matrices. It induces a
map BS2g+2 → BO2g+2.
With a slight abuse of notation, denote by αi both the cohomological invariant of BO2g+2
and its pullback to BS2g+2.

Theorem (Garibaldi, Merkurjev, Serre)

Inv•(BS2g+2, D) = H•(k,D)⊕ α1 ·H•(k,D)2 ⊕ . . .⊕ αg+1H
•(k,D)2.

Note that the restrictions of αg+2 is a multiple of αg+1 and the restrictions of
αg+3, . . . , α2g+2 are zero.
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S2g+2 and PGL2

In particular,
cBr(BS2g+2) = cBr(k)⊕H1(k,Z/2Z)⊕ Z/2Z

.

The invariants of BPGL2 are simple: using PGL2 ' SO3 and O3 ' SO3 × µ2 we get

Corollary (Garibaldi, Merkurjev, Serre)

Inv(BPGL2, D) = H•(k,D)⊕ w2 ·H•(k,D)2.

In particular, cBr = cBr(k)⊕ Z/2Z. The nontrivial class in the Brauer group is the class of
the universal conic [

P1/PGL2
]
→ BPGL2.
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The cohomological invariants of Hg

Theorem (P. ’17, P.’18, Di Lorenzo ’19, Di Lorenzo, P. ’20)
Let k be a field of characteristic different from 2. The elements 1, α1, . . . , αg+1 generate a
sub-module

Ig = H•(k,D)⊕ α1 ·H•(k,D)Ng ⊕
g+1⊕
i=2

αi ·H•(k,D)2

of Inv•(Hg, D), where Ng is equal to 4g + 2 or 8g + 4 depending on g being respectively
even or odd. For even g, we have

Inv•(Hg, D) = Ig ⊕ βg+2 ·H•(k,D)2

For odd g
0→ Ig ⊕ w2 ·H•(k,D)2 → Inv(Hg, D)→ H•(k,D)2

Where the last map lowers degree by g + 2.
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The Brauer group of Hg

We are ready to describe the Brauer group of Hg. Recall that the Brauer group of Hg is
cyclic of order 4g+ 2 if g is even and 8g+ 4 if g is odd. Let rg be the remainder of g mod 2.

Theorem (DL–P)

cBr(Hg) = cBr(k)⊕ cH1(k,Pic(Hg))⊕ (Z/2Z)1+rg

Where
The cH1(k,Pic(Hg)) component is given by cyclic algebras.
The common Z/2Z comes from BS2g+2.
The Z/2Z appearing only for g odd comes from BPGL2. It is the class of the
universal conic over Hg.
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Chow groups with coefficients

X equidimensional scheme of dimension d. Define

Ci(X,D) =
⊕

x∈X(i)

H•(k(x), D)

We have a complex

0→ C0(X,D) ∂−→ C1(X,D) ∂−→ . . .
∂−→ Cd(X,D)→ 0.

We define the i-th codimensional Chow group with coefficients Ai(X,D) as the i-th
cohomology of the complex above. By definition

A0(X,D) = H•nr(X,D)

All properties of ordinary Chow groups hold. If D = Z/`Z and X is smooth they form a
ring, otherwise they are an A•(X,Z/`Z)-module. Morover, for a closed immersion i of pure
codimension s:

. . . Ai(X,D) j∗
−→ Ai(U,D) ∂−→ Ai−s(V ) i∗−→ Ai+1(X) . . .
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The Brauer group of M1,1

Set V = {27x2 + 4y3 = 0} ⊂ A2. The canonical Weierstrass form gives us a presentation
(char(k) 6= 2, 3):

M1,1 =
[
A2 r V/Gm

]
where the multiplicative group acts by (x, y) 7→ (xt6, yt4).

The multiplicative group is special, meaning that every torsor is Zariski-locally trivial. This
implies that the morphism

A2 \ V →M1,1

is smooth-Nisnevich.
Our plan to compute Inv•(M1,1, D) is computing the invariants of A2 \ V and then
imposing the gluing conditions.
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The Brauer group of M1,1

Lemma
Assume f : X → Y is a universal homeomorphism. Then

f∗ : A•(X,D)→ A•(Y,D)

is an isomorphism.

In particular, A•(V,D) = A•(A1, D).

Chow groups with coefficients,like ordinary Chow groups, are homotopy invariant, so

A•(A2, D) = A•(A1, D) = A•(Spec(k), D).

Thus we have an exact sequence

0→ H•(k,D) j∗
−→ A0(A2 \ V,D) ∂−→ H•(k,D)→ 0
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The Brauer group of M1,1

Recall that by the Kummer sequence we have H1(K,µ`) = K∗/(K∗)`. In particular we
have an element γ ∈ H1(k(x, y),Z/`Z) given by the class {27x2 + 4y2}.
It’s easy to see that γ is unramified on A2 \ V and ∂γ = 1 ∈ A0(V,Z/`Z).

This gives us a splitting

H•(k,D) j∗
−→ A0(A2 \ V,D) = H•(k,D)⊕ γ ·H•(k,D) ∂−→ H•(k,D).

Showing that the cohomological invariants of A2 \ V are generated by the trivial ones
coming from the base and the product of α with the trivial invariants.
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The Brauer group of M1,1

All that is left is to check the gluing conditions. Note that

A2 \ V ×M1,1 A2 \ V = A2 \ V ×Gm

and the two projections are respectively the ordinary projection Pr1 and the multiplication
map m. The gluing conditions read

Pr∗1α = m∗α ∈ Inv•(A2 \ V ×Gm, D).

Note that m∗γ = {27x2t12 + 4y2t12} = γ + 12{t}. We have

Inv•(A2 \ V ×Gm, D) = Inv•(A2 \ V,D)⊕ t · Inv•(A2 \ V,D)

So an element x0 + x1γ glues ⇔ 12x1 = 0.
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The Brauer group of M1,1

We have just proven that

Inv•(M1,1, D) = H•(k,D)⊕ {27x2 + 4y3} ·H•(k,D)12.

Restricting to D = Z/`Z(−1) and degree two, we retrieve the following result:

Theorem (Antieau, Meier 2016/18)
Suppose the characteristic of k is not 2 or 3. Then:

cBr(M1,1) = cBr(k)⊕ cH1(k,Z/12Z).

In particular, every nontrivial class is represented by a cyclic algebra.

their result is much broader, extending this description to any Noetherian regular base over
Z [1/6], and showing that over the integers the Brauer group ofM1,1 is trivial.
However, our techniques are much simpler than theirs.
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Thank you!
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