MATH 200:921, Quiz 1

First Name: \qquad Last Name: \qquad
Student-No: \qquad
Grade:

- Do not turn the page until instructed to do so.
- This test is closed book. No calculators or formula sheet allowed.
- You have 20 minutes to write this quiz.
- There are three questions in this quiz, worth a total of 10 points.

Long answer question-you must show your work

1. 3 marks Consider the points $P=(0,2,1), Q=(3,3,-1)$. Find a point R on the z-axis such that the two vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are perpendicular.

Solution: The vector $\overrightarrow{P Q}$ is equal to $\langle 3-0,3-2,-1-1\rangle=\langle 3,1,-2\rangle$.
A point R on the z-axis coordinates $(0,0, c)$, so the vector $\overrightarrow{P R}$ has components $\langle 0,-2, c-1\rangle$. For $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ to be perpendicular we must have $\overrightarrow{P R} \cdot \overrightarrow{P Q}=0$, that is, $-2-2 c+2=0$ which is satisfied when $c=0$.

Long answer question-you must show your work

2. 3 marks In an appropriate coordinate system, a small zipline in an amusement park runs straight from point $P=(0,20,10)$ to the point $Q=(30,30,-10)$ (in meters). A young boy whose mass is 30 kilograms is riding the attraction. Recall that the gravitational force is (approximately) equal to ($9.8 \cdot$ mass) Newtons $\left(m \cdot k g / s^{2}\right)$, pointing down. There is also a strong wind, pushing the boy with a force of $\vec{F}_{w}=\langle 0,20,20\rangle$, in Newtons.
What is the work done by the total force acting on the boy as he rides the skyline from point P to point Q ?

Solution:

The force of gravity is $\langle 0,0,-9.8 \cdot 30\rangle$, so the total force \vec{F}_{T} exerted by gravity and wind combined is, in Newtons, $\langle 0,20,-9.8 \cdot 30+20\rangle=\langle 0,20,-274\rangle$.
To find the work, we take the dot product of the displacement vector $\overrightarrow{P Q}=\langle 30,10,-20\rangle$ and the force, obtaining $W=\vec{F}_{T} \cdot \overrightarrow{P Q}=0+10 \cdot 20+(-20)(-274)=5680$ Joules.

Long answer question-you must show your work

3. 4 marks Consider the vectors $\vec{v}=\vec{i}+\vec{j}-2 \vec{k}, \vec{w}=4 \vec{j}+3 \vec{k}$.
4. Find the cross product $\vec{v} \times \vec{w}$.
5. Using the properties of cross products, compute $\left(\vec{v}-\operatorname{Proj}_{\vec{w}} \vec{v}\right) \times \vec{w}+\vec{w} \times \vec{v}$.

Solution:

- By the cross product formula we have

$$
\vec{v} \times \vec{w}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -2 \\
0 & 4 & 3
\end{array}\right|=\langle | \begin{array}{cc}
1 & -2 \\
4 & 3
\end{array}\left|,-\left|\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right|,\left|\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right|\right\rangle=\langle 11,-3,4\rangle .
$$

- By the distributive property $\left(\vec{v}-\operatorname{Proj}_{\vec{w}} \vec{v}\right) \times \vec{w}=\vec{v} \times \vec{w}-\operatorname{Proj}_{\vec{w}} \vec{v} \times \vec{w}$.

Recall now that $\operatorname{Proj}_{\vec{w}} \vec{v}$ is parallel to \vec{w}, and the cross product of two parallel vectors is zero, so $\vec{v} \times \vec{w}-\operatorname{Proj}_{\vec{w}} \vec{v} \times \vec{w}=\vec{v} \times \vec{w}$.

Finally, $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$, so plugging in in the original formula we get

$$
\left(\vec{v}-\operatorname{Proj}_{\vec{w}} \vec{v}\right) \times \vec{w}+\vec{w} \times \vec{v}=-\vec{w} \times \vec{v}+\vec{w} \times \vec{v}=\overrightarrow{0}
$$

