Math 263 Midterm I

Problem 1
(a) Find the parametric equations for the line of intersection of the two planes,

z=x4+y, 20—y=1

(b) Calculate the angle between the planes.
(¢) Calculate the shortest distance between the line of intersection and the point (0,0, 0).

Solution:
(a) the two planes have normal vectors < 1,1, —1 > and < 2,—1,0 >, respectively. A
vector in the direction of the line is therefore

<1L,1,-1> x <2,-1,0>=<—-1,-2,-3>

If we put x = 0 in both equations for the planes, then we have y = z = —1, implying that
(0, —1,—1) lies on the line. Thus,

r=—t, y=-1-2t, z=-1-3t

(b) The angle between the plane is equivalent to the angle between the normal vectors,
6, which, using the dot product, is given by
<L IL,-1>-<2-1,0> 1

VI+1+1)(4+1) V15

cosf =

(¢) The line has vector equation,
r=<0-1,-1> +t<-1,-2,-3>

This is also the vector from the origin to the point closest to the origin for a certain value of
t, in which case r should be orthogonal to < —1,—2,—3 >. Since the dot product of r and
< —1,—2,—3 > then vanishes, we find

giving r =< 5, —4,1 > /14 and the distance v/42/14.
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(b)
(c)

Problem 2

Show that the curves represented by ry(t) =< t,t?,t* > and ry(t) =< sint, 1 +cost, 1 >
intersect at point P: (1,1,1).

Find the angle of intersection of the two curves at P.

If ri(t) represents the position of a particle moving in space, compute (i) its speed v at
P; (ii) the tangential and normal components of its acceleration at P.

Solution:

(a)

Att=1,r1(t) =< 1,1,1 >. At t =7/2, ry(t) =< 1,1,1 >. Thus, the two curves do
intersect at P, even though the two position vectors arrive at P at different values of their
respective parameters. This tests the students’ understanding of parametric equations
for space curves.

r] =< 1,2t,2t >=< 1,2,2 > at P. v, =< cost,—sint,0 >=< 0,—1,0 > at P. Their
angle 6 is computed from the “cosine rule” for dot product:
r) -1 —2 2

9: e =g
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So 6 = arccos(—2/3).

The velocity vector is the same as the tangent vector: r] =< 1,2¢,2t >=<1,2,2 > at
P. Thus, the speed is v = |r}| = V12 + 22 + 22 = 3.

The acceleration vector is a = r{ =< 0,2,2 > for all points, including P. Its tangential
component is its projection onto r:

8
aT:a-r’l/v:(Ox1+2><2+2><2)/3:§.

Its normal component is, then:

2v/2
ay =4/|a]?> —a% = /8 —64/ :%_.

The student could have used the formulas on p. 911 to get ay and ar from r} and r{. Or
they could compute the normal vector to the curve. But the above seems to be the easi-
est, and uses only basics about vectors from Chapter 13. For your reference, the local tan-

gent and normal vectors are T =< 1/3,2/3,2/3 > and N =< —2v/2/3,1/3v/2,1/3v/2 >.



Problem 3

(a) Find and sketch the domain of the function f(x,y) = arctan(y/z +y — 2).

(b) Consider
(z =Dy —2)
(x—1)*+(y —2)*

Compute lim, y)—(1,2) f(x,y) if this limit exists, or show that the limit does not exist.

flz,y) =

(c) Let f(z,y) = 2%sin(x + y?). Compute f,, %, and f,, at an arbitrary point (z,y), and
fyz at (0,2).

Solution:
(a) The domain of fis D = {(z,y) : x € R and y > —x + 2}.

(b) The limit does not exist. To see this, let (z,y) — (1, 2) along lines passing through the
point (1,2), i.e., set y —2 = m(x — 1) with arbitrary m € R: Along y = m(x — 1) 4 2,

m(x —1)? m

(z — D2(1 4+ m2) - 1+ m2 as (z,y) — (1,2) along y = m(zx — 1) + 2.

flz,y) =

Clearly, the value of the limit depends on m, so the limit does not exist.
(c) We get

fe = 2xsin(x +y®) +2° cos(x + y°)
0
a—£ = 22%ycos(z + y?)
foy = 4aycos(x +y?) — 22%ysin(z + y?)

Jye(0,2) = fay(0,2) =0



