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Introduction
In the classical setting, algebraic geometry tries to classify (projective) algebraic varieties,
i.e. subsets X ⊂ Pn(K) described by algebraic equations, where K is an algebraically closed
field. A crucial objective is, given a specific kind of algebraic varieties, to parametrize their
isomorphism classes in some geometrically meaningful way. This is often referred to as a
moduli problem. Possibly the most famous moduli problem is to parametrize families of
smooth curves, which led to the construction of the moduli space Mg of smooth curves.

A powerful breakthrough in moduli theory was the introduction by Deligne and Mumford
[9] of the moduli stack Mg of smooth algebraic curves of genus g, which allowed for a
relatively easy proof of their famous result that the variety Mg is irreducible. It soon
became evident that the stack Mg was actually a much better object to work with than
Mg, giving birth to the widespread use of algebraic stacks.

An algebraic stack is a generalization of a variety, where the points can have “intrinsic
automorphisms”. Using them instead of ordinary varieties to represent moduli problems
allows to describe the problem much more faithfully, and to have good properties such as
smoothness if the objects being described are well-behaved. For example, the moduli stack
Mg is smooth, while the moduli space Mg is not. Algebraic stacks produce an algebro-
geometric version of orbifolds, and also of the topological classifying spaces BG.

The price to pay for these advantages is an increased level of technicality, which requires
mastery of both geometric and categorical arguments. Many areas have benefited from the
theory of algebraic stacks, from the study of curves to abelian varieties to surfaces. Recently
they are becoming of interest to physicists too, for example in string theory.

My work has concentrated on constructing and computing invariants for moduli stacks.
Functorial invariants for moduli stacks are especially useful, as they will provide invariants
for the families of objects being parametrized. Prime examples of invariants which are of
interest are the Picard group of line bundles, the Chow groups (an algebraic version of
singular homology), and étale cohomology with various kind of coefficients.

Past research
A major part of my research [11,20–22] regards Cohomological invariants, a theory of arith-
metic invariants which was classically associated with isomorphism classes of principal G-
bundles over fields, and thus can be regarded as invariants of the moduli stack BG, which
like its topological counterpart classifies principal G-bundles. I extended the theory to ar-
bitrary algebraic stacks, and then computed the cohomological invariants of the stack of
elliptic curves M1,1, of the stack of smooth genus two curves M2 and of the stacks Hg of
smooth hyperelliptic curves of genus g for all even g and for g = 3. The computation for odd
genus was completed by A. Di Lorenzo, and we recently gave a new explicit construction of
the invariants for even genus which works over any field and allows us to compute the ring
structure.

I also computed the Picard group of universal families of Abelian varieties and the Brauer
group of the moduli stack of vector bundles over curves [14, 15] (joint with R. Fringuelli),
studied the motivic classes of the classifying spaces of Spinn and G2-principal bundles [23]
(joint with M. Talpo), and produced a “non-commutative” reconstruction theorem in the
birational setting [8] (joint with J. Calabrese).
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Present and future research
Computing the cohomological invariants of Mg:

A cohomological invariant σ of a moduli stack M can be thought of as an arithmetic
equivalent to a characteristic class; given a family of objects X π−→ S parametrized by M it
provides an element σ(π) ∈ H(S), living in the unramified cohomology of S. In the classical
case when M = BG they were studied by many authors in relation to rationality problems
and essential dimension, see for example [16–19].

The natural next steps after my computations in [11,20–22] would be to give an explicit
construction of the cohomological invariants of Hg for all odd g, and to compute the invari-
ants of the stack M3 of smooth genus three curves. I plan to attack these questions using
the new presentations of these stacks developed by Andrea Di Lorenzo, a student of Vistoli,
as part of his PhD thesis.

Project 1 (joint with A. Di Lorenzo). Completely describe cohomological invariants of Hg

for all odd g and of M3.

An important property of cohomological invariants is that by a slightly more general
definition, the degree two part retrieves the cohomological Brauer group BR′. Using the
new explicit construction of the cohomological invariants of Hg, it is possible to compute its
cohomological Brauer group. In an upcoming joint work with A. Di Lorenzo [12], we show
that over any field of characteristic zero

If g is even Br′(Hg) ' Br′(k)⊕H1(k,Z/(4g + 2)Z)⊕ Z/2Z.

If g is odd Br′(Hg) ' Br′(k)⊕H1(k,Z/(4g + 2)Z)⊕ Z/2Z⊕ Z/2Z.

In the future, we plan to extend the computation to arbitrary fields and use it to explicitly
compute the (ordinary) Brauer group of Hg by constructing explicit Azumaya algebras.

Project 2 (joint with A. Di Lorenzo). Describe the Brauer group of Hg over any field.

Studying the invariants of Mg for general g will require a different approach. Let Tg be
the profinite completion of the g-th Teichmüller group. There is a map Mg → BTg, which
is an isomorphism from the point of view of étale homotopy type. This in particular induces
maps Mg → BG for all finite quotients G of Tg. A natural subring of Inv•(Mg) to study is
the ring generated by the restrictions of the cohomological invariants of all such groups to
those of Mg.

Project 3. Study the subring of Inv•(Mg) generated by the cohomological invariants of
finite quotients of the Teichmüller group.

An algebraic geometry approach to Casson-type invariants
An important invariant in the study of three dimensional manifolds is the Casson in-

variant, which has been proven to have deep connections to Gauge theory and topological
quantum field theories. Roughly speaking, it counts the classes of representations of the
fundamental group π(X) into SU(2), with multiplicities coming from a Heegaard decom-
position of X. In the early 2000s, Curtis [6, 7] showed that using intersection theory one
can construct corresponding invariants that counts representations in SL2 or PSL2, and
that seeing the invariant as an intersection product offered extra insight on it. More re-
cently, Abouzaid and Manolescu produced a vast generalization of the SL2 invariant [1],
using techniques coming from derived and symplectic geometry, which they call Full Casson
invariant.
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Both the Casson–Curtis invariant and the Abouzaid–Manolescu invariant can be ex-
tended to representations into general reductive algebraic groups if one accepts doing inter-
section theory (or symplectic geometry) on algebraic stacks rather than algebraic varieties.
This will be the subject of an upcoming paper [2]. Studying these generalized invariants is
the focus of a joint project with Paolo Aceto.

Project 4 (Joint with P. Aceto). Study the generalized Casson and Full Casson invariants.

A Bittner presentation of the Grothendieck ring of good moduli morphisms
The Grothendieck ring of algebraic varieties is an important object in algebraic geometry.

Motivic invariants factor through it and many are defined using it, such as motivic integrals.
A powerful tool in creating invariants on the Grothendick ring is the Bittner presentation,
which describes the ring in terms of smooth proper varieties and blow-ups. Recently Bergh
[5] constructed a Bittner presentation for the Grothendieck ring of Deligne–Mumford stacks
using stacky blow-ups. The situation for general algebraic stacks is more complicated, but
one can consider the smaller ring of algebraic stacks which admit a good moduli space, as
defined by Alper [3], and require the operations to respect the good moduli morphism. On
this new ring one can use techniques such as saturated blow-ups and destackification to try
to obtain a Bittner-type presentation, which is the subject of a work in progress with D.
Rydh.

Project 5 (Joint with D.Rydh). Construct a Bittner-type presentation for the Grothendieck
ring of good moduli morphisms.

Motivic classes of classifying stacks:
In the late 2000s Ekedahl defined a modified Grothendieck ring of algebraic stacks

K0(Stk/k), which is a localization of the Grothendieck ring of varieties. Many motivic
invariants factor through it, making it an important object of study.

The “expected class formula” for the class of BG predicts that it should be {G}−1 when
G is connected and 1 when G is finite. There are counterexamples for finite groups, and
it is conjectured that the formula should not hold in general for connected groups either.
This problem seems to be morally related to a major problem in group theory, Noether’s
problem for connected algebraic groups.

The class of BG has been computed for PGL2,PGL3 and SOn [4,13,24]. In a joint paper
with Mattia Talpo [23] we showed that the problem of whether BSpinn satisfies the expected
class formula boils down to the same problem for a certain finite subgroup ∆n ⊂ Spinn. We
conjecture that BSpinn should violate the formula for n ≥ 15.

Project 6 (joint with M. Talpo). Prove that BSpinn fails to satisfy the expected class
formula for some n ≥ 15.
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