Chocolate Problem 2

November 8, 2016

Try to solve any two of the two following questions:

1. Show that the function

$$
\left\{\begin{array}{l}
f(x)=x^{2} \sin \left(\frac{1}{x}\right) \quad \text { if } x \neq 0 \\
0 \quad \text { if } x=0
\end{array}\right.
$$

Has a derivative $f^{\prime}(x)$ everywhere, but the derivative is not a continuous function.
2. Show that an increasing or decreasing function must always admit a limit at $\pm \infty$.
3. Suppose $f(x)$ is differentiable everywhere, and the derivative $f^{\prime}(x)$ is continuous. Using the I.V.T., show that if $\frac{f(b)-f(a)}{b-a}=c$ there is a point $a \leq x \leq b$ where $f^{\prime}(x)=c$. (Suggestion: subtract a linear function from $f(x)$).
4. Show that a function whose derivative is always 0 must be a constant. (Suggestion: use the result in previous exercise).
5. Show that a differentiable function that is concave at all points and has a point x where $f^{\prime}(x) \geq 0$ can never have a horizontal asymptote at $+\infty$, unless it's a constant.

