Chocolate Problem 1

September 22, 2016

Try to solve one of the two following questions:

1. Can you write a function $f(x)$ defined for all \mathbb{R} that is not continuous at any point? Justify your answer!
2. (Harder) Can you write a function defined for all \mathbb{R} that is continuous at a number p exactly when p is not rational? Justify your answer!

Suggestion (for both points): try defining $f(x)$ in a different way depending on x being rational or not, that is, try writing:

$$
f(x)= \begin{cases}(\text { something }) & \text { if } x \text { belongs to } \mathbb{Q} \\ (\text { something else }) & \text { if } x \text { does not belong to } \mathbb{Q}\end{cases}
$$

