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Abstract Given the important role latent variable models play, for example in statis-
tical learning, there is currently a growing need for efficient Monte Carlo methods
for conducting inference on the latent variables given data. Recently, Desjardins
et al. (2010) explored the use of the parallel tempering algorithm for training re-
stricted Boltzmann machines, showing considerable improvement over the previous
state-of-the-art. In this paper we continue their efforts by introducing the infinite
swapping algorithm, an MCMC method first conceived when attempting to optimise
performance of parallel tempering (Dupuis et al. (2012)). We implement a Gibbs-
sampling version of infinite swapping and evaluate its performance on a number
of test cases, concluding that the algorithm enjoys better mixing properties than
both persistent contrastive divergence and parallel tempering for complex energy
landscapes associated with restricted Boltzmann machines.

1 Introduction

Consider a latent variable model with probability density of the form

p(v) =
1

Z(θ) ∑
h

exp{−Eθ (v,h)}, (1)

where v represent visible units and h hidden units, Z(θ) is an unknown normalising
constant, and θ an unknown parameter. The function Eθ is referred to as the energy
function. Training such models by maximum likelihood through, e.g., Stochastic
Gradient Descent (SGD) using a training set of independent samples of visible units
often requires Markov chain Monte Carlo (MCMC) methods. When the energy
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landscape is complex, convergence to the desired stationary distribution may be slow
because the Markov chain tends to get stuck near local minima. In the context of
training in machine learning, this phenomenon might result in significant gradient
estimation error.

A simple, yet interesting model of the form (1) is the Restricted Boltzmann
Machine (see Section 2), which is prominent in statistical learning and used in various
deep architectures. It is particularly successful in collaborative filtering, for instance
in assigning ratings of movies to users, see [28]. Training of restricted Boltzmann
machines have been gradually improved from contrastive divergence [16, 17], to
persistent contrastive divergence [32] and most recently parallel tempering [3]. In a
sense this paper continues the effort initiated in [3] by proposing the infinite swapping
(INS) algorithm, designed to overcome rare-event sampling issues, for training
restricted Boltzmann machines. Moreover, we investigate via an empirical study the
impact the choice of training algorithm has on classification. This partially answers a
question posed in [3], namely what impact the use of parallel tempering, and more
generally extended ensemble Monte Carlo methods, may have on classification tasks.

Parallel tempering (PT) [9, 12, 31] has become a standard tool for molecular dy-
namics simulations, see for example [9, 13, 19, 22, 26, 30] and the references therein.
The idea is that for models where there is a parameter acting like a temperature - the
canonical case is a Gibbs measure and the associated (inverse) temperature, similar
to (1) - one runs multiple Markov chains, each with a different “temperature”, and
couple them via swaps of the particle locations at random times according to a given
intensity, see Section 3 for further details.

The infinite swapping algorithm was introduced in [8] as an improvement of
parallel tempering, with documented success in a variety of chemical and biolog-
ical physics settings. Consequently, it serves as a natural candidate for potentially
improving training of machine learning models. It can be viewed as the limit of PT
when the swap rate is sent to infinity; in [8] the corresponding sampling scheme is
shown to be optimal from a large deviations perspective and in [5] a more in-depth
analysis of PT and INS is carried out in the setting of continuous-time jump Markov
processes. Recently [23] studied the ergodicity properties of INS at low temperature,
deriving Eyring-Kramers formulae for the spectral gap and the log-Sobolev constant,
showing superiority of infinite swapping over overdamped Langevin dynamics.

In addition to the theoretical results of [8, 5, 23] on the properties of PT and INS,
recent empirical studies show superior performance of INS compared to PT and
other Monte Carlo methods for a range of common performance measures [24, 7, 4].
So far the main application area for INS has been chemical and biological physics
and adjacent areas, see for example [6, 21, 34, 25]. However, as extended ensemble
methods, such as PT, are becoming increasingly popular for MCMC simulations in
a wide range of areas, it is natural to consider INS in the same settings. Statistical
learning and latent variable models is one such example where metastability is often
a hindrance in the training phase.

In this paper we propose to use the INS algorithm in the training phase of a
restricted Boltzmann machine to improve mixing of the underlying Markov chain
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and to facilitate accurate estimation of gradients. The contributions of this paper
include

• an implementation of a Gibbs sampling version of the infinite swapping algorithm
for latent variable models,

• details on the infinite swapping algorithm for training restricted Boltzmann ma-
chines,

• empirical comparison of the performance of training restricted Boltzmann ma-
chines using infinite swapping, parallel tempering, and persistent contrastive
divergence.

So far infinite swapping has mainly been considered for Langevin and Glauber
dynamics [8, 21, 5] in continuous time. The paper [8] also contains discrete-time
large deviations results and discusses the corresponding sampling schemes. For the
application to restricted Boltzmann machines, the large size of the state space under
consideration, although discrete, renders Glauber dynamics unsuitable because of
the need to compute the full transition matrix. To the best of our knowledge this
paper is the first to implement a Gibbs sampling version of INS that circumvents this
computational issue. Although the present study is limited to restricted Boltzmann
machines, it is plausible that this Gibbs sampling version of the infinite swapping
algorithm can be further generalised to more complex latent variable models. In [2]
the authors introduce Hamiltonian Monte Carlo in the setting of variational auto-
encoders, another prominent latent variable model, to obtain unbiased estimators of
gradients with low variance.

The remainder of the paper is organised as follows: In Section 2 the restricted
Boltzmann machine is introduced. The parallel tempering and infinite swapping
algorithms are presented in Section 3. An empirical study of INS performance is
provided in Section 4 and the conclusions are summarised in Section 5.

2 Restricted Boltzmann machines

The Restricted Boltzmann Machine (RBM) [29, 11, 17, 33] is a probability distri-
bution over an N-dimensional boolean space {0,1}N . Let v ∈ {0,1}N , h ∈ {0,1}M

be row vectors and set x = (v,h) ∈ {0,1}N+M . Let W be a real-valued parameter
matrix of dimension N×M, and let b ∈ RN , c ∈ RM be real-valued bias parameter
row vectors. The RBM probability function is defined as

p(v) = Z−1
∑
h

e−E(v,h), (2)

E(v,h) =−vWhT −vbT −hcT , (3)

An observed data point enters the RBM model as a vector of visible units v∈ {0,1}N ,
while h ∈ {0,1}M denotes accompanying hidden units, i.e., the latent variables. The
combined vector x = (v,h) ∈ {0,1}N+M is referred to as a particle.
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The latent structure facilitates simulation from the joint distribution through block
Gibbs sampling, as block conditional probabilities p(v|h) and p(h|v) are available
in explicit form and are easy to sample from. Indeed, letting e(n) denote the n:th
coordinate of any vector e, it holds that

p(v|h) ∝

N

∏
n=1

exp{v(n)(WhT +bT )(n)}.

Let sigm be the sigmoid function sigm(x) = (1+ e−x)−1. The probability function
factorises and straightforward algebra gives

p(v(n) = 1|h) = sigm[(WhT +bT )(n)], (4)

p(h(m) = 1|v) = sigm[(vW+ c)(m)]. (5)

Hence, sampling from the conditional distributions p(v|h), p(h|v) amounts to sam-
pling independent Bernoulli variables, with probabilities extracted from the sigmoid
forms (4) and (5). Samples from the joint distribution p(v,h) ∝ exp{−E(v,h)} can
thus be obtained by running a block Gibbs Markov chain [18].

Inference for the parameters in a RBM, for a particular data point v, is often
conducted via maximum likelihood, by minimising the negative log-likelihood,
− log p(v), with respect to the parameters W,b,c. This is usually achieved with
gradient descent methods, for which an estimate of the gradient ∇p(v) is needed.

A calculation of the gradient coordinate corresponding to the partial derivative
w.r.t the parameter wn,m at row n and column m in the matrix W yields (see [10] for
details)

∇wn,m (− log p(v)) = . . .=−v(n)p(h(m) = 1|v)+E[v(n)p(h(m) = 1|v)]. (6)

The first and second term on the right-hand side of (6) are often referred to as
the positive phase and the negative phase, respectively. The negative phase is the
problematic term as it amounts to taking expectation under the joint distribution of
(v,h). However estimates of this part of the gradient can be obtained via the Gibbs
sampling procedure.

When the number of data points |D| = d is large, the standard technique for
minimising the average negative log-likelihood is (mini-batch) stochastic gradient
descent (SGD). In the SGD method, a subset D′ ⊂D of size |D′|= d′ < d is chosen at
random and the gradient coordinate w.r.t. wn,m at current parameter state is estimated
by

1
d′ ∑v∈D′

−v(n)p(h(m) = 1|v)+E[v(n)p(h(m) = 1|v)]. (7)

Here the expectation is taken w.r.t to p(v). Similar to standard gradient descent, the
estimate of the gradient is used to update the parameter vector in step n+1 through
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(W,b,c)n+1 = (W,b,c)n−η(∇̃W, ∇̃b, ∇̃c)

where η is a scalar learning rate, and where ∇̃x denotes the estimated gradient
coordinates for the matrix/vector x.

For RBMs, where the negative phase is estimated using Gibbs sampling, SGD
requires simulations to be run for each training step. Usually, a Gibbs chain of size d′

is run for a fixed number of κ steps before an average is formed with the end samples.
Starting the Gibbs chain anew at sampled data points in each gradient step is referred
to as the contrastive divergence (CD-κ) training method. Since long burn-in periods
might be expected with this approach, the Gibbs chain for a certain training step
is typically started at the last samples of the previous training step. This method
is referred to as persistent contrastive divergence (PCD-κ). Current state-of-the-art
method for training RBMs is arguably a combination of PCD-1 and PT.

3 Parallel tempering and infinite swapping for Gibbs samplers

Consider the setting of Section 2, that is a RBM trained with SGD with batch size d′.
Parallel tempering amounts to multiple Gibbs chains of size d′ being run at different
temperatures and particles being exchanged according to a Metropolis-Hastings rule.
In the case of two temperatures, in addition to the original model (2) with temperature
τ1 = 1, an additional RBM with a higher temperature τ2 > 1 is introduced:

pτ2(v) = Z−1
τ2 ∑

h
e−

1
τ2

E(v,h)
.

It is easy to check that all calculations above for τ1 = 1 carry over in a straightforward
manner to a RBM with τ2 > 1. The PT method proceeds by running two Gibbs chains
C1,C2, at respective temperature, each of size d′. Let x1,1, ...,x1,d′ , x2,1, ...,x2,d′

denote the particles in C1,C2 respectively. After κ Gibbs steps, particles x1,i,x2,i
i = 1, ...,d′ are swapped with probability

1∧
exp{− 1

τ1
E(x2,i)− 1

τ2
E(x1,i}

exp{− 1
τ1

E(x1,i)− 1
τ2

E(x2,i)}
.

Swaps of this kind are attempted according to the so-called swap rate (the jump
intensity) of the algorithm. The process then starts anew with running C1,C2, at their
respective temperatures for another κ Gibbs steps. The resulting process is ergodic
with the product measure pτ1 ⊗ pτ2 as stationary distribution. Thus, the chain C1
converges in distribution to pτ1 , the distribution of interest.

There are several ways of extending PT to additional temperatures. Here, we fol-
low the common approach of only attempting swaps between neighbouring particles,
see [20]. For K chains with respective temperatures τ1 < ...,< τK , all swaps of the
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form [xk,i,xk+1,i]→ [xk+1,i,xk,i] are attempted after every κ Gibbs step, starting at
k = 1 and working upward to k = K−1. The swapping probabilities used are thus

1∧
exp{− 1

τk
E(xk+1,i)− 1

τk+1
E(xk,i}

exp{− 1
τk

E(xk,i)− 1
τk+1

E(xk+1,i)}
.

The swapping mechanism limits the degree of dependency between samples and
forces quicker mixing of samples, thus speeding up the convergence of C1.

Compared to parallel tempering, the infinite swapping algorithm proposes a
different mechanism for exchanging information between the tempered Gibbs chains.
In PT, the particle exchange probabilities are given but the proposed changes (only
neighbouring particles, etc.) can be chosen. In INS the full mechanism for exchange
is used; in a sense, all possible swaps are attempted.

Consider K chains C1, ...,CK with temperatures τ1 < τ2 < ... < τK and assume
each chain contains only one particle (extending to the case of d′ particles is straight-
forward). Denote by xk = (vk,hk) the particle in chain k and let X = (x1, ...,xK)
denote the vector of particles. Let σ j, j = 1, ...,K! denote a permutation of the tem-
perature indices [1, ...,K], for some ordering of the K! permutations. Write the RBM
probability function of temperature τk as pk(x) = Z−1

k exp{−E(x)/τk}. Define the
symmetrised distribution p̄ and the joint probability distribution pσ j across the chains
for permutation σ j as

p̄(X) =
1

K!

K!

∑
j=1

pσ j(X), pσ j(X) =
K

∏
k=1

p
σ k

j
(xk),

where σ k
j denotes the k:th component of the permutation σ j. The INS algorithm

consists of first running the Gibbs chains independently for κ Gibbs steps; each
Gibbs-step amounts to first sampling a point h from p(h|v) and then a point v from
p(v|h). In the next step temperatures are swapped between the chains according to
permutation σ j with probability

ρσ j(X) =
pσ j(X)

∑
K!
j=1 pσ j(X)

=
pσ j(X)

K!p̄(X)
.

The procedure is then repeated, resulting in a Markov chain sample generation
scheme. The collective Markov chain (C1, ...,CK) with the INS temperature swapping
mechanism is referred to as the INS-Gibbs Markov chain. The isolated κ Gibbs steps
together with one swapping operation will be referred to as an INS-Gibbs step of the
INS-Gibbs Markov chain. Note that for large K, since the number of permutations
is K!, the computational cost of INS can be too high for practical purposes. One
can then use so-called partial INS (PINS) [8], in which temperatures are arranged
into subgroups, swaps are attempted within one such subgroup at a time and with a
handoff-rule for changing between subgroups. This reduces the computational cost
of INS significantly. For example, in [4] K = 30 temperatures are used for a Lennard-
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Jones model of 55-atoms argon cluster. Similarly, in [8] a collection of K = 45
temperatures are used for a Lennard-Jones cluster of 38 atoms. In these complex
potential energy landscape the partial infinite swapping approach is appreciably more
effective than conventional tempering approaches; see [7] for an extensive numerical
study.

To obtain an estimate of Ep1 [ f (x)] for any real-valued function f , a weighted
average of the particles of each chain is formed:

∑
K
k=1 f (xk)

(
∑

σ ;σk=1

ρσ (X)
)
, (8)

where {σ : σ k = 1} is the subset of permutations that have 1 as their k:th component
(that is, that assign the k:th chain temperature τ1). Proofs that the INS-Gibbs Markov
kernel has the symmetrised distribution p̄ as invariant distribution, and that the
estimate (8) has the desired expected value Ep1 [ f (x)] if samples are generated from
p̄, are included in the Appendix as Proposition 1 and 2, respectively. The proofs are
similar to existing results and are included for completeness.

Because the sample space is finite and the Markov chains are irreducible, Propo-
sition 1 ensures that the empirical measures of the full chain converges to the sym-
metrised distribution. Consequently, if the INS-Gibbs Markov chain is run long
enough, its empirical measure will approximate the symmetrised distribution.

Algorithm 1 is an outline of the INS algorithm for obtaining an estimate of
Ep1 [ f (x)] in the setting of Gibbs-sampling. For training a RBM, the last step of

Algorithm 1 INS-Gibbs Algorithm
1. Set number of chains K, temperature values [τ1, ...,τK ], number of Gibbs steps κ between swap

attempts, number of swap attempts q and initial data points.
2. Start chains with initial data points.
3. for i in 1 : q

a. Run each chain for κ Gibbs steps.
b. Draw permutation σ with probability ρσ

c. Permute the temperatures of the chains according to permutation σ

4. Form an estimate as

y = ∑
K
k=1 f (xk)

(
∑

σ ;σ k=1

ρσ (X)
)

the algorithm corresponds to using the gradient negative phase estimate as f and
the tempered RBM joint distributions for forming the weights. While obtaining an
estimate as described in the algorithm, one can use the so-called particle/temperature-
associations as a diagnostic of non-convergence. These are quantities than can be
computed while running the algorithm and used to indicate whether it is possible for
the empirical measure to have converged; see [4, 5] for details and an analysis of this
diagnostic.
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4 Numerical experiments

In order to evaluate the performance of INS for training RBMs a series of numerical
experiments are conducted. Two types of data sets, described in Section 4.3, are
considered. For the smaller data sets the exact likelihood and exact gradient can
both be computed, which enables comparison of the training algorithms. For larger
data sets neither the exact likelihood nor the exact gradient is tractable. Instead a
classification Boltzmann machine will be used to evaluate the training algorithms;
the quantity used for comparison is referred to as prediction accuracy.

4.1 Prediction accuracy

To compare training algorithms using a classification Boltzmann machine, each data
point in the data set is concatenated with a vector c ∈C representing its class, where
C denotes the subspace of {0,1}dim(c) such that exactly one coordinate is nonzero,
and dim(c) is the number of classes. Such a vector is called a one-hot vector in
the machine learning literature. For a RBM defined on an extended visible state
space ṽ = (v,c), the conditional probability for class type c given v can be computed
explicitly: it holds that

p(c|v) = p̂(c,v)/Z
p̂(v)/Z

=
p̂(c,v)
p̂(v)

=
p̂(c,v)

∑
c∈C

p̂(c,v)
,

and the terms on the right-hand side can be computed with the marginalisation
trick (see the Appendix for a description). The above expression can be used for
classification, and for calculating classification error through comparing with the
actual class type for data points. The efficiency of the algorithms can be evaluated
by measuring the classification capabilities of each parameter state during training
on the extended data sets. More specifically, for each parameter state the prediction
accuracy,

A = ∑
(vi,ci)∈D′

log
( p̂(ci,vi)

∑
c∈C

p̂(c,vi)

)
,

is calculated, where D′ is a randomised subset of data, for each state during training.
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4.2 Parameters and settings

This section describes the parameters involved in the training of RBMs and the
choices made for this work. The main objective of the numerical experiments is
a comparison with [3], where performance results for PT in the RBM setting are
presented. Parameters have therefore been selected accordingly, and no attempts have
been made to find optimal parameter settings for the sampling and training tasks
under consideration. Where possible, external recommendations have been taken into
account, as have empirical observations from experiments on the impact of parameter
changes.

4.2.1 Learning rate

The learning rate η can be chosen as a fixed constant or as a function of, e.g., the
number of updates in SGD. A large learning rate increases the speed of training but
may result in inaccurate optima or degenerate behaviour, while a small learning rate
allows for greater accuracy at the cost of training speed. Numerical experiments
indicate that a learning rate of 0.1 yields satisfactory performance, and this value is
chosen throughout. This is also consistent with experiments in [3].

4.2.2 Initialization

Throughout the experiments, the initial weights and biases are drawn randomly from
normal distributions of small variance (order of magnitude 0.01) and zero expected
value, in line with the recommendations in [15]. Empirically, different draws do not
yield different results, nor smaller changes in the variance parameter.

4.2.3 Training steps

The number of training steps are set to 10000 in all the numerical experiments, as all
the relevant effects seems to appear within this range. Furthermore, in the examples
of lower dimension, empirical observations suggest the likelihood is maximal after
this number of steps. If the training rate is decreased or if the data dimension is
significantly increased, more training steps would likely be needed.

4.2.4 Batch size

We set the batch size to be 10 thoroughout. Empirical studies show that this batch size
is sufficient for non-degenerate behaviour of the likelihood. A larger batch size yields
a more precise gradient estimate, but causes longer computational time. Therefore,
for computational efficiency, a small batch size is preferred.
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4.2.5 Temperatures

Both PT and INS run on temperatures {1, 2, 3, 4, 5}. Empirical studies show
no significant difference when adding more temperatures for the examples under
consideration. However, for certain parameter setups, fewer temperatures can result
in degenerate behaviour similar to what is observed for a single chain, see Section
4.4. At five temperatures, no notable difference in running time between INS and PT
is present, allowing for a fair comparison of the algorithms. For a large number of
temperatures, the PT algorithm is considerably faster and a fair comparison would
then be with PINS rather than INS. Moreover, mixing properties are satisfactory for
the temperatures selection. This is also in line with demonstrations in [3], where
5 temperatures are considered (of roughly the same magnitude, however the exact
temperature values are not disclosed).

4.2.6 Number of swaps

For PT, one swap is attempted for every step in the Markov chain. This choice makes
the experiments consistent with [3]. Moreover, it is experimentally observed that an
increase in the number of swap attempts per training step does not seem to have any
significant effect on the results.

4.3 Data sets

We use two types of data sets for empirical evaluation of the INS algorithm for
training a RBM. The first is a collection of toy data sets similar to that used in [3]; by
changing the size of the toy data sets we can move from cases where the gradient
can be computed exactly to those where this is not possible for either gradients or
likelihoods. The second type of data set we consider is the well-known MNIST data
(described in detail in a following subsection).

Toy data

The toy data sets are generated according to a generalisation of the ”Toy Data” gener-
ating mechanism in [3]. The procedure involves choosing the number of modes µ , the
distance between modes δ , the number of samples per modes ν and a permutation
probability π; we require the number of modes to be a power of 2. The data is
generated as follows:

1. Compute i = log2(µ), the number of binaries needed to encode the modes.
2. Create a list of the binary encoding of each mode.
3. Create a list of expanded mode encodings by expanding each encoding in 2. with

δ copies.
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4. Generate ν copies of each expanded mode encoding from 3.
5. Flip every binary variable in 4. independently with probability π , to obtain the

explanatory data.
6. Add a one-hot vector representing mode type to get the joint explanatory and

response data.

The following example is for (µ,δ ,ν ,π) = (4, 2, 2, 0.2) :

1. Let i = log2(4) = 2
2. (1,1), (1,0), (0,1), (0,0)
3. (1,1,1,1), (1,1,0,0), (0,0,1,1), (0,0,0,0)
4. (1,1,1,1), (1,1,1,1), (1,1,0,0), (1,1,0,0),

(0,0,1,1), (0,0,1,1), (0,0,0,0), (0,0,0,0)
5. (1,1,1,0), (1,1,1,1), (1,1,0,1), (1,1,1,0),

(0,0,1,0), (0,0,1,1), (0,0,0,0), (1,0,0,0)
6. (1,1,1,0,1,0,0,0), (1,1,1,1,1,0,0,0),

(1,1,0,1,0,1,0,0), (1,1,1,0,0,1,0,0),
(0,0,1,0,0,0,1,0), (0,0,1,1,0,0,1,0),
(0,0,0,0,0,0,0,1), (1,0,0,0,0,0,0,1)

In [3], π is varied over a toy data set without class type attached, with µ = 4,δ = 8,
and ν = 2500. This example is treated in Section 4.4.

MNIST

The MNIST data set is used as a benchmark for training and evaluating machine
learning algorithms1. It consists of 55000 pictures of handwritten images of numbers
0, . . . ,9. One data point is a 28x28 matrix populated with grayscale pixel numbers
between 0 and 1; Figure 1 shows two examples from the data set. In this work we
round each pixel to 0 or 1 in order for the data to fit the binary RBM as described.
Attached to each image is also a one-hot vector of dimension 10 representing number
type.

Fig. 1 Two examples from the MNIST data set

1 The data set, and more information about it, is available on Yann LeCun’s webpage:
http://yann.lecun.com/exdb/mnist/.
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4.4 Evaluating the INS algorithm for small toy data sets

Consider a small toy data set for which the likelihood can be computed exactly and
can be trained with exact SGD (exact gradient computed for a data subsample in
each step). We compare four algorithms:

• exact SGD
• SGD PCD-1
• SGD PCD-1 with Parallel Tempering
• SGD PCD-1 with INS-Gibbs

The exact likelihood and the prediction accuracy is computed for each parameter
state during each training algorithm. In addition, for every step in the respective
Markov chain for PT and INS, the Euclidean distance between the true gradient and
the gradient estimate is computed at two different fixed parameter states (early and
late in the training). This empirical evaluation provides insight into the effectiveness
of the INS-Gibbs algorithm. Moreover, it allows us to compare the non-standard
performance measure prediction accuracy with the likelihood.

The first toy data set was generated using the following parameters: (µ,δ ,ν ,π) =
(4,4,2500,0.2). That is, the number of visible units is 12 (including 4 dimensions
for class type one-hot vectors), and the number of data points is 10000 (see Section
4.3). For the RBM model, the number of hidden units was set to M = 4, the starting
points of the Markov chains were drawn uniformly and the training procedures
were repeated 20 times for each of the algorithms 2. The result of the experiment is
illustrated in Figures 2 and 3.

2 All stochastic behaviour (except the data generation) were run on updated seeds in every iteration.

Page:12 job:main macro:svmult.cls date/time:17-Aug-2019/20:03



Infinite Swapping Algorithm for Training Restricted Boltzmann Machines 13

Fig. 2 Evaluation of different training algorithms on a small toy dataset. Upper: Euclidean distance
from the gradient estimate to the true gradient, for the initial parameter state, as function over Markov
chain steps. Lower: Euclidean distance from the gradient estimate to the true gradient, for the final
parameter state, as function over Markov chain steps.
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Fig. 3 Evaluation of different training algorithms on a small toy dataset. Upper: Average likelihood
trajectory and variation (parameter state likelihood variance estimate). Lower: Average prediction
accuracy trajectory and variation (parameter state prediction accuracy variance estimate).

Next, the experiments of [3] were recreated by using (µ,δ ,ν ,π)= (4,8,2500,0.2).
The number of hidden units was set to M = 6, all other parameters as in the previous
experiment. The results are illustrated in Figures 4 and 5.
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Fig. 4 Evaluation of different training algorithms on a data set generated according to [3]. See
Figure 1 and 2 for subgraph description.

Figures 1-4 show the INS algorithm generally outperforming PCD-1 and being
slightly superior to PT, consistent with previous studies in different contexts. Early in
the training phase gradient estimation is relatively easy and deviations from the true
gradient (as a function over Markov steps) is small. However, INS seems to produce
smaller estimation error and variance, resulting in a more stable behaviour closer to
the true gradient. Estimating the gradient becomes harder later in the training phase
and both algorithms needs to be run for a considerable number of steps in order to
converge. Again, we note that INS outperforms the other algorithms, converging
slightly faster towards 0 distance to the true gradient than PT. The likelihood and
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Fig. 5 Evaluation of different training algorithms on a data set generated according to [3]. See
Figure 1 and 2 for subgraph description.

prediction accuracy graphs paint a similar picture: both show INS performing better,
in terms of average behaviour as well as estimated variance.

Remark 1. The distinction between algorithms regarding the gradient estimate quality
can be expected to increase with decreasing π , as the modes in the data become more
separated; this should increase the importance of good mixing. However, for the
prediction accuracy to be able to distinguish between algorithms, the classification
problem must be sufficiently difficult, motivating the choice of π = 0.2. Indeed, if π

is too small, mixing becomes harder but classification simpler and the algorithms
will all exhibit similar prediction accuracy.
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4.5 Evaluating the INS algorithm for a larger toy data set and
MNIST

The performance of the training algorithm will now be evaluated on the MNIST data
and a larger toy data set. Neither the exact training gradients nor the exact likelihood
computations are now available. However, we can still use the prediction accuracy to
evaluate the training algorithms. For the toy data generation the parameters were set
to (µ,δ ,ν ,π) = (128,150,1000,0.2), i.e the number of visible units is 1050, and
the number of data points is 128000. Moreover, the number of hidden units were set
to M = 600 for the toy data set and M = 500 for MNIST, remaining parameters were
set as in the previous experiments. The outcome is illustrated in Figure 6.

Fig. 6 Average prediction accuracy trajectory and variation for each training algorithm on the
MNIST data set (upper) and the large toy dataset (lower).
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From Figure 6, for the MNIST data INS enjoys the smallest variance initially but
as the number of steps increase the differences between the algorithms have all but
disappeared. Similarly for the toy data set; interesting to note for the toy data set is
that PCD-1 does not display degenerate behaviour as in [3].

Remark 2. The results for MNIST, in particular when compared to those for likeli-
hood estimation in [3], may be explained by the classification task being too simple,
the modes being too few and too distinguished. In the large toy data set however,
modes are greater in number and more similar. Here, we again observe a small
difference in performance, both in terms of average behavior and variance. A reason
might be that energy landscapes in higher dimensions tend to be less equipped with
poor (in terms of training) local minima, putting less demand on gradient estimate
quality [27].

5 Conclusions

We have presented the INS algorithm in a Gibbs-sampling setting for training RBMs,
and conducted an empirical study of the performance of INS compared to persistent
contrastive divergence and parallel tempering. The INS algorithm performs superior
or equal to all other training algorithms, for the cases investigated; the difference
is most notable for smaller data sets. One possible explanation is that the gradient
estimate becomes hard late in training as the energy landscape becomes increasingly
complex. A complex energy landscape prevents mixing, resulting different perfor-
mances between the algorithms, due to their different mixing capabilities. As PT was
developed to improve mixing over the PCD-1 method, and INS has been shown to
be superior to PT in several models, the results of the empirical study are in line with
expectations. The PCD-1 method even exhibits a degenerate behavior due to its poor
mixing, as was also previously observed in [3].

For MNIST and the larger toy data set the modes of the distribution are further
apart, which should prevent mixing to a stronger degree than for the other data sets.
Therefore, it is a first surprising that the different algorithms perform more similar
here than for the toy data sets in Section 4.4. One possible explanation is provided by
[27]: even though the energy landscape is complex, the collection of local minima
that one is likely to end up in tends to promote good performance. However this
line of reasoning does not take into account how SGD moves around in the energy
landscape but instead looks at a static picture and “counts” the number of critical
points of different indices. Recent works suggest that this is too simplistic a view and
that dynamics should be considered as well, see for example [1].

Another potential explanation for the observations for MNIST and the larger toy
data set is that the performance measure, the prediction accuracy defined in Section
4.1, does not reflect the algorithms ability to mix at a fine enough level. This is
combined with the fact that the classification task might be too simple, rendering
the prediction accuracy incapable to distinguish between the different algorithms
for training; see the remarks in Sections 4.4-4.5. Indeed, the empirical study in [3]

Page:18 job:main macro:svmult.cls date/time:17-Aug-2019/20:03



Infinite Swapping Algorithm for Training Restricted Boltzmann Machines 19

suggest significant improvements of PT over PCD-1 also for MNIST when likelihood
is used to measure performance, whereas this is not observed when considering the
prediction accuracy for the Boltzmann classifiers. Still, also for the toy data set in
Section 4.5 and using the prediction accuracy, although the PCD-1 method seems of
best quality early in training, INS again has slightly better classification capability
later in training compared to the other methods.

Future work includes extending INS to variational auto-encoders, with an aim
similar to [2], together with more extensive empirical studies, including both other
data sets and comparing different performance measures (prediction accuracy, likeli-
hood). These studies will also consider the impact of different hyperparameters in PT
and INS (number of temperatures, choice of temperatures, swap rate for PT etc.), and
performance when equal computational time is allotted to the different algorithms.

6 Appendix

6.1 The marginalisation trick

Let p̂(v,h) denote the unnormalised joint probability function for (v,h) and p̂(v)
denote the unnormalised probability function for v (suppressing parameter depen-
dence):

p̂(v,h) = exp{−E(v,h)}, p̂(v) = ∑
h

p̂(v,h).

For the unnormalised joint distribution, by Baye’s rule it holds that, for any h,

p̂(v) =
p̂(v,h)

p̂(v,h)/ p̂(v)
=

p̂(v,h)
p(h|v)

.

The left-hand side is independent of h and can thus be computed by choosing h
arbitrarily, and inserting it in the computable operation on the right hand side. Taking
h≡ 1 yields

∑
h

e−E(v,h) =
e−E(v,1)

p(1|v)
=

e−E(v,1)

∏
M
m=1 sigm[(vW+ c)(m)]

.

In practice, h must be chosen with care in order to avoid numerical division by zero.
For the numerical experiments in this paper

h = max
h

p(h|v) = (round(p(h(1) = 1|v)), ...,round(p(h(M) = 1|v))),

is used where round denotes the rounding operator.
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6.2 Propositions

Proposition 1. The INS-Gibbs Markov kernel has the symmetrised distribution p̄ as
invariant distribution.

Proof. Let Gκ,σ j(X|X′) be the probability distribution for X after κ Gibbs steps when
starting in X′ and temperatures are assigned according to σ j. Given values X′, the
following probability distribution holds for sample values X obtained after one full
INS-Gibbs step:

K!

∑
j=1

ρσ j(X
′)Gκ,σ j(X|X

′).

Integration w.r.t the symmetrised distribution yields

∑
X′

K!

∑
j=1

ρσ j(X
′)Gκ,σ j(X|X

′)p̄(X′)

=
1

K!

K!

∑
j=1

∑
X′

pσ j(X
′)Gκ,σ j(X|X

′)

=
1

K!

K!

∑
j=1

pσ j(X) = p̄(X).

In the first step the definition of ρσ j is used and in the second last step the fact that
the Gibbs kernel Gκ,σ j has the joint distribution pσ j as its invariant distribution. ut

Proposition 2. Let Ep̄ and Ep1 denote expectation with respect to p̄ and p1, respec-
tively. Then,

Ep̄

[ K

∑
k=1

f (xk)
(

∑
σ ;σ k=1

ρσ (X)
)]

= Ep1 [ f (x1)].

Proof.
For any k = 1, ...,K, it holds that
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E p̄

[
f (xk)

(
∑

σ ;σ k=1

ρσ (X)
)]

=Ep̄

[
f (xk)

(
∑

σ ;σk=1

ρσ (X)
)]

= ∑
X

f (xk)
(

∑
σ ;σ k=1

ρσ (X)
)

p̄(X)

= ∑
X

f (xk)
(

∑
σ ;σ k=1

pσ (X)

K!

)
=

1
K! ∑

X
f (xk)

(
∑

σ ;σk=1

K

∏
i=1

pσ i(xi)
)

=
1

K! ∑
X

f (xk)
(

∑
σ ;σ k=1

p
σk(xk)

K

∏
i 6=k

pσ i(xi)
)

=
1

K! ∑
xk

f (xk)p1(xk) ∑
xi,i 6=k

(
∑

σ ;σ k=1

K

∏
i 6=k

pσ i(xi)
)

=
1

K! ∑
xk

f (xk)p1(xk)(K−1)!

=
1
K

Ep1 [ f (x1)].

Summing over k = 1, ...,K provs the claim. ut
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