Julia Yulia Gordon Assignment Review_geometry due 04/19/2018 at 11:59am PDT

6. (1 point) Library/Union/setMVvectors/vectors-12.pg

The two vectors $\overline{u} = \langle 1, 3, -3 \rangle$ and $\overline{v} = \langle -2, -3, 1 \rangle$ determine a plane in space. Mark each of the vectors below as "**T**" if the vector lies in the same plane as \overline{u} and "**F**" if not.

 $\begin{array}{c} _ 1. \ \langle -5, -9, 5 \rangle \\ _ 2. \ \langle 3, -2, -2 \rangle \\ _ 3. \ \langle -1, -3, -1 \rangle \\ _ 4. \ \langle 1, 2, 1 \rangle \end{array}$

7. (1 point) Library/Union/setMVvectors/vectors-8.pg Suppose $\bar{u} = \langle 5, -3, -4 \rangle$. Then

$\langle -2,3,5 \rangle$ makes	?	with \overline{u}
$\langle 4, -5, -3 \rangle$ makes	?	with \overline{u}
$\langle 8, 0, 10 \rangle$ makes	?	with \overline{u}
$\langle -4, 5, -2 \rangle$ makes	?	with \overline{u}

8. (1 point) Library/Union/setMVvectors/vectors-lla.pg Find a vector \overline{v} that is perpendicular to the plane through the points

> A = (-4, 1, 5), B = (5, 1, 2), and C = (0, 4, 4). $\overline{v} = \underline{\qquad}$

9. (1 point) Library/Union/setMVvectors/an12_3_25/an12_3_25b.pg

The distance d of a point P to the line through points A and B is the length of the component of \overline{AP} that is orthogonal to \overline{AB} , as indicated in the diagram.

So the distance from P = (-1, -4, 4) to the line through the points A = (-5, 0, 1) and B = (-4, 1, -2) is

11. (1 point) Library/Union/setMVlinesplanes/planes-1.pg The planes 3x + 5y + 5z = -40 and 4y - 2x + 5z = -36 are not parallel, so they must intersect along a line that is common to both of them. The vector parametric equation for this line is

 $L(t) = \underline{\qquad}.$

12. (1 point) Library/Union/setMVlinesplanes/an12_5_17a.pg Give a vector parametric equation for the line through the point (5, -3) that is perpendicular to the line $\langle 4+4t, 5+2t \rangle$:

L(t) =______.

13. (1 point) Library/Union/setMVlinesplanes/an12_5_17.pg Give a vector parametric equation for the line through the point (2,2,0) that is parallel to the line $\langle 4-3t, 2t-5, 5-t \rangle$: L(t) =______.

14. (1 point) Library/Union/setMVlinesplanes/an12_6_11.pg An implicit equation for the plane passing through the points (0,4,-5), (4,1,-1), and (2,-1,-3) is

15. (1 point) Library/Union/setMVlinesplanes/an12_6_24.pg An implicit equation for the plane passing through the point (5,0,2) that is perpendicular to the line $L(t) = \langle 1+4t, t-2, 1 \rangle$ is ______.

16. (1 point) Library/Union/setMVlinesplanes/an12_6_17.pg The line $L(t) = \langle 2t - 5, 4t - 5, 1 + t \rangle$ intersects the plane 2x + 4y - z = 7 at the point ______ when t =______.

18. (1 point) Library/OSU/accelerated_calculus_and_analytic_geometry_ii/hmwk7/probl2.pg Given a the vector equation $\mathbf{r}(t) = (-5+5t)\mathbf{i} + (0+1t)\mathbf{j} + (-2+2t)\mathbf{k}$, rewrite this in terms of the parametric equations for the line.

 $\begin{aligned} x(t) &= \underline{\qquad} \\ y(t) &= \underline{\qquad} \\ z(t) &= \underline{\qquad} \end{aligned}$

25. (1 point) Library/UMN/calculusStewartET/s_12_1_15.pg Answer the following questions about the sphere whose equation is given by

 $x^2 + y^2 + z^2 - 10x + 4y = -4.$

1. Find the radius of the sphere.

Radius: r =_____

2. Find the center of the sphere. Write the center as a point (a, b, c) where a, b, and c are numbers. Center: _____

30. (1 point) Library/UMN/calculusStewartET/s_12_3_38.pg Find the scalar and vector projections of **b** onto **a**, where $\mathbf{a} = \langle -1, 1, 2 \rangle$ and $\mathbf{b} = \langle -2, 8, 14 \rangle$.

1. $\operatorname{comp}_a \mathbf{b} =$ _____

2. $\operatorname{proj}_{\mathbf{a}}\mathbf{b} =$ _____

31. (1 point) Library/UMN/calculusStewartET/s 12 4 26.pg Suppose we have the triangle with vertices P(1,6,1), Q(-3,6,-4), and R(5,2,2). Answer the following questions.

1. Find a non-zero vector orthogonal to the plane through the points P, Q, and R. Answer: ____

2. Find the area of the triangle $\triangle PQR$. Area: _

35. (1 point) Library/UMN/calculusStewartET/s_12_3_20.pg Find the angle θ between the vectors $\mathbf{a} = 6\mathbf{i} - \mathbf{j} - 4\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$. Answer (in radians): $\theta = -$

38. (1 point) Library/UMN/calculusStewartET/s_12_1_14.pg Find an equation of the sphere that passes through the origin and whose center is (-2, 1, 5). Be sure that your formula is monic. = 0

Equation: ____

48. (1 point) Library/UMN/calculusStewartET/s_12_1_22.pg

Find an equation of the largest sphere with center (4,3,6) and is contained in the first octant. Be sure that your formula is monic.

Equation: _____ $_{--}=0$

50. (1 point) Library/UMN/calculusStewartET/s_12_2_26.pg Find a vector **a** that has the same direction as $\langle -8, 9, 8 \rangle$ but has length 5.

Answer: $\mathbf{a} = _$

52. (1 point) Library/UMN/calculusStewartET/s_12_5_42.pg

Find the intercepts of the plane 5x + y + 9z = 45. Write your answers as points (a, b, c) where a, b, and c are numbers.

```
1. The x-axis intercept.
Answer: ____
  2. The y-axis intercept.
Answer: ____
  3. The z-axis intercept.
Answer: _____
```

Note: If there is no intersection, write "none".

54. (1 point) Library/UMN/calculusStewartET/s_12_1_10.pg Find the distance from (-3, 7, -14) to each of the following:

1. The *xy*-plane. Answer: ____ **2.** The *yz*-plane. Answer: ____ **3.** The *xz*-plane. Answer: **4.** The *x*-axis. Answer: _____

5. The <i>y</i> -axis.
Answer:
6. The <i>z</i> -axis.
Answer:

56. (1 point) Library/UMN/calculusStewartET/s_12_1_prob01/s_12_1_prob01.pg Match the equations of the spheres with one of the graphs below.

$$\begin{array}{c} \underline{\quad} 1. \ x^2 - 4x + y^2 + z^2 = -\frac{15}{4} \\ \underline{\quad} 2. \ (x - 1)^2 + (y - 1)^2 + z^2 = 1 \\ \underline{\quad} 3. \ x^2 - 4x + y^2 - 4y + z^2 - 2z = -\frac{35}{4} \\ \underline{\quad} 4. \ x^2 - 2x + y^2 + 2y + z^2 - 2z = -2 \end{array}$$

Note: You can click on the graphs to enlarge the images.

^{58.} (1 point) Library/UMN/calculusStewartET/s_14_1_23/s_14_1_23.pg Match each function with one of the graphs below.

$$\begin{array}{c} \hline 1. \ f(x,y) = \sqrt{4x^2 + y^2} \\ \hline 2. \ f(x,y) = \sqrt{4 - 4x^2 - y^2} \\ \hline 3. \ f(x,y) = y^2 + 1 \\ \hline 4. \ f(x,y) = e^{-y} \end{array}$$

Note: You can click on the graphs to enlarge the images.

63. (1 point) Library/Rochester/setVectors2DotProduct/UR_VC_1_15.pg
Let a = (-3,2,7) and b = (1,2,8) be vectors.
(A) Find the scalar projection of b onto a.

Scalar Projection: ____

(B) Decompose the vector **b** into a component parallel to **a** and a component orthogonal to **a**.

Parallel component: (_____,

, Orthogonal Component: (_____,

67. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_5.pg

What are the spherical coordinates of the point whose rectangular coordinates are (1, 2, 3)?

 $\begin{array}{c} \rho = \underline{\qquad} \\ \theta = \underline{\qquad} \\ \varphi = \underline{\qquad} \end{array}$

68. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_4.pg What are the rectangular coordinates of the point whose spherical coordinates are $(1, \frac{1}{6}\pi, -\frac{1}{6}\pi)$?

x =	
$y =_{-}$	
$z =_{-}$	

69. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_7.pg Match the given equation with the verbal description of the surface:

- A. Half plane
- B. Circular Cylinder
- C. Cone
- D. Elliptic or Circular Paraboloid
- E. Plane
- F. Sphere
- $\begin{array}{c} _1. \ \rho = 4 \\ _2. \ \rho \cos(\phi) = 4 \\ _3. \ r = 4 \\ _4. \ \phi = \frac{\pi}{3} \\ _5. \ r^2 + z^2 = 16 \\ _6. \ \theta = \frac{\pi}{3} \\ _7. \ z = r^2 \\ _8. \ r = 2\cos(\theta) \\ _9. \ \rho = 2\cos(\phi) \end{array}$

70. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_3.pg What are the cylindrical coordinates of the point whose rectangular coordinates are (x = -4, y = 4, z = -5)?

 $r = \underline{\qquad}$ $\theta = \underline{\qquad}$ $z = \underline{\qquad}$

71. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_6.pg

What are the cylindrical coordinates of the point whose spherical coordinates are $(1, 2, \frac{1\pi}{6})$?

r = _____ θ = ____ *z*= _____

85. (1 point) Library/272/setStewart12_5/problem_19.pg

Find the distance from the point (3, -5, -1) to the plane -5x + 5y - 4z = 4.

86. (1 point) Library/272/setStewart12_5/problem_5.pg Find the vector and parametric equations for the line through the point P = (3, -4, -5) and the point Q = (2, -9, -1).

Vector Form: $\mathbf{r} = \langle _, _, -5 \rangle + t \langle _, _, 4 \rangle$

Parametric form (parameter *t*, and passing through *P* when t = 0):

x = x(t) =_____ y = y(t) =_____ z = z(t) =_____

102. (1 point) Library/272/setStewart12_4/problem_5.pg

Find the distance the point P(7, 2, -8), is to the plane through the three points

Q(2, 4, -3), R(4, 7, 2), and S(4, 8, -4).

110. (1 point) Library/Hope/Multi1/01-05-Lines-planes/Lines-01.pg Find the distance between the skew lines $P(t) = (-4, 3, 5) + t \langle 1, -5, 4 \rangle$ and $Q(t) = (5, 2, 5) + t \langle 1, -5, -5 \rangle$. Hint: Take the cross product of the slope vectors of *P* and *Q* to find a vector normal to both of these lines.

distance = ____

148. (1 point) Library/FortLewis/Calc3/12-1-Two-variable-functions/HGM4-12-1-29-Functions-of-two-varia bles.pg

Find a formula for the shortest distance from a point (a, b, c) to the *y*-axis. distance = _____

149. (1 point) Library/FortLewis/Calc3/12-1-Two-variable-functions/HGM4-12-1-28-Functions-of-two-varia bles.pg

(a) Describe the set of points whose distance from the z-axis equals the distance from the xy-plane.

- A. A cylinder opening along the y-axis
- B. A cone opening along the y-axis
- C. A cone opening along the x-axis
- D. A cone opening along the z-axis
- E. A cylinder opening along the z-axis
- F. A cylinder opening along the x-axis

(b) Find the equation for the set of points whose distance from the z-axis equals the distance from the xyplane.

- A. $x^2 + y^2 = r^2$

- A. $x^2 + y^2 = r^2$ B. $x^2 = y^2 + z^2$ C. $x^2 + z^2 = r^2$ D. $y^2 = x^2 + z^2$ E. $z^2 = x^2 + y^2$ F. $y^2 + z^2 = r^2$

164. (1 point) Library/Michigan/Chap12Sec4/Q11.pg

Find an equation for the plane containing the line in the *xy*-plane where x = 3, and the line in the *yz*-plane where z = 4.

equation: _

198. (1 point) Library/Michigan/Chap17Sec5/Q11.pg

For a sphere parameterized using the spherical coordinates θ and ϕ , describe in words the part of the sphere given by the restrictions

$$\pi/6 \le \theta \le \pi/4 \quad 0 \le \phi \le \pi$$

and

 $\pi/2 \le \theta \le \pi \quad 0 \le \phi \le \pi.$

Then pick the figures below that match the surfaces you described. $\pi/6 \le \theta \le \pi/4$ $0 \le \phi \le \pi$: [?/1/2/3/4/5/6/7/8] $\pi/2 \le \theta \le \pi$ $0 \le \phi \le \pi : [?/1/2/3/4/5/6/7/8]$

(Click on any graph to see a larger version.)

204. (1 point) Library/maCalcDB/setVectors4PlanesLines/ur_vc_2_21.pg Match the surfaces with the appropriate descriptions.

$$\begin{array}{c} -1. \ z = 2x + 3y \\ -2. \ z = x^{2} \\ -3. \ x^{2} + y^{2} = 5 \\ -4. \ z = 2x^{2} + 3y^{2} \\ -5. \ z = y^{2} - 2x^{2} \\ -6. \ x^{2} + 2y^{2} + 3z^{2} = 1 \\ -7. \ z = 4 \\ \hline A. \ circular \ cylinder \\ B. \ ellipsoid \\ C. \ horizontal \ plane \end{array}$$

- D. elliptic paraboloid
- E. hyperbolic paraboloid
- F. parabolic cylinder
- G. nonhorizontal plane

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America