6. (1 point) Library/Union/setMVvectors/vectors-12.pg

The two vectors $\bar{u}=\langle 1,3,-3\rangle$ and $\bar{v}=\langle-2,-3,1\rangle$ determine a plane in space. Mark each of the vectors below as " $\mathbf{T}$ " if the vector lies in the same plane as $\bar{u}$ and " $\mathbf{F}$ " if not.
$\qquad$ 1. $\langle-5,-9,5\rangle$
— 2. $\langle 3,-2,-2\rangle$
—3. $\langle-1,-3,-1\rangle$
-4. $\langle 1,2,1\rangle$
7. (1 point) Library/Union/setMVvectors/vectors-8.pg

Suppose $\bar{u}=\langle 5,-3,-4\rangle$. Then

| $\langle-2,3,5\rangle$ makes | $?$ |
| ---: | :--- |
| $\langle 4,-5,-3\rangle$ makes | $?$ with $\bar{u}$ |
| $\langle 8,0,10\rangle$ makes | $?$ with $\bar{u}$ |
| $\langle-4,5,-2\rangle$ makes | $?$ |
|  | with $\bar{u}$ |

8. (1 point) Library/Union/setMVvectors/vectors-11a.pg

Find a vector $\bar{v}$ that is perpendicular to the plane through the points

$$
\begin{gathered}
A=(-4,1,5), B=(5,1,2), \text { and } C=(0,4,4) . \\
\bar{v}=
\end{gathered}
$$

9. (1 point) Library/Union/setMVvectors/an12_3_25/an12_3_25b.pg

The distance $d$ of a point $P$ to the line through points $A$ and $B$ is the length of the component of $\overline{A P}$ that is orthogonal to $\overline{A B}$, as indicated in the diagram.


So the distance from $P=(-1,-4,4)$ to the line through the points $A=(-5,0,1)$ and $B=(-4,1,-2)$ is
11. (1 point) Library/Union/setMVlinesplanes/planes-1.pg

The planes $3 x+5 y+5 z=-40$ and $4 y-2 x+5 z=-36$ are not parallel, so they must intersect along a line that is common to both of them. The vector parametric equation for this line is

$$
L(t)=
$$

$\qquad$
12. (1 point) Library/Union/setMVlinesplanes/an12_5_17a.pg

Give a vector parametric equation for the line through the point $(5,-3)$ that is perpendicular to the line $\langle 4+4 t, 5+2 t\rangle$ :

$$
L(t)=
$$

$\qquad$
13. (1 point) Library/Union/setMVlinesplanes/an12_5_17.pg

Give a vector parametric equation for the line through the point $(2,2,0)$ that is parallel to the line $\langle 4-3 t, 2 t-5,5-t\rangle$ :

$$
L(t)=\square .
$$

14. (1 point) Library/Union/setMVlinesplanes/an12_6_11.pg

An implicit equation for the plane passing through the points $(0,4,-5),(4,1,-1)$, and $(2,-1,-3)$ is
15. (1 point) Library/Union/setMVlinesplanes/an12_6_24.pg

An implicit equation for the plane passing through the point $(5,0,2)$ that is perpendicular to the line $L(t)=$ $\langle 1+4 t, t-2,1\rangle$ is $\qquad$
16. (1 point) Library/Union/setMVlinesplanes/an12_6_17.pg

The line $L(t)=\langle 2 t-5,4 t-5,1+t\rangle$ intersects the plane $2 x+4 y-z=7$ at the point $\qquad$ when $t=$
18. (1 point) Library/OSU/accelerated_calculus_and_analytic_geometry_ii/hmwk7/prob12.pg

Given a the vector equation $\mathbf{r}(t)=(-5+5 t) \mathbf{i}+(0+1 t) \mathbf{j}+(-2+2 t) \mathbf{k}$, rewrite this in terms of the parametric equations for the line.
$x(t)=$
$y(t)=$
$\qquad$
$z(t)=$ $\qquad$
25. (1 point) Library/UMN/calculusStewartET/s_12_1_15.pg

Answer the following questions about the sphere whose equation is given by

$$
x^{2}+y^{2}+z^{2}-10 x+4 y=-4
$$

1. Find the radius of the sphere.

## Radius: $r=$

$\qquad$
2. Find the center of the sphere. Write the center as a point $(a, b, c)$ where $a, b$, and $c$ are numbers. Center: $\qquad$
30. (1 point) Library/UMN/calculusStewartET/s_12_3_38.pg

Find the scalar and vector projections of $\mathbf{b}$ onto $\mathbf{a}$, where $\mathbf{a}=\langle-1,1,2\rangle$ and $\mathbf{b}=\langle-2,8,14\rangle$.

1. $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=$ $\qquad$
2. $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=$ $\qquad$
3. (1 point) Library/UMN/calculusStewarteT/s_12_4_26.pg

Suppose we have the triangle with vertices $P(1,6,1), Q(-3,6,-4)$, and $R(5,2,2)$. Answer the following questions.

1. Find a non-zero vector orthogonal to the plane through the points $P, Q$, and $R$.

Answer: $\qquad$
2. Find the area of the triangle $\triangle P Q R$.

Area: $\qquad$
35. (1 point) Library/UMN/calculusStewartet/s_12_3_20.pg

Find the angle $\theta$ between the vectors $\mathbf{a}=6 \mathbf{i}-\mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
Answer (in radians): $\theta=$ $\qquad$
38. (1 point) Library/UMN/calculusStewarteT/s_12_1_14.pg

Find an equation of the sphere that passes through the origin and whose center is $(-2,1,5)$. Be sure that your formula is monic.
Equation: $\qquad$ $=0$
48. (1 point) Library/UMN/calculusStewartet/s_12_1_22.pg

Find an equation of the largest sphere with center $(4,3,6)$ and is contained in the first octant. Be sure that your formula is monic.
Equation: $\qquad$ $=0$
50. (1 point) Library/UMN/calculusStewartET/s_12_2_26.pg

Find a vector a that has the same direction as $\langle-8,9,8\rangle$ but has length 5 .
Answer: $\mathbf{a}=$
52. (1 point) Library/UMN/calculusStewartET/s_12_5_42.pg

Find the intercepts of the plane $5 x+y+9 z=45$. Write your answers as points $(a, b, c)$ where $a, b$, and $c$ are numbers.

1. The $x$-axis intercept.

Answer: $\qquad$
2. The $y$-axis intercept.

Answer: $\qquad$
3. The $z$-axis intercept.

Answer: $\qquad$
Note: If there is no intersection, write "none".
54. (1 point) Library/UMN/calculusStewartET/s_12_1_10.pg

Find the distance from $(-3,7,-14)$ to each of the following:

1. The $x y$-plane.

Answer: $\qquad$
2. The $y z$-plane.

Answer: $\qquad$
3. The $x z$-plane.

Answer: $\qquad$
4. The $x$-axis.

Answer: $\qquad$
5. The $y$-axis.

Answer: $\qquad$
6. The $z$-axis.

Answer: $\qquad$
56. (1 point) Library/UMN/calculusStewartET/s_12_1_prob01/s_12_1_prob01.pg

Match the equations of the spheres with one of the graphs below.

-1. $x^{2}-4 x+y^{2}+z^{2}=-\frac{15}{4}$
2. $(x-1)^{2}+(y-1)^{2}+z^{2}=1$
3. $x^{2}-4 x+y^{2}-4 y+z^{2}-2 z=-\frac{35}{4}$

- 4. $x^{2}-2 x+y^{2}+2 y+z^{2}-2 z=-2$

Note: You can click on the graphs to enlarge the images.
58. (1 point) Library/UMN/calculusStewartET/s_14_1_23/s_14_1_23.pg

Match each function with one of the graphs below.


1. $f(x, y)=\sqrt{4 x^{2}+y^{2}}$
2. $f(x, y)=\sqrt{4-4 x^{2}-y^{2}}$
3. $f(x, y)=y^{2}+1$
4. $f(x, y)=e^{-y}$

Note: You can click on the graphs to enlarge the images.
63. (1 point) Library/Rochester/setVectors2DotProduct/UR_VC_1_15.pg

Let $\mathbf{a}=(-3,2,7)$ and $\mathbf{b}=(1,2,8)$ be vectors.
(A) Find the scalar projection of $\mathbf{b}$ onto $\mathbf{a}$.

Scalar Projection: $\qquad$
(B) Decompose the vector $\mathbf{b}$ into a component parallel to $\mathbf{a}$ and a component orthogonal to $\mathbf{a}$.

Parallel component: $\qquad$
$\qquad$
Orthogonal Component: $\qquad$
$\qquad$
67. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_5.pg

What are the spherical coordinates of the point whose rectangular coordinates are $(1,2,3)$ ?
$\rho=\square$
$\theta=\square$
$\phi=\square$
68. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_4.pg

What are the rectangular coordinates of the point whose spherical coordinates are
( $1, \frac{1}{6} \pi,-\frac{1}{6} \pi$ ) ?
$x=$
$y=$
$z=$
69. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_7.pg

Match the given equation with the verbal description of the surface:
A. Half plane
B. Circular Cylinder
C. Cone
D. Elliptic or Circular Paraboloid
E. Plane
F. Sphere

1. $\rho=4$
2. $\rho \cos (\phi)=4$
3. $r=4$
4. $\phi=\frac{\pi}{3}$
5. $r^{2}+z^{2}=16$
6. $\theta=\frac{\pi}{3}$
7. $z=r^{2}$
8. $r=2 \cos (\theta)$
9. $\rho=2 \cos (\phi)$
10. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_3.pg

What are the cylindrical coordinates of the point whose rectangular coordinates are $(x=-4, y=4, z=-5)$
?
$r=$ $\qquad$
$\theta=$ $\qquad$
$z=$ $\qquad$
71. (1 point) Library/Rochester/setVectors5Coordinates/urvc_3_6.pg

What are the cylindrical coordinates of the point whose spherical coordinates are $\left(1,2, \frac{1 \pi}{6}\right)$ ?
$r=$
$\theta=$ $\qquad$
$\qquad$
85. (1 point) Library/272/setStewart12_5/problem_19.pg

Find the distance from the point $(3,-5,-1)$ to the plane $-5 x+5 y-4 z=4$.
86. (1 point) Library/272/setStewart12_5/problem_5.pg

Find the vector and parametric equations for the line through the point $P=(3,-4,-5)$ and the point $Q=$ ( $2,-9,-1$ ).

Vector Form: $\mathbf{r}=\left\langle \_, \ldots,-5\right\rangle+t\left\langle \_, \longrightarrow, 4\right\rangle$

Parametric form (parameter $t$, and passing through $P$ when $t=0$ ):
$x=x(t)=$
$y=y(t)=$
$z=z(t)=$ $\qquad$
$\qquad$
102. (1 point) Library/272/setStewart12_4/problem_5.pg

Find the distance the point $\mathrm{P}(7,2,-8)$, is to the plane through the three points
$\mathrm{Q}(2,4,-3), \mathrm{R}(4,7,2)$, and $\mathrm{S}(4,8,-4)$.
110. (1 point) Library/Hope/Multi1/01-05-Lines-planes/Lines-01.pg

Find the distance between the skew lines $P(t)=(-4,3,5)+t\langle 1,-5,4\rangle$ and $Q(t)=(5,2,5)+t\langle 1,-5,-5\rangle$. Hint: Take the cross product of the slope vectors of $P$ and $Q$ to find a vector normal to both of these lines.
distance $=$ $\qquad$
148. (1 point) Library/FortLewis/Calc3/12-1-Two-variable-functions/HGM4-12-1-29-Functions-of-two-varia bles.pg
Find a formula for the shortest distance from a point $(a, b, c)$ to the $y$-axis. distance $=$ $\qquad$
149. (1 point) Library/FortLewis/Calc3/12-1-Two-variable-functions/HGM4-12-1-28-Functions-of-two-varia bles.pg
(a) Describe the set of points whose distance from the z -axis equals the distance from the xy-plane.

- A. A cylinder opening along the $y$-axis
- B. A cone opening along the $y$-axis
- C. A cone opening along the $x$-axis
- D. A cone opening along the z -axis
- E. A cylinder opening along the $z$-axis
- F. A cylinder opening along the x -axis
(b) Find the equation for the set of points whose distance from the z -axis equals the distance from the xy plane.
- A. $x^{2}+y^{2}=r^{2}$
- B. $x^{2}=y^{2}+z^{2}$
- C. $x^{2}+z^{2}=r^{2}$
- D. $y^{2}=x^{2}+z^{2}$
- E. $z^{2}=x^{2}+y^{2}$
- F. $y^{2}+z^{2}=r^{2}$

164. (1 point) Library/Michigan/Chap12Sec4/Q11.pg

Find an equation for the plane containing the line in the $x y$-plane where $x=3$, and the line in the $y z$-plane where $z=4$.
equation: $\qquad$
198. (1 point) Library/Michigan/Chap17Sec5/811.pg

For a sphere parameterized using the spherical coordinates $\theta$ and $\phi$, describe in words the part of the sphere given by the restrictions

$$
\pi / 6 \leq \theta \leq \pi / 4 \quad 0 \leq \phi \leq \pi
$$

and

$$
\pi / 2 \leq \theta \leq \pi \quad 0 \leq \phi \leq \pi .
$$

Then pick the figures below that match the surfaces you described.
$\pi / 6 \leq \theta \leq \pi / 4 \quad 0 \leq \phi \leq \pi:[? / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8]$
$\pi / 2 \leq \theta \leq \pi \quad 0 \leq \phi \leq \pi:[? / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8]$
(Click on any graph to see a larger version.)

204. (1 point) Library/maCalcDB/setVectors4PlanesLines/ur_vc_2_21.pg

Match the surfaces with the appropriate descriptions.
_1. $z=2 x+3 y$
2. $z=x^{2}$
3. $x^{2}+y^{2}=5$
4. $z=2 x^{2}+3 y^{2}$
5. $z=y^{2}-2 x^{2}$
6. $x^{2}+2 y^{2}+3 z^{2}=1$
7. $z=4$
A. circular cylinder
B. ellipsoid
C. horizontal plane
D. elliptic paraboloid
E. hyperbolic paraboloid
F. parabolic cylinder
G. nonhorizontal plane

Generated by © WeBWorK, http://webwork.maa.org, Mathematical Association of America

