MATH 200:921, Quiz 5

First Name: \qquad Last Name: \qquad
Student-No: \qquad
Grade:

- Do not turn the page until instructed to do so.
- This test is closed book. No calculators or formula sheet allowed.
- You have 20 minutes to write this quiz.
- There are three questions in this quiz, worth a total of 20 points.

Short answer question

1. 4 marks For each of the following statements write T for true or F for false next to it.
2. We always have

$$
\int_{0}^{1} \int_{a(x)}^{b(x)} h(x) g(y) \mathrm{d} y \mathrm{~d} x=\left(\int_{0}^{1} h(x) \mathrm{d} x\right)\left(\int_{a(0)}^{b(1)} g(y) \mathrm{d} y\right) .
$$

2. If $f(x, y)$ is continuous then it is always true that

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

3. We have

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} x \mathrm{~d} y \mathrm{~d} x=\int_{0}^{\pi} \int_{0}^{1} r^{2} \cos (\theta) \mathrm{d} r \mathrm{~d} \theta
$$

4. If the density function is constant, the center of mass of a region D must always lie inside of D.

Long answer question-you must show your work

2. 8 marks Consider the integral

$$
\int_{0}^{4} \int_{-\sqrt{4-x}}^{\sqrt{4-x}} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

1. Sketch the domain of integration and rewrite the integral as a $\mathrm{d} x \mathrm{~d} y$ integral.
2. Evaluate the integral when $f(x, y)=e^{8 y-\frac{2}{3} y^{3}}$.

Long answer question-you must show your work

3. 8 marks Consider the triangle T with vertices $A=(0,0), B=(1,1), C=(1,0)$.
4. Sketch T and describe the side $\overline{C B}$ with polar coordinates equations $r=a(\theta), c \leq \theta \leq d$.
5. Using an integral in polar coordinates, compute the area of the triangle.
6. Assuming that the mass distribution on T is a constant ρ, write integrals in polar coordinates that compute the coordinates of the center of mass of T. You do not need to evaluate them.
\qquad Student-No: \qquad

Quiz \#5 (v.A): Page 4 of 4
Tuesday, June 19

