
Warm-up

Discuss convergence of

1.
∑∞

n=5
log(n)10

n2

2.
∑∞

n=3
1

n
√

3 log(n)+2

1. We know that log(n)10 is “very small” compared to n2, but comparing
with 1

n2 would be inconclusive. But!

Every power of logarithm loses to every power of x.

So we can try comparing it with a slightly smaller negative power of n,
as long as it’s big enough that the series converges. Let’s try bn = 1

n3/2 .

lim
n→∞

an
bn

= lim
n→∞

log(n)10n3/2

n2
= lim

n→∞

log(n)10√
n

= 0

So by limit comparison with
∑∞

n=5
1

n3/2 our series converges.

Note 1. This shows that sometimes we are forced to use the weaker
part of the limit comparison theorem, as sometimes there are no “sim-
ple” sequences going to zero at the same rate as ours.

2. Note first that comparing with 1
n

would give us limn→∞
an
bn

= 0 which

is inconclusive as the series of 1
n

diverges. To show that something
diverges we have to use the stronger statement of the limit comparison
theorem.

We have an ∼ 1

n
√

log(n)
, so we try comparing with bn = 1

n
√

log(n)
. We

get

lim
n→∞

an
bn

= lim
n→∞

n
√

log(n)

n
√

3 log(n) + 2
= lim

n→∞

1√
3 + 2 log(n)−1

=
1√
3

so by limit comparison our series diverges as
∑∞

n=3
1

n
√

log(n)
diverges by

the integral test.
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The alternating series test

A sequence bn is alternating if the signs of two consecutive terms are always
different (or zero). In particular, bn is alternating if there is a sequence an ≥ 0
such that either bn = (−1)nan or bn = (−1)n−1(an), depending on the sign of
the first term.

Alternating series (i.e. series where the underlying sequence in alternat-
ing) have the peculiarity that consecutive terms “cancel out”, making for a
very permissive convergence criterion:

Theorem 2 (Alternating series test). Let bn be an alternating sequence,
an = |bn| the corresponding non-negative sequence. Suppose that:

• an is decreasing, i.e. an+1 ≤ an for all n.

• limn→∞ an = 0

Then the series
∑∞

n=1 bn converges.
Moreover, call S the value of the series. Then S − SN is between 0 and

bN+1.

Note 3. The theorem is only really relevant when an > 0 for all n... why?

Note 4. The remainder part of the theorem also tells the sign of S − SN .
It’s either 0 or the same sign as bN+1.

Note 5. As with the other tests, we can restate the hypotheses asking them
to work for all n ≥ N0, for some N0. Be careful though! The remainder part
will only work when N > N0.

Example 6. We know that
∑∞

n=1
1
n

diverges, but what about
∑∞

n=1
(−1)n−1

n
?

Well, an = 1
n

is clearly decreasing, so by the alternating test it must converge.
In fact, by the end of the course we will be able to prove that it converges to
log(2).

Now, say we wanted to approximate log(2) from the left (i.e. with a
smaller number), with an error of at most 10−3. How many terms of the
sequence do we have to take?

By the theorem

log(2)− SN = bN+1 =
(−1)N

N + 1
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So first we need to have N + 1 ≥ 1000, which yields N ≥ 999. But when
N = 999 we have bN+1 = −1

1000
, so the error is negative, which means that SN

is bigger than log(2), not smaller! Then the first N such that SN satisfies
our conditions as an approximation of log(2) is N = 1000.

Example 7. Consider the series
∑∞

n=2
(−1)n
n−
√
n
.

1. Show that it converges.

2. Set S to be the value of the series. What is the sign of S?

3. Find an N such that |S − SN | ≤ 10−3

1. The sequence is alternating and clearly goes to zero, so we only have
to prove that it is decreasing. Set f(x) = 1

x−
√
x
. Proving that f(x) is

decreasing for x ≥ 2 is equivalent to proving that g(x) = x −
√
x is

increasing. We have g′(x) = 1− 1
2
√
x

which is greater than 0 for x ≥ 2.
So by the alternating test our series converges.

2. To answer the second question, fist set by convention bn = (−1)n+1

n+1−
√
n+1

so that bn is exactly the n-th term in the sum. By the remainder part
of the theorem, 0 ≤ S − S1 ≤ b2 (note that S2 is positive). Adding S1

to all terms, we get S1 ≤ S ≤ S1 + S2. Now, S1 is just b1, so we get
1

2−
√
2
≤ S ≤ 1

2−
√
2
− 1

3−
√
3
. The terms on the right and left are positive,

so S is positive. In fact, this always work! If a series converges by the
alternating test then its value is between 0 and the first term.

3. We need N+1−
√
N + 1 ≥ 103. Let’s begin with a very weak estimate.

For N ≥ 3 we have for sure that
√
N + 1 ≤ N+1

2
, so N + 1−

√
N + 1 ≥

N+1
2

and N = 1999 works. This is a perfectly valid answer. Now, what

if we want a sharper solution? Set u =
√
N + 1. Then our inequality

becomes
u2 − u ≥ 103

solving the quadratic polynomial and taking the positive solution we
get

u =
1 +
√

1 + 4000

2
≤ 33

so √
N + 1 ≥ 33⇒ N + 1 ≥ 1089

is the sharp solution to our question.
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