Resolvable Ambiguity: Principled Resolution of
Syntactically Ambiguous Programs

Viktor Palmkvist
vipa@kth.se
Digital Futures and EECS
KTH Royal Institute of Technology
Stockholm, Sweden

Philipp Haller
phaller@kth.se
Digital Futures and EECS
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract

When building a new programming language, it can be use-
ful to compose parts of existing languages to avoid repeating
implementation work. However, this is problematic already
at the syntax level, as composing the grammars of language
fragments can easily lead to an ambiguous grammar. State-
of-the-art parser tools cannot handle ambiguity truly well:
either the grammar cannot be handled at all, or the tools
give little help to an end-user who writes an ambiguous
program. This composability problem is twofold: (i) how
can we detect if the composed grammar is ambiguous, and
(ii) if it is ambiguous, how can we help a user resolve an
ambiguous program? In this paper, we depart from the tra-
ditional view of unambiguous grammar design and enable
a language designer to work with an ambiguous grammar,
while giving users the tools needed to handle these ambi-
guities. We introduce the concept of resolvable ambiguity
wherein a user can resolve an ambiguous program by editing
it, as well as an approach to computing the resolutions of
an ambiguous program. Furthermore, we present a method
based on property-based testing to identify if a composed
grammar is unambiguous, resolvably ambiguous, or unre-
solvably ambiguous. The method is implemented in Haskell
and evaluated on a large set of language fragments selected
from different languages. The evaluation shows that (i) the
approach can handle significantly more cases of language
compositions compared to approaches which ban ambiguity
altogether, and (ii) that the approach is fast enough to be
used in practice.

CC 21, March 2-3, 2021, Virtual, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 30th ACM SIGPLAN International Conference on Compiler
Construction (CC °21), March 2-3, 2021, Virtual, Republic of Korea, https:
//doi.org/10.1145/3446804.3446846.

Elias Castegren
eliasca@kth.se
Digital Futures and EECS
KTH Royal Institute of Technology
Stockholm, Sweden

David Broman
dbro@kth.se
Digital Futures and EECS
KTH Royal Institute of Technology
Stockholm, Sweden

CCS Concepts: « Theory of computation — Grammars
and context-free languages; Regular languages; « Soft-
ware and its engineering — Parsers; « General and ref-
erence — Performance; Evaluation.

Keywords: Syntax, Ambiguity

ACM Reference Format:

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Bro-
man. 2021. Resolvable Ambiguity: Principled Resolution of Syn-
tactically Ambiguous Programs. In Proceedings of the 30th ACM
SIGPLAN International Conference on Compiler Construction (CC
"21), March 2-3, 2021, Virtual, Republic of Korea. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3446804.3446846

1 Introduction

The potential advantages of a domain-specific language (DSL)
over a general-purpose programming language are quite
appealing: a tailor-made tool for a particular kind of prob-
lems, enabling higher-level reasoning, which in turn gives
opportunities for more analysis and optimization. However,
implementing a programming language is no easy task, even
if the final product is much smaller in scope than a general-
purpose programming language.

A key concept in software engineering is that of compo-
sitionality: making a greater whole by composing smaller
pieces. When implementing a programming language this
can take the shape of language composition [10, 18, 30, 31,
40]: composing smaller language fragments to create a larger
language. However, this approach brings its own set of chal-
lenges. In this paper we consider one of these challenges:
the syntax of a composed language (i.e., its grammar) can
become ambiguous even if its composed language fragments
are individually unambiguous. Worse still, we generally can-
not know if the composed grammar is ambiguous; detecting
if a context-free grammar is ambiguous is undecidable [11].
Numerous approaches exist for dealing with this problem,
ranging from heuristics for ambiguity detection [5, 7, 8], to
restrictions on the composed grammars [24].

https://doi.org/10.1145/3446804.3446846
https://doi.org/10.1145/3446804.3446846
https://doi.org/10.1145/3446804.3446846

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

Note that all these efforts are for a singular cause: to reject
all ambiguous grammars. This is a natural approach given
that most literature describes this as the singular way to
handle ambiguity [3, 13, 21, 38, 43]. Following our previous
work [31] we take a slightly less drastic approach: we merely
reject ambiguous programs, similarly to [14, 16]. This means
that grammar composition is less likely to be problematic
because grammar ambiguity is not automatically a problem.
However, it presents us with a new question: what do we do
when programmers write an ambiguous program?

An ambiguous program is normally defined as a program
with more than one parse tree (or equivalently, multiple left-
most derivations). We consider a slightly different definition:
an ambiguous program is a program with more than one
abstract syntax tree (AST). We thus consider parsing to be a
function parse from programs to sets of ASTs, where each
AST is a different interpretation of a parsed program.

Previous approaches that handle ambiguity do so by show-
ing each valid (localized) AST [14, 16, 31], with the expecta-
tion that the user figures out how to resolve the ambiguity,
typically using grouping parentheses. This is quite useful for
a language designer, but less appropriate for an end-user; the
AST is an implementation detail, and it may not be possible
for an end-user to disambiguate the program.

Our approach instead presents an unambiguous program
for each possible interpretation, i.e., we present concrete
rewrites that resolve the ambiguity. Slightly more formally,
given an ambiguous program p, and for all ¢ € parse(p) we
wish to present another program p’ such that parse(p”) = {t}.
As mentioned, this is not always possible: not all trees ¢ have
a corresponding unambiguous program p’. In such a case we
say that p is unresolvably ambiguous.

Extending this concept to grammars, we have three possi-
ble classifications of a grammar:

1. It is unambiguous.

2. It is resolvably ambiguous, i.e., every ambiguous pro-
gram can be resolved by a programmer.

3. It is unresolvably ambiguous, i.e., there is at least one
ambiguous program that a programmer cannot re-
solve.

The state of the art in parsing does not distinguish the latter
two. We make a distinction between resolvable and unresolv-
able ambiguities, and show how to automatically suggest
resolutions for the former.

However, detecting whether a grammar is ambiguous (re-
solvably or unresolvably so) is still difficult. Our approach
builds upon property-based testing (PBT) [12]. We formulate
“unambiguous” and “unambiguous or resolvably ambiguous”
as properties of programs, then generate an arbitrarily large
amount of syntactically valid programs of increasing size for
a given grammar and test if the properties hold. Any coun-
terexamples are shrunk and then reported to the user. The
formulation is simple, and surprisingly effective in practice:

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

when a property does not hold for a grammar we typically
find a counterexample within a few seconds.

As a further refinement, we also allow a language de-
signer to mark a discovered resolvable ambiguity as accepted,
whereby our PBT-tool no longer reports that ambiguity (or
variations of it), allowing other ambiguities to be reported,
should they be present.

In summary, we make the following contributions:

o The concept of resolvable ambiguity and an associated
language design workflow (Section 2).

e To enable computing resolutions we introduce the
concept of an AST-language, the set of programs that
can be parsed as (at least) a given AST. A key insight is
to formulate these as visibly-pushdown languages [4],
which enables later analysis (Section 4).

e We use these AST-languages to compute the resolu-
tions of resolvably ambiguous programs. Our approach
localizes the ambiguous part of the program (similar to
previous approaches), and additionally, in the common
case also produces concrete rewritings into unambigu-
ous programs (Section 5).

We also make the following claims: (i) our approach can han-
dle significantly more cases of language composition without
additionally modifying the composed language when com-
pared with approaches requiring unambiguous compositions,
and (ii) our implementation is fast enough for practical use,
both for resolving ambiguities in written programs and find-
ing ambiguities in grammars using PBT. We support these
claims with an implementation that we describe and evaluate
in Section 6. Note that we make no contributions or claims
on the process of parsing itself, though we do place some
restrictions on its output, see Section 5.

2 Resolvable Ambiguity and a Language
Design Workflow

Given a function parse from programs to sets of ASTs, we
say that a program p is resolvable iff:

Vi € parse(p). Ip’. parse(p’) = {t}

Note that an unambiguous program is trivially resolvable.
With this new tool in hand we propose the workflow pre-
sented in Figure la. The language designer starts by picking
the language fragments they wish to include, which yields a
composed language. Next, we run our PBT analysis which
gives one of three results:

e Resolvably ambiguous. In this case we have a choice:
either we change the grammar to remove the ambi-
guity, or we accept the ambiguity and leave it in the
language. If we leave it the tool will not report this
particular ambiguity again.

Resolvable Ambiguity: Principled Resolution of Syntactically Ambiguous Programs

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

Ambiguity error with 2 alternatives.

Unresolvably
Ambiguous

Change the
Grammar

if Ca){if (...) ... } else ...
if (Ca){if (...) ... else ... }
example#2:1:

Composed
L Resolvably 2. if (a
anguage Aobouons Accept the .()
Ambiguity 3: if (foo(1 + 2)) return 1
Nothing)
Found 4: else return 2

Figure 1. (a) The workflow for a language designer. (b) Example ambiguity error.

e Unresolvably ambiguous. In this case we must change
the grammar to remove the ambiguity, since an end-
user encountering the ambiguity would be stuck, they
would not be able to resolve the ambiguity.

e No unaccepted ambiguities. In this case we are done,
the composed language most likely! only contains
ambiguities the end-user can solve.

For an end-user, the workflow is now quite simple. An am-
biguous program is treated as any other error the compiler
can detect; compilation ends and the user gets an error mes-
sage with guidance on how to solve the issue. As an example,
Figure 1b shows the output of our tool when encountering
the “dangling else” ambiguity.

3 Describing Concrete Syntax and ASTs

This section describes the grammars we use to describe the
concrete syntax and corresponding abstract syntax trees
(ASTs) of programs. Most literature does not explicitly deal
with ASTs, choosing instead to work with parse trees or left-
most derivations, leaving AST construction as an exercise
for the reader. Our analysis needs to deal with ASTs directly,
thus we must be explicit in their description. However, none
of the ideas in this section are novel, we thus exemplify
previous uses of similar ideas with references below. We
begin with context-free grammars, then make the following
extensions:

1. Our grammars are in Extended Backus-Naur Form,
i.e., production right-hand sides are regular expres-
sions (cf. [23]).

2. Productions are labelled (cf. [42]).

w

4. Terminals are designated as semantically unimportant
or important (cf. [22]).

5. Precedence and associativity are expressed through
special annotations we call exclusions (cf. [2, 26]).

We use the following small language with addition, mul-
tiplication, lists, let-expressions, and numeric literals as a
running example:

IThis is an inherent limitation of PBT, see Section 6.2.

. We add special support for grouping parentheses (cf. [42]).

E — E’'+E
E — E'xE E - e
E — '["E’] E;, — EEp
E — ’let’ Ident Er — €
=P E’in’ E Ey — ’,”EEp
E — Int

Monospace font represents terminals, e.g. *let’ and Ident,
while € represents the empty sequence.

First we change the right-hand side of each production
to be a regular expression instead of a sequence (i.e., our
grammars are in Extended Backus-Naur Form, or EBNF).
This serves to lessen the amount of intermediate nodes in
the AST. We also add a label to each production, to give them
unique identifiers. We use parentheses for grouping, + for
union, and * for Kleene star.

E — a: E’'+E

E —- m: E’xE

E — 1 "’EC, E)+¢e)’]
E —> x ’let’ Ident ’=" E’in’ E
E — n Int

As an example, consider the string ’[1,2]’ with EBNF and
labels (left) and without (right, using subscripts to specify
which production produced the node, e.g., E;; is the second
production of the E; non-terminal):

E;
1
Ep,
e
I Es Epy
n n Es E;q
\ \ [
L 1, 21 L v, 2]

The extra internal nodes in the right tree would present
problems for disambiguation later.

Next we add support for grouping parentheses in the
form of a pair of terminals per non-terminal. Syntactically
speaking these are equivalent with adding a production
E — " (’E’)’, except they are discarded when constructing
the AST. Note the difference between (x) and ’ (’x’)’; the
former is the same as x, the latter is x surrounded by two ter-
minals that happen to be parentheses. We also designate each

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

Productions
Egxy '+" E{x,a) :
v I G
E{x,a} * E{x,a,m} rou—plllg
’[,(E(’,,E)*"I'E),]’ ,(,E’),

’let’ Ident ’=" E’in’ E
Int

Sl ReMe N e
A
S X —3 o

Figure 2. Completed grammar of the running example.

terminal as semantically important or unimportant. Since
most terminals fall into the second category we designate
the important ones by underlining them:

Productions

E — a: E’+E .

E - m: E'*E Grouping
E — l : ’[7 (E(),’E)*_’_e)’]))(’E’)’
E — x: ’let’Ident’="E’in’ E

E — n: Int

These changes mean that we can use grouping parentheses
and unimportant terminals for disambiguation. The former
is often used for operator expressions, while the latter can
be used, e.g., to disambiguate with optional semicolons. For
example, the strings ’ (1+2)*3” and ’[1, 2]’ produce these
ASTs:

m
f—‘ﬁ
a n)
— ——
n n n n
1 2 3 1 2

Note that all unimportant terminals are discarded from both
ASTs, as well as the grouping parentheses in the left AST.

Finally we consider precedence and associativity. A com-
mon approach is to create a precedence ladder by splitting
each non-terminal into several non-terminals, one per prece-
dence level. Explicitly doing this is undesireable in our set-
ting, for two reasons:

1. It requires total precedence, but we wish to allow, e.g.,
leaving the precedence between operators from differ-
ent languages undefined.

2. Grouping parentheses as described above recurse to
the same non-terminal, which would then not contain
productions representing lower precedence operators.

The former suggests that we cannot use precedence ladders
unchanged, and the latter suggests that we need some ex-
plicit support in our grammars; we cannot simply rewrite
the grammar without breaking grouping parentheses.

We thus adopt an approach that coincides with precedence
ladders if precedence is total and transitive, but allows the
absence of both these properties. To simplify later analysis
we treat precedence and associativity as user-facing conve-
niences to be translated to a simpler form. We describe the

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

E — ’let’Ident’=’ E’in’ E
E — E1

El — El ’+’E2

El - E2

E, — E,’*x" Ej

Ez — E3

E3 — ’[,(E(’,’E)*'l'f)y]’
E3 — Int

E3 — ’(, E ’)’

Figure 3. The same grammar as Figure 2 but in EBNF with
a precedence ladder.

simpler form first, then the translation, then illustrate both
with examples.

We introduce exclusions, annotations on the non-terminals
appearing on the right-hand side of a production. Each ex-
clusion is a set of production labels denoting the productions
that may not appear in that position. For example, E{, ,} may
parse as neither the production labelled a, nor the produc-
tion labelled x. It may, however, parse as a pair of grouping
parentheses that contain either of these productions. We
write Ey as E to reduce clutter.

Translation is then a process of examining the relative
precedence of every pair of productions and the associativity
of each production and adding exclusions as appropriate.
For example, if E — m : E’*’ E has higher precedence than
E—a:E+Eweupdate mto E — m : Eqqy’ %" E(q). If
m is additionally left-associative we update it to E — m :
E(a)"*" E{a,m}-

Applying the usual precedences to our running example
(let < addition < multiplication) as well as associativities
(left-associative multiplication and addition) yields the gram-
mar in Figure 22. Note that production a has exclusions con-
taining x due to precedence and a due to associativity, and
correspondingly m has exclusions containing both x and a
due to precedence, and m due to associativity.

To illustrate the concrete syntax in more familiar terms
we also show a translation to normal EBNF grammars using
a precedence ladder in Figure 3.

When describing grammar formalisms a natural question
is that of expressiveness: how expressive are the grammars
we present here? Technically speaking they retain the full
expressiveness of context-free languages; we can trivially
translate a CFG by simply generating unique labels for each
production and designating all terminals important. How-
ever, such a translation does not use any of our added features

2The observant reader may notice that this grammar no longer recognizes,
eg.,1 + let x = 2 in 3. This is a limitation we retain from precedence
ladders, see Section 6.5.2 for more discussion

Resolvable Ambiguity: Principled Resolution of Syntactically Ambiguous Programs

and would thus not benefit from any of our work; no disam-
biguation would be possible. We explore the implications of
this in the evaluation, in Section 6.5.

We are now ready to describe the language of an AST.

4 The Language of an Abstract Syntax Tree

Central to our approach is the (seemingly obvious) idea that
there need not be a one-to-one correspondence between
programs and ASTs. One side of this is obvious from the
presence of ambiguity: an ambiguous program corresponds
to multiple ASTs. The other side is more important in our
context: a single AST corresponds to multiple written pro-
grams, i.e., it can be written in multiple ways. This fact is
necessary to enable disambiguation; given an ambiguous
program p and an intended AST ¢ € parse(p) we need to find
another program p’ such that parse(p”) = {t}, but this would
not be possible if each AST had only one corresponding
program.

Note that this is achieved by ASTs not being perfect rep-
resentations of written programs; some information is dis-
carded, in our case tokens that are marked semantically unim-
portant and grouping parentheses. Finding a disambiguating
program p’ is thus a matter of “re-adding” whatever parse
discarded, except we now have to consider all possible com-
binations of discards.

For example, in a language with arithmetics the AST ob-
tained by parsing ’1 + 2 * 3’ could also have been obtained
from,eg.,’ (1) + 2 * 3’,71 + (2 * 3)’,0or1 + ((2 *
(3))). The set of such programs is typically infinite, since
we can add any number of redundant grouping parentheses.

A key insight here is that this set of programs, the set of
programs that can be parsed as (at least) the given AST, is a
language in the language-theoretic sense: it is a set of words.
We refer to this language as an AST-language, denoted by
words(t) for an AST t. We can thus reframe the problem
of disambiguation as a language-theoretic one: searching
for an unambiguous program is the same as searching for a
program that belongs to words(t) for exactly one t.

This section thus describes the construction of an automa-
ton that recognizes words(t) for a given t. To facilitate later
analysis we ensure that the automaton is visibly pushdown,
since visibly pushdown automata (VPDA) are closed under
boolean operations [4]. Section 4.1 successively builds the
automaton for a relatively simple case in order to give an in-
tuition for the process, then Section 4.2 mentions additional
considerations required for operation in general.

4.1 A Simple Case

To make figures tractably small we switch our running ex-
ample language to a smaller one containing two unary oper-
ators (prefix ’ ! * and postfix *?’, to show precedence) and a
list with optional trailing comma (to show a slightly more
complex discarded sequence of terminals):

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

Productions
E — gqg: E’?V
E — c¢: ’!’E{q}
E — l ’[,(E(,,’E)*"I'E)(,,’+€),]’
E — n: Int
Grouping
’()E!)’

Our example constructs an automaton for the AST obtained
from parsing ’[1, !(2?)]’ using the above grammar. Ad-
ditionally, our process requires a way to uniquely identify
each node in an AST, thus this section adds indices to the
labels used for nodes in displayed ASTs. We consider our
extensions in the same order as the previous section, i.e., at
first we only consider a labelled EBNF grammar and ignore
all other features, then we consider discarded nodes, then
exclusions.

When parsing using a labelled EBNF grammar, without
discarding any information, a given AST can only be parsed
in exactly one way, namely the flattening of the tree. In this
case, the AST (which is then more like a parse tree) looks
as on the left (using g for grouping parentheses), and the
AST-language is recognized by the pushdown automaton on
the right (though we have no need of the stack yet):

I, start AQ—IL

|

—~0O-0

g1 (

@ OO

i D
L1, 0 C2?2)] OO

When ASTs additionally discard unimportant terminals the
AST-language is no longer merely a flattening of the tree;
it instead has to represent all possible discarded sequences
of terminals. In some cases this yields no difference, e.g.,
production ¢ discards exactly one terminal ’?’. In other
cases there is a small difference, e.g., the end of production /
may discard either *,]’ or merely ’]’. Our running example
thus yields:
h

—_—
np ¢

start —(O> OeOte (O

) ,) ? 2 (
:2 g?@@@

g1

1 2

This automaton recognizes '[1, !(2?), 1’ as a different
program that can parse as the same AST, which is correct
since the trailing comma is discarded after parsing.

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

In general, the discarded sequence of terminals between
two retained points in a production must be described by a
regular language since all non-terminals are retained. For
example, the AST obtained by parsing ’[]’ consists of a
single node I with no children. The I production is described
by the regular expression [’ (E(’,” E)* +€)(’,” +¢€) 1.
However, the sub-expression E (*,’ E)* cannot be part of the
AST-language for this tree since it contains a non-terminal,
which cannot be discarded. Replacing this sub-expression
with the empty language and then simplifying we find that
the AST-language for this treeis "["(*,” +¢€)’]".

Returning to the AST-language for '[1, !(2?)]’, we
now take discarded grouping parentheses into account. The
AST no longer contains the g; node, and the automaton must
allow inserting an arbitrary (balanced) amount of parenthe-
ses around each node. We ensure this by pushing to the
stack when recognizing a ’ (’ and popping on ’)’. To en-
sure that parentheses pair correctly around each node we
use the (unique) label of the node as the stack symbol. To

reduce clutter we write o —> o as shorthand for an edge
that recognizes ’ (’ and pushes a on the stack, while o o
correspondingly recognizes ’)’ and pops a from the stack®.

+q1
+ll +n +cq +ny

ﬁsm&&&&
%8/3

91
! —C1
1 2 -4
Note that this automaton recognizes ’[1, !2?]’ which
is incorrect; this program cannot parse as the same AST
because of the exclusion in production ¢, which we have yet
to take into account.

An exclusion has the effect of forbidding a particular node
from being a direct child without at least one intermediate
pair of grouping parentheses. The AST-language must thus
require at least one pair in such a location. In this case we
have only one relevant exclusion: g may not be a direct child
of c. The final AST-language is thus:

+, +n
J‘L startﬂg—bg—bg—bg—»%
ng
a z
; ?79@
12 "

3This works for our example since we have only a single form of grouping
parentheses, otherwise we would have to be explicit.

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

. o +q
Note that there are now two required transitions o — o

-q
and o —> o, i.e., there is a required pair of parentheses
around the g; node, which removes the incorrectly recog-
nized program from the last step.

4.2 Trickier Cases

The previous section is sufficient for operation in the com-
mon case and gives a good intuition, but is not enough for
the general case. Additionally, the following points need to
be addressed:

e We need to maintain the visibly pushdown property
even in the presence of brackets in productions.

e We need to track exactly which symbol produced each
node in the AST.

e Non-total precedence cannot be parsed using prece-
dence ladders and instead requires a different approach.

This does not change the intuition from the previous section,
but the interested reader can read more on these points (espe-
cially our solutions to them) at doi:10.5281/zenodo.4458159.

5 Finding the Resolutions of an Ambiguity

This section describes our approach to finding the resolutions
of an ambiguity using the automata described in the previous
section. As a reminder, given an ambiguous program p, and
for every t € parse(p) we wish to find another program p’
such that parse(p’) = {t}.

The core of our approach is simple: the VPDAs from Sec-
tion 4 let us compute A; := words(t)\Uy eparse(p)\ (¢} Words(t’).
Note that this is possible because VPDAs are closed under
boolean operations [4]; it would not be possible for normal
pushdown automata. If A, recognizes the empty language,
the ambiguity is unresolvable. Otherwise we can find a short-
est program p’ recognized by A;. This program can parse as
t, but no other ¢’ € parse(p), by the construction of A;. In
practice p’ is almost always unambiguous (c.f. Section 6.3),
i.e., a valid resolution of the ambiguity, but this is not guaran-
teed. Thus, we additionally reparse p” and produce an error
if it turns out to be ambiguous.

We also localize the ambiguity. In the common case the
vast majority of a program is irrelevant for an ambiguity, e.g.,
in a language without precedence ’1 + (2 + (3 * 4) % 5)’
has the same ambiguity as ’2 + x * 5’, which is a simpler,
smaller program. Note that this can remove sibling trees,
ancestors, and subtrees, all of which can be arbitrarily large.
This greatly shrinks the problem size, and as an additional
bonus presents smaller ambiguities to the user.

To do this, we exploit the sharing present in shared packed
parse forests (SPPFs) [39], similar to [16]. For example, con-
sider parsing the program ’1 + (2 + (3 * 4) % 5)’ with
the following grammar:

https://doi.org/10.5281/zenodo.4458159

Resolvable Ambiguity: Principled Resolution of Syntactically Ambiguous Programs

ai ai
—L— ——
ny my ni a:
—L— —L—
ny as my ns
— —
ms ns np ms
— —
n3 ny n3 ng

a
n my az
ma as
{ ' 0 ']
ny ms Ns
—
ns ny
[[
1 2 3 4 5

Figure 5. An SPPF describing the same program as Figure 4.

Productions
E — a: E'+ E Grouping
E —- m E’x’ E ° (yE;) ’

E — n: Int

Figure 4 shows the two valid ASTs (the node indices are
chosen to reflect possible sharing). Displaying these two
trees as a single SPPF (Figure 5) makes the possible sharing
explicit. Note that there is an ambiguity beginning in the
right child of a; (which could be either m; or a;) and that the
ambiguity “stops” at ny, ms, and ns; these descendants are
shared amongst all alternatives. We can extend our approach
for finding ambiguity resolutions to use this information in
a fairly straightforward manner: instead of looking at the
full ASTs we consider the subtrees rooted in m; and a,, and
instead of computing the full AST-language for nz, ms, and
ns we treat them as new unique terminals.

This can give us drastically smaller automata, but it has
an additional benefit: it can split a single ambiguous pro-
gram into multiple independent ambiguities. For example,
consider the program (1 + 2 + 3) + (4 + 5 + 6 +
7)’. Without localization this is an ambiguous program with
10 ASTs, but with localization it is an ambiguous program
containing two independent ambiguities with 2 and 5 alter-
natives, respectively. Additionally, each of the 7 subtrees in
the localized version is smaller than each of the 10 trees in
the non-localized version. Without localization the amount

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

of work grows multiplicatively, with localization it grows
additively.

Because of these advantages, our implementation parses
directly to SPPFs, as opposed to sets of parse trees, as we
have presented thus far.

6 Implementation and Evaluation

This section describes and evaluates our implementation to
substantiate our claims in Section 1.

6.1 Implementation and Optimizations

Our implementation consists of ~4.4k lines of Haskell in-
cluding a custom Earley [17] parser using optimizations pre-
sented in [6, 28], written to produce SPPFs [36]. The parser is
written as a separate (but unpublished) package and handles
grammars in LR(*) in linear time (since it uses [28]). Our
VPDA operations follow [4] rather directly, thus there is
likely space for optimization. Regardless, these operations
have high time complexities, thus we also implement a short-
cut: we simulate all of the VPDAs in lockstep along all possi-
ble paths until we find a word that is accepted by only one of
them. This skips determinizing the VPDAs and computing
differences, meaning it is typically faster than computing
A, for each ¢, but it is not guaranteed to terminate. In par-
ticular, simulating in lockstep might not terminate on an
unresolvable ambiguity. When analyzing an ambiguity we
start both of these processes and pick the result from the one
that produces an answer first.

Figure 6 illustrates the path from an ambiguous program
to an ambiguity error. We first parse the program into an
SPPF, then use localization to produce a set of ASTs per am-
biguity. For each ambiguity we continue by constructing the
AST-language for each AST and attempt to find resolutions.
As mentioned, we do this in two ways in parallel; simulat-
ing in lockstep (which directly produces a program for each
AST), and computing A; followed by finding a shortest recog-
nized program for each. We pick the results from whichever
finishes first and finally present each found program as a
resolution. The ASTs for which no unambiguous program
was found are unresolvable and are presented as such.

Our property-based testing approach for finding ambigui-
ties in grammars, which should find unresolvably ambiguous
grammars before they reach a user, uses an off-the-shelf PBT
library* to generate concrete syntax trees (CSTs). In brief,
the generator works by randomly picking productions with
equal probabilities for each occurrence of a non-terminal,
then at a certain depth switching to a modified grammar
from which recursion has been removed. The depth differs
per run; we start with smaller trees and then increase the
size over time. The produced CST is then flattened, parsed,
and taken through the path in Figure 6.

4Hedgehog: https://hackage.haskell.org/package/hedgehog

https://hackage.haskell.org/package/hedgehog

CC ’21, March 2-3, 2021, Virtual, Republic of Korea
Program
<
SPPF
<
Set (Set AST)

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Set AST — Map AST VPDA — A; — Shortest Word) Pick Fastest — Map AST (Maybe Program)

Simulate in Lockstep

Figure 6. The path from an ambiguous program to an ambiguity error message, in two parts. Left: ambiguous program to a

set of ambiguities, right: single ambiguity to ambiguity error.

The entire implementation can be found on GitHub".

6.2 Experimental Setup

We have created a total of 122 language fragments, con-
sisting of one to seven productions each, where the vast
majority have only one production. These fragments are cre-
ated to follow the syntax of constructs available in three
general-purpose programming languages and two DSLs:
Haskell, OCaml, JavaScript, LINQ, and ScalaTest.° Examples
include list comprehensions, match-expressions, if, lamb-
das, do-notation, operator sections, assertions, and LINQ-
expressions. To enable reasonable compositions, we have
ensured that all fragments use the same non-terminals for
top-level declarations, statements, expressions, patterns, and
types, and also that each production has a globally unique
label. This enables the generation of composed grammars
which, e.g., allow expressions mixing productions from Haskell,
OCaml and JavaScript.

Composition is then a matter of picking a random subset of
the 122 fragments of a desirable size, with a few restrictions.
We have designated some fragments to be mutually exclusive,
since they introduce trivially unresolvable ambiguities. We
consider an unresolvable ambiguity trivial in two cases:

e Two productions have exactly the same right-hand
side, e.g., JavaScript boolean negation and OCaml deref-
erencing both use ’ !’ as a prefix operator.

e Two productions have almost exactly the same syntax,
and they express the same concept in two different
languages. For example, lists in Haskell and arrays in
JavaScript are not exactly the same, JavaScript allows
spread syntax ([a, ...bs]) and a trailing comma,
but they represent the same concept and the Haskell
syntax is a subset of the JavaScript syntax.

We construct 2000 composed languages consisting of 1 to
100 language fragments (20 languages per size), then run our
PBT tool on them to collect data. Each run of the PBT tool
generates 100 programs which we then parse and analyze.
Each language gets up to two runs of the tool: once to look
for unresolvable ambiguities, and if that finds nothing, once
to look for resolvable ambiguities. The results let us classify
the languages as:

Unresolvably ambiguous if the first finds something.

Shttps://github.com/miking-lang/syncon
6ScalaTest: https://www.scalatest.org/

Resolvably ambiguous if the second finds something.
Unambiguos if neither run finds anything.

Note that due to the nature of randomized testing, the last
two classifications are merely probable: tests can only prove
the presence of issues (here, ambiguities), not their absence.

The data in this section is produced on a machine with
an Intel Xeon Gold 6136 (12 cores) and 62 GiB of RAM. Ad-
ditionally, we have data from a laptop with an Intel Core
17-8550U (4 cores) and 16 GiB of RAM.

All data from the experiment, including language frag-
ments, logs, and a compiled executable can be found in a
Docker image at doi:10.5281/zenodo.4458159.

The running time of this experiment was ~19h 17min.

6.3 Results

Figure 7 shows the number of composed languages for each
category of ambiguity as a stacked area graph, plotted by
the number of productions. Note that the number of resolv-
able languages is significantly larger than of those that are
merely unambiguous, and that ambiguity appears almost
immediately.

Figure 7 also shows where our approach produces an in-
correct result; the red area represents languages where at
least one suggested resolution did not fully resolve the am-
biguity. As outlined in Section 5, this is an expected result,
and it appears that roughly 28% of the random compositions
exhibit this behavior. However, this only appears to happen
on unresolvable languages, i.e., our approach still handles
resolvably ambiguous languages correctly.

Figure 8 shows the distribution of running times of analy-
ses on single ambiguities. This represents the time needed to
produce an ambiguity error to an end-user. Note the timeout
at 10s, 7.5% did not finish before this point. However, most
runs finish quickly with a long tail, e.g., 87% have finished by
1s and 89% by 2s. Additionally, even in cases of timeout we
can still pinpoint the location of the ambiguity and show it
to the user, since localization is a simple traversal of the SPPF
(benchmarks suggest ~3% of runtime, compared to ~90% for
analysis and ~7% for parsing).

Figure 9 displays the distribution of running times for the
PBT tool, split by whether the tool encountered the kind
of ambiguity it was looking for or not. This represents the
time a language designer needs to wait to know what kind
of ambiguities are present in their language. Note that the

https://github.com/miking-lang/syncon
https://www.scalatest.org/
https://doi.org/10.5281/zenodo.4458159

Resolvable Ambiguity: Principled Resolution of Syntactically Ambiguous Programs

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

—_
(=}
1

—

Cumulative Freq.
(=}
(€}
1

o
=)
1

9 8" 1.0
&p 20 =
& mm /’ l‘ 2
5 10 - {[4AN M “M 505
s ki £
z I 3
0 _— . . O 0.0 H—
50 100 150 0

No. Productions

Figure 7. The distribution of unambiguous
(green), resolvably ambiguous (blue), and
unresolvably ambiguous grammars (orange
and red), by number of productions.

running times.

frequencies are normalized for comparison. Most runs finish
quickly, especially when ambiguity is found. This means that
you typically get a quick answer when there is something
you need to address in the grammar, otherwise you may
need to wait a few minutes. For example, 95% of runs that
find an ambiguity finish before 1s, while 95% of runs that do
not find an ambiguity finish before 5min.

However, Figure 8 suggests that the timeout has sharply
diminishing returns. Rerunning the experiment with 1s time-
out instead of 10s corroborates this: 1938/2000 languages
received the same classification, while the total running time
of the experiment went from ~1%h 17min to ~3h 34min. Of
the languages that changed classifications, 43 received a less
ambiguous class and 19 received a more ambiguous class.
Recall that a more ambiguous class is the result of a concrete
example, i.e., a more ambiguous class is more correct. We
expect some languages to be reclassified since PBT is based
on randomness, but the low number of changes bodes well
for the accuracy of the approach.

Testing the same languages on a laptop with 1s timeout
also produces similar results. Total running time was ~3h
54min, 51 languages received a less ambiguous label, and 11
languages received a more ambiguous label. The results are
thus comparable, even on a weaker machine.

6.4 Case Study: Informal OCaml Grammar

We have additionally created a mostly complete grammar
of OCaml (339 productions), to explore the applicability of
our approach in a non-compositional context. Our grammar
follows the informal grammar presented in the OCaml man-
ual [29], which is meant to be understandable to users, but it
is ambiguous. Many (though not all) of the ambiguities that
arise are resolvable, whereby our implementation produces
suggested resolutions. One interesting example (originally
from [31]) is that of nested match-expressions. OCaml ig-
nores whitespace and uses longest match to disambiguate
nested matches, thus the following code has a type error:

Time (s)

Figure 8. The normalized cumula-
tive frequency of ambiguity analysis

5 10 0 10 20

Time (min)

Figure 9. The normalized cumulative
frequency of PBT running times where
an ambiguity (of either kind) was found
(orange) or not (blue). Each line ends at
the slowest run.

match 1 with

| 1 -> match "one" with
| str -> str

| 2 => "two"

The issue is that the match-arm on the last line was intended
to belong to the outer match, but OCaml puts it with the
inner one. Our implementation instead sees an ambiguity
and suggests putting parentheses to clarify. This is thus a
case where resolvable ambiguity can present an error with
a concrete solution to the problem, while OCaml might not
present an error at all; if the types agreed the code would be
silently wrong.

As a contrasting example, where it is not useful to leave dis-
ambiguation to the user, consider the expression ’Foo.bar’.
The informal grammar gives two possible interpretations: it
is either a qualified value ’bar’ in the module ’Foo’, or an
access of the field "bar’ of the nullary constructor ’Foo’.
OCaml uses the former, since the latter can never typecheck.
Our implementation finds the ambiguity and reports it as
unresolvable; the field access can be written as ’ (Foo) .bar’
but the qualified value has no other written form (expressions
can be surrounded by parentheses, modules in a qualified
name cannot).

6.5 Limitations

This section describes the limitations we have encountered
while designing grammars using our tool.

6.5.1 Longest Match. Some commonly occurring language
constructs depend on longest match to ensure that their syn-
tax is unambiguous, perhaps most commonly if-then-else,
commonly referred to as the “dangling else” problem. Our
tool presently does not support this, which means that a
language designer cannot disambiguate a grammar based on
longest match, but it may still be possible for a programmer
to disambiguate their program if the ambiguity is resolvable.
Dangling else in particular is resolvable, see Figure 1b.

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

6.5.2 Low Precedence Unary Operators. Precedence lad-
ders can change the recognized language in the presence of
low-precedence unary operators [1]. For example, using nor-
mal CFGs, a language containing addition, let-expressions,
and numeric literals could be written naively (left) or with a
precedence ladder (right):

E, — ’let’ Ident
E — ‘’let’ Ident 5 E: Ey’in” By
"= E’in’ E 1 - 2
E —- E’+E E, — E;’+ Ej
E — Int E2 g E3
E3 — Int

The left language recognizes 1 + let x = 2 in 3 while the
right does not. Since our approach is based on precedence
ladders we retain this limitation.

7 Previous and Related Work

In our previous work [31] we also create languages through
composition and show ambiguity errors to users. However,
the errors merely present a shallow view of the ASTs of the
alternatives, no suggested resolutions, which are instead left
for future work. This paper solves that problem.

Our related work falls in three categories: syntax defini-
tion formalisms (including subclasses of CFGs), language
frameworks, and other approaches to ambiguity.

Afroozeh et al. [2]’s operator ambiguity removal patterns
strongly resemble the exclusions presented in this paper.
However, in special-casing (what in this paper would be)
exclusions on left and right-recursions in productions they
correctly handle low precedence unary operators (c.f. Sec-
tion 6.5.2). Integrating these ideas, and later continuations [15]
with our approach could be interesting future work.

Danielsson and Norell [14] give a method for specifying
grammars for expressions containing mixfix operators. They
allow non-transitive, non-total precedence, and similar to our
approach, they do not reject ambiguous grammars, only am-
biguous parses. They also introduce a concept of precedence
correct expressions; expressions where direct children must
have higher precedence than parents. This is more restrictive
than our approach, e.g., in a language where '+' and '*'
have no defined relative precedence they reject '1 + 2 * 3'
as syntactically invalid, while we parse it as an ambiguous
expression.

Parsing expression grammars [20] sidestep the issue of am-
biguity by not introducing it at all. However, this also loses
the potential gains of leaving certain ambiguities. Addition-
ally, since the ordering of productions matter, composition
of languages must be ordered, and the interactions between
composed languages becomes non-obvious.

Most commonly used parser generators are based on un-
ambiguous CFG subclasses, e.g., LL(k), LR(k), or LR(*). Others
do not fit neatly in the Chomsky hierarchy, but still produce

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

a single parse tree per parse, e.g., LL(*) [32] and ALL(*) [33].
Yet others produce multiple parse trees or other forms of
parse forests, e.g., GLR [27], GLL [37], and Earley [17].

Silver [40], a system for defining extensible languages
using attribute grammars, and its associated parser Copper
[41] have a “Modular Well-Definedness Analysis” [24], the
syntactic component of which can be found in [35]. This
analysis guarantees that the composition of a base language
and any number of extensions that have passed the analysis
will compose to a grammar in LALR(1). This language class
is more restrictive than resolvably ambiguous languages.

The detection of ambiguity in context-free grammars is un-
decidable in general [11], yet numerous heuristic approaches
exist. Examples include linguistic characterizations and regu-
lar language approximations [8], using SAT-solvers [5], and
other conservative approaches [34], For an overview, and
additional approaches, see the PhD thesis of Basten [7].

SDF in its various versions [16, 22, 42] is the parser com-
ponent of several language development tools (e.g. [25, 30]).
It uses a general parser (in the case of SDF3, SGLR[16, 42])
and allows various forms of disambiguation, e.g., precedence
and associativity, but also more advanced features such as
layout [19] and typechecking [9]. In case of ambiguity, SDF
produces an SPPF containing all valid ASTs.

8 Conclusion

In this paper, we introduce the concept of resolvable am-
biguity. A language grammar is resolvably ambiguous if
all ambiguities can be resolved by the end-user at parse
time. We develop a method to compute resolutions based
on visibly-pushdown automata and show how ambiguity
localization can be performed. We evaluate our approach by
implementing a toolchain that is based on property-based
testing. The experiment shows (i) that our approach can
handle significantly more cases of language compositions
compared to state-of-the-art methods requiring unambigu-
ous grammars, and (ii) that the toolchain is fast enough for
practical use. An interesting direction of future work is to
investigate conservative methods for determining resolvable
ambiguity statically.

Acknowledgments

This project is financially supported by the Swedish Founda-
tion for Strategic Research (FFL15-0032) and partially sup-
ported by the Wallenberg Al, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation. The authors would like to thank the
anonymous reviewers, Eelco Visser, and Sebastian Erdweg
for valuable feedback.

References

[1] Annika Aasa. 1995. Precedences in Specifications and Implementations
of Programming Languages. Theoretical Computer Science 142, 1 (May
1995), 3-26. https://doi.org/10.1016/0304-3975(95)90680-)

https://doi.org/10.1016/0304-3975(95)90680-J

Resolvable Ambiguity: Principled Resolution of Syntactically Ambiguous Programs

(2]

—
w
[t

(6]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Ali Afroozeh, Mark van den Brand, Adrian Johnstone, Elizabeth Scott,
and Jurgen Vinju. 2013. Safe Specification of Operator Precedence
Rules. In Software Language Engineering (Lecture Notes in Computer
Science), Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.).
Springer International Publishing, 137-156. https://doi.org/10.1007/
978-3-319-02654-1_8

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (second ed.). Addison
Wesley, Boston.

Rajeev Alur and P. Madhusudan. 2004. Visibly Pushdown Languages.
In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory
of Computing (STOC '04). ACM, New York, NY, USA, 202-211. https:
//doi.org/10.1145/1007352.1007390

Roland Axelsson, Keijo Heljanko, and Martin Lange. 2008. Analyz-
ing Context-Free Grammars Using an Incremental SAT Solver. In
Automata, Languages and Programming (Lecture Notes in Computer
Science), Luca Aceto, Ivan Damgérd, Leslie Ann Goldberg, Magnus M.
Halldérsson, Anna Ingolfsdottir, and Igor Walukiewicz (Eds.). Springer
Berlin Heidelberg, 410-422. https://doi.org/10.1007/978-3-540-70583-
3 34

John Aycock and R. Nigel Horspool. 2002. Practical Earley Parsing.
Comput. J. 45, 6 (2002), 620-630. https://doi.org/10.1093/comjnl/45.6.
620

Bas Basten. 2011. Ambiguity Detection for Programming Language
Grammars. Ph.D. Dissertation. Universiteit van Amsterdam.

Claus Brabrand, Robert Giegerich, and Anders Meoller. 2007. An-
alyzing Ambiguity of Context-Free Grammars. In Implementation
and Application of Automata (Lecture Notes in Computer Science), Jan
Holub and Jan Zdarek (Eds.). Springer Berlin Heidelberg, 214-225.
https://doi.org/10.1007/978-3-540-76336-9_21

Martin Bravenboer, Rob Vermaas, Jurgen Vinju, and Eelco Visser.
2005. Generalized Type-Based Disambiguation of Meta Programs
with Concrete Object Syntax. In Generative Programming and Com-
ponent Engineering (Lecture Notes in Computer Science), Robert Glick
and Michael Lowry (Eds.). Springer, Berlin, Heidelberg, 157-172.
https://doi.org/10.1007/11561347_12

David Broman. 2019. A Vision of Miking: Interactive Program-
matic Modeling, Sound Language Composition, and Self-Learning
Compilation. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2019). Associa-
tion for Computing Machinery, New York, NY, USA, 55-60. https:
//doi.org/10.1145/3357766.3359531

David G. Cantor. 1962. On The Ambiguity Problem of Backus Systems.
J. ACM 9, 4 (Oct. 1962), 477-479. https://doi.org/10.1145/321138.
321145

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP. 268-279. https://doi.org/10.1145/1988042.1988046

Keith Cooper and Linda Torczon. 2011. Engineering a Compiler (second
ed.). Elsevier.

Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mixfix Operators.
In Implementation and Application of Functional Languages (Lecture
Notes in Computer Science), Sven-Bodo Scholz and Olaf Chitil (Eds.).
Springer Berlin Heidelberg, 80-99. https://doi.org/10.1007/978-3-642-
24452-0_5

Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco
Visser. 2018. Towards Zero-Overhead Disambiguation of Deep Priority
Conflicts. Programming Journal 2, 3 (2018), 13. https://doi.org/10.
22152/programming-journal.org/2018/2/13

Luis Eduardo de Souza Amorim and Eelco Visser. 2020. Multi-Purpose
Syntax Definition with SDF3. In Software Engineering and Formal
Methods (Lecture Notes in Computer Science), Frank de Boer and An-
tonio Cerone (Eds.). Springer International Publishing, Cham, 1-23.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

https://doi.org/10.1007/978-3-030-58768-0_1

Jay Earley. 1970. An Efficient Context-Free Parsing Algorithm. Com-
mun. ACM 13, 2 (Feb. 1970), 94-102. https://doi.org/10.1145/362007.
362035

Torbjérn Ekman and Gérel Hedin. 2007. The JastAdd System — Modu-
lar Extensible Compiler Construction. Science of Computer Program-
ming 69, 1 (Dec. 2007), 14-26. https://doi.org/10.1016/j.scic0.2007.02.
003

Sebastian Erdweg, Tillmann Rendel, Christian Késtner, and Klaus Os-
termann. 2013. Layout-Sensitive Generalized Parsing. In Software
Language Engineering (Lecture Notes in Computer Science), Krzysztof
Czarnecki and Gorel Hedin (Eds.). Springer Berlin Heidelberg, 244-263.
https://doi.org/10.1007/978-3-642-36089-3_14

Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-Based
Syntactic Foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL °04). ACM,
New York, NY, USA, 111-122. https://doi.org/10.1145/964001.964011
Seymour Ginsburg and Joseph Ullian. 1966. Ambiguity in Context
Free Languages. J. ACM 13, 1 (Jan. 1966), 62-89. https://doi.org/10.
1145/321312.321318

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. 1989. The Syntax
Definition Formalism SDF—Reference Manual—. SIGPLAN Not. 24, 11
(Nov. 1989), 43-75. https://doi.org/10.1145/71605.71607

Trevor Jim and Yitzhak Mandelbaum. 2010. Efficient Earley Parsing
with Regular Right-Hand Sides. Electronic Notes in Theoretical Com-
puter Science 253, 7 (Sept. 2010), 135-148. https://doi.org/10.1016/].
entcs.2010.08.037

Ted Kaminski and Eric Van Wyk. 2013. Modular Well-Definedness
Analysis for Attribute Grammars. In Software Language Engineering
(Lecture Notes in Computer Science), Krzysztof Czarnecki and Gorel
Hedin (Eds.). Springer Berlin Heidelberg, 352-371. https://doi.org/10.
1007/978-3-642-36089-3_20

Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Languages and IDEs.
In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA °10). ACM,
New York, NY, USA, 444-463. https://doi.org/10.1145/1869459.1869497
Paul Klint and Eelco Visser. 1994. Using Filters for the Disambigua-
tion of Context-Free Grammars. In Proceedings of the ASMICS Work-
shop on Parsing Theory. Tech. Rep. 126-1994, Dipartimento di Scienze
dell’Informazione, Universita di Milano, Milano, Italy.

Bernard Lang. 1974. Deterministic Techniques for Efficient Non-
Deterministic Parsers. In Automata, Languages and Programming (Lec-
ture Notes in Computer Science), Jacques Loeckx (Ed.). Springer, Berlin,
Heidelberg, 255-269. https://doi.org/10.1007/978-3-662-21545-6_18

Joop M. I. M. Leo. 1991. A General Context-Free Parsing Algorithm
Running in Linear Time on Every LR(k) Grammar without Using
Lookahead. Theoretical Computer Science 82, 1 (May 1991), 165-176.
https://doi.org/10.1016/0304-3975(91)90180-A

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jéréme Vouillon. 2018. The OCaml System Release 4.07:
Documentation and User’s Manual. Report.

Florian Lorenzen and Sebastian Erdweg. 2016. Sound Type-Dependent
Syntactic Language Extension. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 204-216. https://doi.org/10.
1145/2837614.2837644

Viktor Palmkvist and David Broman. 2019. Creating Domain-Specific
Languages by Composing Syntactical Constructs. In Practical Aspects
of Declarative Languages (Lecture Notes in Computer Science), José Julio
Alferes and Moa Johansson (Eds.). Springer International Publishing,
187-203. https://doi.org/10.1007/978-3-030-05998-9_12

Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation
of the ANTLR Parser Generator. In Proceedings of the 32Nd ACM

https://doi.org/10.1007/978-3-319-02654-1_8
https://doi.org/10.1007/978-3-319-02654-1_8
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-540-70583-3_34
https://doi.org/10.1007/978-3-540-70583-3_34
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1007/978-3-540-76336-9_21
https://doi.org/10.1007/11561347_12
https://doi.org/10.1145/3357766.3359531
https://doi.org/10.1145/3357766.3359531
https://doi.org/10.1145/321138.321145
https://doi.org/10.1145/321138.321145
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/10.22152/programming-journal.org/2018/2/13
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/321312.321318
https://doi.org/10.1145/321312.321318
https://doi.org/10.1145/71605.71607
https://doi.org/10.1016/j.entcs.2010.08.037
https://doi.org/10.1016/j.entcs.2010.08.037
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.1016/0304-3975(91)90180-A
https://doi.org/10.1145/2837614.2837644
https://doi.org/10.1145/2837614.2837644
https://doi.org/10.1007/978-3-030-05998-9_12

CC ’21, March 2-3, 2021, Virtual, Republic of Korea

(33

(34

(35

[36

(37

]

=

]

—

—

SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI °11). ACM, New York, NY, USA, 425-436. https:
//doi.org/10.1145/1993498.1993548

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*)
Parsing: The Power of Dynamic Analysis. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA,
579-598. https://doi.org/10.1145/2660193.2660202

Sylvain Schmitz. 2007. Conservative Ambiguity Detection in Context-
Free Grammars. In Automata, Languages and Programming (Lecture
Notes in Computer Science), Lars Arge, Christian Cachin, Tomasz Jurdz-
inski, and Andrzej Tarlecki (Eds.). Springer Berlin Heidelberg, 692-703.
https://doi.org/10.1007/978-3-540-73420-8_60

August C. Schwerdfeger and Eric R. Van Wyk. 2009. Verifiable Com-
position of Deterministic Grammars. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI °09). ACM, New York, NY, USA, 199-210. https:
//doi.org/10.1145/1542476.1542499

Elizabeth Scott. 2008. SPPF-Style Parsing From Earley Recognisers.
Electronic Notes in Theoretical Computer Science 203, 2 (April 2008),
53-67. https://doi.org/10.1016/j.entcs.2008.03.044

Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic
Notes in Theoretical Computer Science 253, 7 (Sept. 2010), 177-189.

[38]

[39]

[40]

[41]

[42]

[43]

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

https://doi.org/10.1016/j.entcs.2010.08.041

Thomas A. Sudkamp. 1997. Languages and Machines: An Introduction to
the Theory of Computer Science. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Masaru Tomita. 1985. An Efficient Context-Free Parsing Algorithm
for Natural Languages. In Proceedings of the 9th International Joint
Conference on Artificial Intelligence - Volume 2 (IJCAI’85). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 756-764.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: An Extensible Attribute Grammar System. Science of Computer
Programming 75, 1 (Jan. 2010), 39-54. https://doi.org/10.1016/j.scico.
2009.07.004

Eric R. Van Wyk and August C. Schwerdfeger. 2007. Context-Aware
Scanning for Parsing Extensible Languages. In Proceedings of the 6th
International Conference on Generative Programming and Component
Engineering (GPCE °07). ACM, New York, NY, USA, 63-72. https:
//doi.org/10.1145/1289971.1289983

Eelco Visser. 1997. Syntax Definition for Language Prototyping. Ph.D.
Dissertation. University of Amsterdam. Advisor(s) Paul Klint.

Adam Brooks Webber. 2003. Modern Programming Languages: A Prac-
tical Introduction. Franklin, Beedle & Associates.

https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1007/978-3-540-73420-8_60
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1016/j.entcs.2008.03.044
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1145/1289971.1289983
https://doi.org/10.1145/1289971.1289983

	Abstract
	1 Introduction
	2 Resolvable Ambiguity and a Language Design Workflow
	3 Describing Concrete Syntax and ASTs
	4 The Language of an Abstract Syntax Tree
	4.1 A Simple Case
	4.2 Trickier Cases

	5 Finding the Resolutions of an Ambiguity
	6 Implementation and Evaluation
	6.1 Implementation and Optimizations
	6.2 Experimental Setup
	6.3 Results
	6.4 Case Study: Informal OCaml Grammar
	6.5 Limitations

	7 Previous and Related Work
	8 Conclusion
	Acknowledgments
	References

