Worksheet 1: vectors and forces

1. What is the general form of a vector \vec{v} on the plane that points upward and forms an angle of $\pi / 3$ with the positive direction of the x-axis?
2. Find two vectors \vec{v}_{1} and \vec{v}_{2} on the plane such that \vec{v}_{1} forms an angle of $\pi / 6$ with the positive direction of the x-axis, \vec{v}_{2} forms an angle of $3 \pi / 4$ with the positive direction of the x-axis, and $\vec{v}_{1}+\vec{v}_{2}=\langle 0,-10\rangle$.
3. A small block of mass 1 kg hangs on two chains such that one chain forms an angle of 45° and the other an angle of 30° with the horizontal. Find the forces that act on the block.

DOT PRODUCT AND ANGLES:
IN Rd: $\operatorname{pick} \vec{u}=a \vec{\lambda}=\langle a, 0\rangle$ $\vec{v}=l s(\cos \theta \vec{l}+\sin \theta \vec{J})=\langle l \cos \theta, l \sin \theta\rangle$

$$
\vec{u} \cdot \vec{v}=a b \cos \theta=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

In GENERAL:

$$
\begin{aligned}
& \vec{u}=a\langle\cos \varphi, \sin \varphi\rangle, \vec{v}=b<\cos (\theta+\varphi), \sin (\theta+\varphi)\rangle \\
& \vec{u} \cdot \vec{v}=a \cdot b\left(\underline{e^{2} \varphi \cos \theta-\cos \theta \sin \varphi \sin \theta+}\right. \\
& \left.\sin ^{2} \varphi \cos \theta+\sin \theta \sin \varphi \cos \theta\right)= \\
& a \cdot b(\operatorname{los} \theta)= \\
& \vec{b}\|\|\vec{v}\| \cos \theta
\end{aligned}
$$

TH:
$\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$ wHERE $0 \leqslant \theta \leqslant \pi$ IS THE ANGLE BETWEEN \vec{u} AND \vec{V} ON A PLATE CONTAINNG BOTH.

THE MAIN USE OF THIS TM IS TO FIND ANGLES.

EA: FIND THE ANGLES BETWEEN $\vec{u}=\langle 3,1\rangle, \vec{v}=\langle-2,6\rangle$ AND $\vec{w}=\langle-4,3\rangle$

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{9+1}=\sqrt{10} \\
& \|\vec{u}\|=\sqrt{40}=2 \sqrt{10} \\
& \|\vec{w}\|=\sqrt{25}=5
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=-6+6 \quad 0=20 \cos \theta \\
& \cos \theta=0 \sim \theta=\operatorname{arcos} 0\left(=\frac{\pi}{2}\right) \\
& \vec{v} \cdot \vec{u}=8+18=26=10 \sqrt{10} \cos \theta \\
& \theta=\operatorname{arcos}\left(\frac{26}{16 \sqrt{10}}\right)(\approx 0.605) \\
& \vec{u} \vec{w}=-12+3=-9 \quad 5 \sqrt{10} \cos \theta \\
& \theta=\operatorname{anc}\left(\frac{-9}{1.1}\right)(\approx 2.176)
\end{aligned}
$$

E.G: Angle betweEn Lines

$$
\begin{aligned}
& B=(0,1,1) \quad \overrightarrow{O C}=\langle 1,1,1\rangle \\
& c=(1,1,1) \\
& \overrightarrow{A B} \cdot \overrightarrow{O C}=-1+1+1=1 \\
& \|\overrightarrow{A B}\|=\|\overrightarrow{O C}\|=\sqrt{1+1+1}=\sqrt{3} \\
& \cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{O C}}{\|\overrightarrow{A B}\| \overrightarrow{O C} \|}=\frac{1}{3}
\end{aligned}
$$

So $D=\operatorname{ORCS} \frac{1}{3}$; IN PARTICULAR THEY ARE NOT PERPENDICULAR

$$
\left(\vec{v} \perp \vec{u} \Longleftrightarrow \vec{v} \Longleftrightarrow \frac{\pi}{2} \Longleftrightarrow \vec{u}=0\right)
$$

PROJECTIONS AND COMPONENTS
$\vec{\imath}, \vec{\jmath}, \vec{k}$ STANDARD VECTORS OF LENGTH I

$$
\begin{array}{ll}
\vec{v}=\langle a, b, e\rangle \\
\operatorname{comp}_{x} \vec{v}=a & \text { COMPONENTS } \\
\text { comp y } \vec{v}=b & \text { ARE NUMBERS } \\
\text { comp } \vec{v}=c & \\
\operatorname{Prog}_{\vec{v}} \vec{v}=a \vec{i} & \text { PROJECTIONS } \\
\operatorname{Prog}_{\vec{j}} \vec{v}=b \vec{j} & \text { ARE } \\
\operatorname{PToJ}_{\vec{k}} \vec{v}=e \vec{k} & \text { VECTORS }
\end{array}
$$

NOTE: $a=\vec{v} \cdot \vec{u}, b=\vec{v} \cdot \vec{j}, e=\vec{v} \cdot \vec{k}$
NOW \vec{a}, \vec{v} VECTORS
1 WANT TO DEFINE A COMPONENT OF \vec{v} ALONG \vec{a} AND A PROJECTION OF \vec{v} ALONG \vec{a}.
i) MAKE $\overrightarrow{\text { a }}$ AUNT VEL

$$
\begin{aligned}
& \vec{u}=\frac{\vec{a}}{\|\vec{a}\|} \\
& \text { ii) Now Comp } \vec{a} \vec{v} \\
& =\|v\| \cos \theta=\vec{v} \cdot \vec{u}=\vec{v} \cdot \frac{\vec{a}}{\|\vec{a}\|} \\
& \text { AND Proc } \frac{\vec{v}}{\vec{a}}=\operatorname{Comp}_{\vec{a}} \vec{v} \cdot \vec{u}=\frac{(\vec{a} \cdot \vec{v})}{\|a\|^{2}} \cdot \vec{a}
\end{aligned}
$$

EGG: $\vec{u}=\langle-2,1\rangle, \vec{v}=\langle 3,1\rangle$
FIND PRS $\vec{v} \vec{U}$ AND SKETCH ALL THREE VECTORS

$$
\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \cdot \vec{v}=\frac{-5}{10} \cdot\langle 3,1\rangle=\left\langle-\frac{3}{2},-\frac{1}{2}\right\rangle
$$

$E \cdot G: \vec{W}=\langle 0,1,2\rangle, \vec{v}=\langle 3,4,0\rangle$ FIND Prog \vec{v} AND SKETCH ALL THREE VEOTORS

$$
\begin{gathered}
\frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^{2}} \cdot \vec{v}=\frac{4}{25}\langle 3,4,0\rangle= \\
=\left\langle\frac{12}{25}, \frac{16}{25}, 0\right\rangle
\end{gathered}
$$

ORTHO GORAL COMPONENT:

WE WANT TO WRITE \vec{u} AS P ag $\vec{u}+\bar{w}$ where
$\overrightarrow{\mathrm{x}}$ IS ORTHOGONAL TO ज.

SHY EQUALITY:

$$
\left(\vec{u}-p \operatorname{cog} \underset{\vec{v}}{\vec{v}}+\operatorname{prog}_{\vec{v}}^{\vec{u}}=\vec{u}\right.
$$

Now, $\quad \vec{v}\left(\vec{u}-\operatorname{prog}_{\vec{v}} \vec{u}\right)=$

$$
\begin{aligned}
& \vec{v} \cdot \vec{u}-\vec{v} \cdot\left(\frac{(\vec{v} \cdot \vec{u})}{\|\vec{v}\|^{2}} \vec{v}\right)=\vec{v} \cdot \vec{u}-\frac{\vec{v} \cdot \vec{v}}{\|v\|^{2}}(\vec{v} \cdot \vec{u}) \\
& =\vec{v} \cdot \vec{u}-\vec{v} \cdot \vec{u}=0 \quad
\end{aligned}
$$

SO THE PERPENDICULAR COMPONENT
\vec{w} is EXACTLY $\vec{u}-\operatorname{Poo}_{\vec{r}} \vec{u}$.
E.C. $\bar{W}=\langle 0,1,2\rangle, \vec{v}=\langle 3,4,0\rangle$

WE SAW THAT $\operatorname{prog}_{\vec{N}} \overrightarrow{\mathrm{~N}}=\left\langle\frac{12}{25}, \frac{16}{25}, 0\right\rangle$
SO THE ORTHOGONAL COMPONENT IS

$$
\vec{w}-\operatorname{pros}^{\vec{w}}=\langle 0,1,2\rangle-\left\langle\frac{12}{25}, \frac{16}{25}, 0\right\rangle=\left\langle\frac{-12}{25}, \frac{9}{26}, 2\right\rangle
$$

LETS VERIFY:

$$
\begin{aligned}
& \left\langle\frac{-12}{25}, \frac{2}{23}, 2\right\rangle \cdot\langle 3,4,0\rangle= \\
& -\frac{35}{25}+\frac{35}{25}+0=0
\end{aligned}
$$

FORCE AMD WORK
i) WHEN A BUDY 15 CONSTAANED TO MOVE IN A GMEN DIRECTION (FOR EXAMPLE, it'S ON The chon, on a ant, Attached to a bar) AND A FORCE IS APPLIED TO IT, ONLY THE COMPONENT OF THE FORCE ALONG THIS DIRECTION HAS ANTPEGT THE CONSTRAINT Contemns the rest:

Milf AN OBSFCT UNDER A CONSTANT Force F is displacer by a VECTOR d THEN THE WORK DONE By F IS GOING TO BE
 CoUnts!
E.G:A AN orJELTIS ON A 30° slope. IF THE MASS IS 2 kg :
a) WHAT Is THE GQUECTIS ACCELERATION DUE TO GnAUTY? (Exenessen AS AVEOTOR \vec{a}) E) WHAT is The wonk done BY A RAuTty AFTER THE ObJECT MOVED 5 METRES DOWN ThE SLOPE?

$$
\begin{aligned}
& \text { a) } \vec{F}=m \vec{g}=\langle 0,-19.6\rangle \\
& \vec{v}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle \\
& -\left\langle\frac{\sqrt{2}}{2}, \frac{1}{2}\right. \\
& \operatorname{Prot} \underset{N^{2}}{\vec{F}}=-\frac{19.6}{2}\left\langle\frac{\sqrt{2}}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

 DIVIDE BY MASS

