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[25] 1. Find and classify all critical points of
f(x, y) = x3 − 3xy2 + 3x2 + 3y2.

Calculation gives

f(x, y) = x3 − 3xy2 + 3x2 + 3y2 fx(x, y) = 3x2 − 3y2 + 6x fxx(x, y) = 6x+ 6
fy(x, y) = −6xy + 6y fyy(x, y) = −6x+ 6

fxy(x, y) = −6y

At a critical point both fx(x, y) = 0 and fy(x, y) = 0, i.e.,
(1) 3(x2 − y2 + 2x) = 0, (2) − 6y(x− 1) = 0.

From equation (2), we get two cases: x = 1 or y = 0.

Case x = 1. Here (1) reduces to y2 = 3, so y = ±
√

3. This gives two CP’s:

(1,−
√

3), (1,
√

3).

Case y = 0. Here (1) reduces to 0 = x2 + 2x = x(x+ 2), so x = 0 or x = −2. This gives two CP’s:
(0, 0), (−2, 0).

Here is a table giving the classification of each of the four critical points.

critical
point

fxxfyy − f2
xy fxx type

(0, 0) (6)× (6) − 02 > 0 6 local min

(−2, 0) (−6)× (18) − 02 < 0 saddle point

(1,−
√

3) (12)× 0− (6
√

3)2 < 0 saddle point

(−1,−
√

3) (12) × 0− (−6
√

3)2 < 0 saddle point

Continued on page 3
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[25] 2. Consider the equation
(∗) 2(x− 1)2 − 2y2(3− y2) + (z − 1)2 − 2z3 + 1 = 0.

(a) Assuming that (∗) defines z as a function of x and y, find the gradient ∇z =
〈
∂z

∂x
,
∂z

∂y

〉
.

(b) If x = 1 +
√

10 sin t and y =
√

10 cos t, use the result in (a) to calculate
d

dt
z(x(t), y(t)) at

the point where (x, y, z) = (1 +
√

7,
√

3, 2).

(a) By implicit differentiation with respect to x, we get:

4(x− 1) + 2(z − 1)
∂z

∂x
− 6z2 ∂z

∂x
= 0

and solving for ∂z/∂x gives
∂z

∂x
=

2x− 2
3z2 − z + 1

Similarly, implicit differentiation with respect to y gives:

−4y(3− y2) + 4y3 + 2(z − 1)
∂z

∂y
− 6z2 ∂z

∂y
= 0

and solving for ∂z/∂y gives

∂z

∂y
=

4y3 − 6y
3z2 − z + 1

This gives the gradient

∇z(x, y) =
〈

2x− 2
3z2 − z + 1

,
4y3 − 6y

3z2 − z + 1

〉
(b) At the point of interest, we have

dx

dt
=
√

10 cos(t),
dy

dt
= −
√

10 sin(t), ∇z =

〈
2
√

7
11

,
6
√

3
11

〉

The chain rule says
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
, so at the point of interest,

dz

dt
=

2
√

7
11

[√
10 cos t

]
+

6
√

3
11

[
−
√

10 sin t
]

Since the point has x = 1 +
√

7 and y =
√

3, we clearly have
√

10 sin t =
√

7 and√
10 cos t =

√
3. Substituting these values into the above equation, we get

dz

dt
=

2
√

7
11

√
3− 6

√
3

11

√
7 = − 4

11

√
21.

Continued on page 4
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[25] 3. Consider the set D in the xy-plane defined by
D : x ≥ 0, y ≥ 0, x+ y ≤ 2.

Find the maximum value of f on D, and the point(s) where it occurs, given
f(x, y) = x2y3e−x−y.

Notice that f(x, y) =
(
x2e−x

) (
y3e−y

)
. Use the reduction-of-dimension strategy.

(2D) Interior Points: In the set where x > 0, y > 0, x+ y < 1, calculation gives

(1)
∂f

∂x
= y3e−y

[
2xe−x − x2e−x

]
= x(2− x)y3e−x−y,

(2)
∂f

∂y
= x2e−x

[
3y2e−y − y3e−y

]
= x2y2(3− y)e−x−y.

To get ∂f/∂x = 0 requires either x = 0 or x = 2 or y = 0, but no points in the interior of D satisfy
any of these three conditions. So this case produces no points of interest.
(1D) Left Edge: At all points where x = 0 and 0 < y < 2, we have f(0, y) = 0.
(1D) Bottom Edge: At all points where y = 0 and 0 < x < 2, we have f(x, 0) = 0.

(1D) Top Edge: Here 0 < x < 2 and y = 2 − x, and f(x, 2 − x) = x2(2 − x)3e−2 def= g(x).
Calculation (product rule) gives
e2g′(x) = [2x](2 − x)3 + x2[3(2 − x)2(−1)] = x(2− x)2 [2(2 − x)− 3x] = x(2− x)2(4− 5x).
The only CP for g obeying 0 < x < 2 is x = 4/5, which corresponds to (4/5, 6/5) on the top
edge of D. At this point,

f(4/5, 6/5) =
(42)(63)

55
e−2.

(0D) Corner Points: Set D is a triangle, with corners at (0, 0), (2, 0), (0, 2). At each corner
point f has the value 0.

Summary: Among all points of interest identified above, the one with the largest function value
lies on the top edge of D:

Maximum value:
(42)(63)

55
e−2 = f(4/5, 6/5).

Critical Points: To find all CP’s for f in R2, use equation (1) to eliminate one variable and study
the reduced form of (2). Three cases arise from (1): x = 0, y = 0, or x = 2.

1. If x = 0, then (2) holds for all real y. So all points of the form (0, y), y ∈ R, are CP’s.
2. If y = 0, then (2) holds for all real x. So all points of the form (x, 0), x ∈ R, are CP’s.
3. If x = 2, then (2) holds when either y = 0 or y = 3. The point (2, 0) has already been

catalogued in case 2, but the CP at (2, 3) is new.
Thus f has infinitely many CP’s: the two lines x = 0 and y = 0 and the isolated point (2, 3).
Discussion [not required for credit]: At the maximizing point (4/5, 6/5), there is some constant
M such that

∇f(4/5, 6/5) = · · · = M

〈
1, 1

〉
.

This is not zero (boundary extrema need not be CP’s), but it does point in the outward normal
direction to the boundary of D at the point of interest.

Continued on page 5
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[25] 4. Let T be the triangle in the xy-plane bounded by the lines
x = 1, y = 0, y = x.

(a) Let I =
∫∫
T

f(x, y) dA. Express I as an iterated integral in two different ways: one where

the inner integral involves dx, and one where the inner integral involves dy.
(Express your answers in terms of the general function f .)

(b) Given f(x, y) = ey/y, find the average value of f on T .

Recall: The average value of a function f on a plane region T is, by definition,

f =
1

Area(T )

∫∫
T

f(x, y) dA.

(a) Projecting T along the x-direction onto the y-axis fills the interval 0 ≤ y ≤ 1; the
horizontal filament at level y runs from x = y to x = 1. Thus∫∫

T

f(x, y) dA =
∫ 1

0

∫ 1

y

f(x, y) dx dy

Projecting T along the y-direction onto the x-axis fills the interval 0 ≤ x ≤ 1; the vertical
filament at position x runs from y = 0 to y = x. Thus∫∫

T

f(x, y) dA =
∫ 1

0

∫ x

0

f(x, y) dy dx

(b) The region T is a right triangle with both base and height of length 1, so Area(T ) = 1/2.

When f(x, y) = ey/y, it is convenient to have an inner integral in terms of x. Thus∫∫
T

f(x, y) dA =
∫ 1

0

∫ 1

y

ey

y
dx dy =

∫ 1

0

(
1− y
y

)
ey dy.

This integral cannot be evaluated as a simple formula. The best answer we can give is

f =
1

Area(T )

∫∫
T

f(x, y) dA = 2
∫ 1

0

(
1− y
y

)
ey dy.

The End
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