MATH 200:921, Quiz 3

First Name: \qquad Last Name: \qquad
Student-No: \qquad
Grade:

- Do not turn the page until instructed to do so.
- This test is closed book. No calculators or formula sheet allowed.
- You have 20 minutes to write this quiz.
- There are three questions in this quiz, worth a total of 20 points.

Long answer question-you must show your work

1. 6 marks 1. Find the domain of the function $f(x, y)=\log (y)-\sqrt{y-1-x^{2}}$ and sketch it.
2. Find a vector parametric equation for the tangent line to the trace of the graph of $f(x, y)$ on the plane $x=0$ at the point $(0,1,0)$.

Solution:

1. We have two constraints on our domain. First, for $\log (y)$ to be defined we need $y>0$. Second, for $\sqrt{y-1-x^{2}}$ to be defined we need $y \geq x^{2}+1$. The second condition also implies that $y \geq 1$, making the first redundant. Then the domain is given by $y \geq x^{2}+1$, which is the set of points on or above an upward parabola whose minimum is at $(0,1)$.
2. If compute the partial derivative with respect to y we get $f_{y}=\frac{1}{y}-\frac{1}{2 \sqrt{y-1-x^{2}}}$ which is not defined at $(0,1)$. Intersecting with $x=0$ we get the function $f(0, y)=$ $\log (y)-\sqrt{y-1}$ whose derivative goes to negative infinity for y going to 1 , which means that the tangent line to the curve is vertical. Then the line we are looking for is

$$
\vec{l}(t)=\langle 0,1,0\rangle+t\langle 0,0,1\rangle .
$$

Long answer question-you must show your work

2. 6 marks Let $f(x, y, z)=e^{y} x+e^{z} y$ and let $x(u, v)=u^{2}, y(u, v)=u v, z(u, v)=v^{2}$.

Compute the partial derivatives

$$
\left.\frac{\partial f(u, v)}{\partial u}\right|_{(1,2)},\left.\frac{\partial f(u, v)}{\partial v}\right|_{(1,2)} .
$$

Solution: We have $x(1,2)=1, y(1,2)=2, z=(1,2)=4$. By the chain rule we need to compute

$$
\left.\frac{\partial f(u, v)}{\partial u}\right|_{(1,2)}=\left.\vec{\nabla} f\right|_{(1,2,4)} \cdot\left\langle x_{u}(1,2), y_{u}(1,2), z_{u}(1,2)\right\rangle
$$

and

$$
\left.\frac{\partial f(u, v)}{\partial v}\right|_{(1,2)}=\left.\vec{\nabla} f\right|_{(1,2,4)} \cdot\left\langle x_{v}(1,2), y_{v}(1,2), z_{v}(1,2)\right\rangle .
$$

We have $\left\langle x_{u}, y_{u}, z_{u}\right\rangle=\langle 2 u, v, 0\rangle$ and $\left\langle x_{v}, y_{v}, z_{v}\right\rangle=\langle 0, u, 2 v\rangle$.
Moreover, $f_{x}=e^{y}, f_{y}=e^{y} x+e^{z}, f_{z}=e^{z} y$. Plugging in the values we get

$$
\begin{gathered}
\left.\vec{\nabla} f\right|_{1,2,4}=\left\langle e^{2}, e^{2}+e^{4}, 2 e^{4}\right\rangle \\
\left.\frac{\partial f(u, v)}{\partial u}\right|_{(1,2)}=\left\langle e^{2}, e^{2}+e^{4}, 2 e^{4} \cdot\right\rangle \cdot\langle 2,2,0\rangle=4 e^{2}+2 e^{4} \\
\left.\frac{\partial f(u, v)}{\partial v}\right|_{(1,2)}=\left\langle e^{2}, e^{2}+e^{4}, 2 e^{4}\right\rangle \cdot\langle 0,1,4\rangle=e^{2}+9 e^{4} .
\end{gathered}
$$

Long answer question-you must show your work

3. 8 marks Consider the surface S defined by $e^{y} x+e^{z} y=1$. The point $P=(0,1,0)$ lies on S.

- Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at P.
- Use linear approximation to estimate the value of z when $x=1.1, y=1.05$.

Solution:

- By the chain rule applied to implicit differentiation we know that on the surface defined by $F(x, y, z)=k$ we have

$$
\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}} .
$$

We can take $F(x, y, z)=e^{y} x+e^{z} y, \quad k=1$ and looking at the previous question we get $F_{x}=e^{y}, F_{y}=e^{y} x+e^{z}, F_{z}=e^{z} y$. As $F_{z}(0,1,0) \neq 0$ we can plug the values into the equations above, getting

$$
\frac{\partial z}{\partial x}=\frac{-e^{1}}{e^{0} \cdot 1}=-e, \frac{\partial z}{\partial y}=\frac{-e^{1} \cdot 0-e^{0}}{e^{0}}=-1 .
$$

- We have to approximate the value of z starting from the point we know, that is $(a, b, c)=(0,1,0)$. The linear approximation of $z=z(x, y)$ around (a, b, c) is

$$
L(x, y)=z(0,1)+z_{x}(0,1)(x-0)+z_{y}(0,1)(y-1)=0-e \cdot x-(y-1)
$$

so we get the value

$$
z(1.1,1.05) \approx 0-e \cdot 1.1-(1.05-1)=-11 / 10 e-1 / 20
$$

Note: if you computed the derivatives at point in the typo $(1,1,0)$ it's fine, the only difference is that the level curve is $F(x, y, z)=2 e$ rather than $F(x, y, z)=1$. If you elected to approximate the value of z at the point $(0.1,1.05)$ rather than (1.1, 1.05), which is consistent with the spirit of the original question, it is fine as well.

