MATH 200:921, Quiz 1

First Name:	Last Name:	
Student-No:		
	Grade:	

- Do not turn the page until instructed to do so.
- This test is closed book. No calculators or formula sheet allowed.
- You have 20 minutes to write this quiz.
- There are three questions in this quiz, worth a total of 10 points.

Long answer question—you must show your work

1. 3 marks Consider the points P = (0, 2, 1), Q = (3, 3, -1). Find a point R on the z-axis such that the two vectors \vec{PQ} and \vec{PR} are perpendicular.

Long answer question—you must show your work

2. 3 marks In an appropriate coordinate system, a small skyline in an amusement park runs straight from point P = (0, 20, 10) to the point Q = (30, 30, -10) (in meters). A young boy whose mass is 30 kilograms is riding the attraction. Recall that the gravitational force is (approximately) equal to $(9.8 \cdot \text{mass})$ Newtons $(m \cdot kg/s^2)$, pointing down. There is also a strong wind, pushing the boy with a force of $\vec{F}_w = \langle 0, 20, 20 \rangle$, in Newtons.

What is the work done by the total force acting on the boy as he rides the skyline from point P to point Q?

Long answer question—you must show your work

- 3. 4 marks Consider the vectors $\vec{v} = \vec{i} + \vec{j} 2\vec{k}, \vec{w} = 4\vec{j} + 3\vec{k}.$
 - 1. Find the cross product $\vec{v} \times \vec{w}$.
 - 2. Using the properties of cross products, compute $(\vec{v} \operatorname{Proj}_{\vec{w}} \vec{v}) \times \vec{w} + \vec{w} \times \vec{v}$.

Name: _____

_____ Student-No: _____