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Asynchronous programming has gained in importance, not only due to hardware develop-
ments like multi-core processors, but also due to pervasive asynchronicity in client-side 
Web programming and large-scale Web applications. However, asynchronous program-
ming is challenging. For example, control-flow management and error handling are much 
more complex in an asynchronous than a synchronous context. Programming with asyn-
chronous event streams is especially difficult: expressing asynchronous stream producers 
and consumers requires explicit state machines in continuation-passing style when using 
widely-used languages like Java.
In order to address this challenge, recent language designs like Google’s Dart introduce 
asynchronous generators which allow expressing complex asynchronous programs in a 
familiar blocking style while using efficient non-blocking concurrency control under the 
hood. However, several issues remain unresolved, including the integration of analogous 
constructs into statically-typed languages, and the formalization and proof of important 
correctness properties.
This paper presents a design for asynchronous stream generators for Scala, thereby ex-
tending previous facilities for asynchronous programming in Scala from tasks/futures to 
asynchronous streams. We present a complete formalization of the programming model 
based on a reduction semantics and a static type system. Building on the formal model, 
we contribute a complete type soundness proof, as well as the proof of a subject reduc-
tion theorem which establishes that the programming model enforces an important state 
transition protocol for asynchronous streams.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

There is an increasing need for software systems to respond to asynchronous events in an efficient and scalable way. This 
need is driven by developments in both hardware and software. On the hardware side, the rise of multi-core processors has 
made concurrent and, thereby, asynchronous programming indispensable. Furthermore, the increasing gap between the 
latency of main memory access and I/O [49] requires asynchronous programming techniques for scalability. On the software 
side, both client-side Web programming and large-scale Web applications are faced with pervasive asynchronous events [42,
13].
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However, asynchronous programming on a large scale is a major challenge in widely-used programming languages which 
are designed and optimized for synchronous computation. Handling asynchronous events is well-known to be difficult [55,
47] due to an inversion of control [37], forcing programmers to write code in continuation-passing style (CPS). To further 
exacerbate the situation, (a) exception handling constructs like try-catch no longer work with asynchronous code [7,42], 
and (b) working with streams of asynchronous events is even more difficult due to the manual construction of CPS state 
machines.

Several programming models have been proposed to simplify asynchronous programming:

• Futures and promises. Widely-used languages provide library-based abstractions based on futures [38] or promises [40]
to mitigate some of the challenges (e.g., [14,25]). However, these abstractions do not integrate with language-provided 
exception handling constructs [7,42], but instead provide separate methods for error handling. Moreover, library-based 
abstractions, while greatly benefitting from lambda expressions [43], cannot avoid CPS completely.

• The async-await model. The async and await constructs of languages like F� [54] and C� [7] are designed to lib-
erate programmers from writing explicit CPS code. Moreover, these constructs enable the use of exception handling 
facilities like try-catch also in asynchronous code. However, when programming with streams of asynchronous events, 
programmers are “left to their own devices” [42]. As a result, the behavior of stream producers and consumers must 
still be expressed using explicit CPS state machines. Moreover, the programming model cannot enforce API protocols 
typically imposed on the correct usage of asynchronous streams (e.g., [41]); API usage protocols are an important source 
of bugs [11,5].

In summary, programming models and constructs simultaneously addressing the variety of requirements discussed above 
have been missing. In a response to this, Google’s Dart language [33] has recently been extended with asynchronous func-
tions that extend the async-await model to asynchronous streams [42]. The proposed async* functions address the two 
main issues of the plain async-await model: first, producers and consumers of asynchronous streams can be written in a 
familiar blocking style while using efficient non-blocking concurrency control under the hood; explicit CPS code is no longer 
required. Second, the language constructs enforce the non-trivial usage protocol of asynchronous streams [41].

While Dart’s async* functions are part of an original and practical language design, several important issues are left 
unresolved: first, given that Dart is a dynamic language, how could a similar programming model be integrated into a 
statically-typed language? Second, the foundations of Dart’s async* functions are not well understood. Meijer et al. [42]
define a continuation semantics for a “featherweight” subset of Dart’s asynchronous functions. However, correctness prop-
erties are neither proved nor formalized.

In this article we attempt to address both of these issues. First, we present the design of a programming model which, 
like Dart, extends the async-await model to asynchronous streams, but, unlike Dart, in a statically-typed language, Scala [46]. 
Second, we provide the first small-step reduction semantics for this “async* model,” complete with a type soundness 
proof. Finally, we prove a subject reduction theorem which shows that the programming model enforces a typical usage 
protocol of asynchronous streams.

1.1. Contributions

This article makes the following contributions:

• A design for asynchronous stream generators for Scala, thereby extending previous facilities for asynchronous program-
ming in Scala from tasks/futures to asynchronous streams. Unlike Dart’s asynchronous generators [42], our programming 
model is integrated into a statically-typed language.1

• The first reduction semantics and static type system for Dart-style asynchronous generators with a complete and de-
tailed type soundness proof.

• The proof of a subject reduction theorem which establishes, besides type preservation, that the programming model 
enforces an important state transition protocol for asynchronous streams. This result suggests that the presented for-
malization could be a suitable basis for providing a formal foundation also for widely-used APIs for asynchronous 
streams, such as Reactive Extensions [41] and the proposed Reactive Streams [21] JVM standard (see Section 5.3).

The rest of the paper is organized as follows. The following Section 2 provides background on futures, the async-await 
model, and the Reactive Extensions model. We present the background in the context of Scala, since the proposed program-
ming model is designed as a Scala extension. Section 3 introduces RAY, the design of our unified asynchronous programming 
model. In Section 4 we present a formalization of RAY in the context of an object-based core calculus. Section 5 presents 
correctness results including subject reduction and type soundness. Section 6 provides an overview of our implementation 
as a Scala extension. Section 7 discusses related work in more detail, and Section 8 concludes.

1 An open-source prototype implementation is available at: https://github .com /phaller /scala -async -flow.

https://github.com/phaller/scala-async-flow
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2. Background

2.1. Scala Async

Scala Async provides constructs that aim to facilitate programming with asynchronous events in Scala. The introduced 
constructs are inspired to a large extent by extensions that have been introduced in C� version 5 [27] in a similar form. The 
goal is to enable expressing asynchronous code in “direct style,” i.e., in a familiar blocking style where suspending operations 
look as if they were blocking while at the same time using efficient non-blocking APIs under the hood.

In Scala, an immediate consequence is that non-blocking code using Scala’s futures API [25] does not have to resort 
to (a) low-level callbacks, or (b) higher-order functions like map and flatMap. While the latter have great composability 
properties, they can appear unnatural when used to express the regular control flow of a program.

For example, an efficient non-blocking composition of asynchronous web service calls using futures can be expressed as 
follows in Scala:

1 val futureDOY: Future[Response] =
2 WS.url("http://api.day-of-year/today").get
3
4 val futureDaysLeft: Future[Response] =
5 WS.url("http://api.days-left/today").get
6
7 futureDOY.flatMap { doyResponse =>
8 val dayOfYear = doyResponse.body
9 futureDaysLeft.map { daysLeftResponse =>

10 val daysLeft = daysLeftResponse.body
11 Ok("" + dayOfYear + ": " +
12 daysLeft + " days left!")
13 }
14 }

Line 1 and 4 define two futures obtained as results of asynchronous requests to two hypothetical web services using an 
API inspired by the Play Framework (for the purpose of this example, the definition of type Response is unimportant).

This can be expressed more intuitively in direct style using Scala Async as follows (this example is adopted from the SIP 
proposal [26]):

1 val respFut = async {
2 val dayOfYear = await(futureDOY).body
3 val daysLeft = await(futureDaysLeft).body
4 Ok("" + dayOfYear + ": " +
5 daysLeft + " days left!")
6 }

The invocation of the await pseudo-method on line 2 causes the execution of the async block to suspend until 
futureDOY is completed (with a successful result or with an exception). When the future is completed successfully, its 
result is bound to the dayOfYear local variable, and the execution of the async block is resumed. When the future is 
completed with an exception (for example, because of a timeout), the invocation of await re-throws the exception that 
the future was completed with. In turn, this completes future respFut with the same exception. Likewise, the await on 
line 3 suspends the execution of the async block until futureDaysLeft is completed.

The pseudo-methods provided by Scala Async, async and await, have the following type signatures:

def async[T](body: => T): Future[T]
def await[T](future: Future[T]): T

Given the above definitions, async and await “cancel each other out:”

await(async { <expr> }) = <expr>

This “equation” paints a grossly over-simplified picture, though, since the actual operational behavior is (much) more 
complicated: async typically schedules its argument expression to run asynchronously on a thread pool; moreover, await 
may only be invoked within a syntactically enclosing async block.

2.2. Reactive extensions

The Rx programming model is based on two interface traits: Observable and Observer. Observable represents ob-
servable streams, i.e., streams that produce a sequence of events. These events can be observed by registering an Observer 
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trait Observable[T] {
def subscribe(obs: Observer[T]): Closable

}

trait Observer[T] extends (Try[T] => Unit) {
def apply(tr: Try[T]): Unit
def onNext(v: T) = apply(Success(v))
def onFailure(t: Throwable) = apply(Failure(t))
def onComplete(): Unit

}

Fig. 1. The Observable and Observer traits.

with the Observable. The Observer provides methods which are invoked for each of the kinds of events produced by 
the Observable. In Scala, the two traits can be defined as shown in Fig. 1.

The idea of the Observer is that it can respond to three different kinds of events, (1) the next regular event (onNext), 
(2) a failure (onFailure), and (3) the end of the observable stream (onComplete). Thus, the two traits constitute a 
variation of the classic subject/observer pattern [15]. Note that Observable’s subscribe method returns a Closable; 
it has only a single abstract close method which removes the subscription from the observable. The next listing shows an 
example implementation.

Note that in our Scala version the Observer trait extends the function type Try[T] => Unit. Try[T] is a simple 
container type which supports heap-based exception handling (as opposed to the traditional stack-based exception handling 
using expressions like try-catch-finally.) There are two subclasses of Try[T]: Success (encapsulating a value of 
type T) and Failure (encapsulating an exception). Given the above definition, a concrete Observer only has to provide 
implementations for the apply and onComplete methods. Since apply takes a parameter of type Try[T] its imple-
mentation handles the onNext and onFailure events all at once (in Scala, this is typically done by pattern matching on 
tr with cases for Success and Failure).

The Observer and Observable traits are used as follows. For example, here is a factory method for creating an 
observable from a text input field of typical GUI toolkits (this example is adapted from [41]):

def textChanges(tf: JTextField): Observable[String] =
new ObservableBase[String] {
def subscribe(o: Observer[String]) = {
val l = new DocumentListener {
def changedUpdate(e: DocumentEvent) = {
o.onNext(tf.getText())

}
}
tf.addDocumentListener(l)
new Closable() {
def close() = {
tf.removeDocumentListener(l)

}
}

}
}

This newly-defined textChanges combinator can be used with other Rx combinators as follows:

textChanges(input)
.flatMap(word => completions(word))
.subscribe(observeChanges(output))

We start with the observable created using the textChanges method from above. Then we use the flatMap com-
binator (called SelectMany in C�) to transform the observable into a new observable which is a stream of completions 
for a given word (a string). On the resulting observable we call subscribe to register a consumer: observeChanges 
creates an observer which outputs all received events to the output stream. (The shown example suffers from a problem 
explained in [41] which motivates the use of an additional Switch combinator which is omitted here for brevity.)

3. The RAY asynchronous programming model

This section provides an (example-driven) overview of our asynchronous programming model called RAY. RAY can be 
seen as an integration of the async-await model of C� and the Reactive Extensions Model.
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The basic idea is to generalize the async-await model, so that it can be used not only with futures, but also with 
observable streams. This means, we need constructs that can create observables, as opposed to only futures (like async), 
and we need ways to wait for more events than just the completion of a future. Essentially, it should be possible to await a 
variety of events produced by an observable stream.

3.1. First example

The following first example shows how to await a fixed number of events of a stream in RAY2:

1 def awaitFixedNumber(stream: Observable[Int], num: Int) = rasync(stream) {
2 var events: List[Int] = List()
3 while (events.size < 5) {
4 val event = await(stream)
5 events = event.get :: events
6 }
7 events
8 }

The above method returns an observable by using the rasync construct; it is a generalized version of the async construct 
of Section 2.1 which additionally supports methods to await and yield events of observable streams. Importantly, rasync 
takes a variable number of observable arguments that the newly created observable subscribes to. In the above example, 
the new observable subscribes only to the stream observable. Note that it is not necessary to enclose the entire body of 
a method in an rasync block. However, we are using this style, so that code listings shown in this section correspond 
more closely to the formal model (see Section 4) where rasync is a modifier on method declarations. The above style is 
equivalent to the hypothetical use of rasync as a method modifier:

def rasync awaitFixedNumber(stream: Observable[Int], num: Int) = {
...

}

In the above example, the invocation of await (line 4) suspends the rasync block until the producer of stream 
calls onNext on its observers. The argument of this onNext call (the next event) is returned as a result from await, 
wrapped in an optional value. Optional values are used to handle stream termination: an invocation of await returns 
an empty optional value if its argument stream terminates before publishing another event. In Scala, optional values are 
implemented as a simple ADT Option[T] with two cases Some(x), a full option with value x of type T, and None, 
an empty option. The value of a full option is extracted using the get method (line 5). The result of rasync has type 
Observable[List[Int]]. Once the body of rasync has been fully evaluated, the created observable publishes two fi-
nal events: first, an onNext event which carries events (the list with five elements), and second, an onComplete event. 
In this example, these are the only published events; it is, however, possible to publish other events beforehand, as shown 
in the following.

The following is an improved version of the above example where it is not necessary to know statically how many events 
a stream might publish. Stream termination is detected using the optional value returned by await:

1 def awaitTermination(stream: Observable[Int]) = rasync(stream) {
2 var events: List[Int] = List()
3 var next: Option[Int] = await(stream)
4 while (next.nonEmpty) {
5 events = next.get :: events
6 next = await(stream)
7 }
8 events
9 }

In the above example, the body of rasync repeatedly waits for the given stream to publish either a next event or to 
reach its end. As long as stream continues to publish events (in which case next of type Option[Int] is non-empty), 
each event is prepended to the events list; this list is the single event that the observable, which is, in turn, created by 
rasync, publishes (once the body of rasync has been fully evaluated).

2 For consistency with the formal model of Section 4 we use the name Observable to refer to the same type that is called Publisher in our 
implementation.
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1 def forwarder[T <: AnyRef](stream: Observable[T]) = rasync(stream) {
2 var next: Option[T] = await(stream)
3 var last: Option[T] = None
4
5 while (next.nonEmpty) {
6 last = await(stream)
7 if (last.nonEmpty) {
8 yieldNext(next.get)
9 next = last

10 } else {
11 last = next
12 next = None
13 }
14 }
15
16 last.get
17 }

Fig. 2. A simple forwarder stream.

1 def forwarder2[T <: AnyRef](stream: Observable[T]) = rasync(stream) {
2 var next: Option[T] = await(stream)
3 while (next.nonEmpty) {
4 yieldNext(next.get)
5 next = await(stream)
6 }
7 yieldDone()
8 }

Fig. 3. A simpler forwarder stream.

3.2. Creating complex streams

The streams created by rasync in the previous sections are rather simple: after consuming events from other streams 
only a single interesting event is published on the created stream (by virtue of reaching the end of the rasync block). In 
this section, we explain how more complex streams can be created in RAY.

Suppose we would like to create a stream which simply publishes an event for each event observed on another stream. 
In this case, the constructs we have seen so far are not sufficient, since an arbitrary number of events have to be published 
from within the rasync block. This is where the new method yieldNext comes in: it publishes the next event to the 
stream returned by rasync. Our simple forwarder example can then be expressed as shown in Fig. 2.

Note that in the above example, we are forced to remember the last event that the created observable should publish 
before terminating, last.get (line 16). It would be much simpler to terminate the created observable as soon as there 
are no more events to publish. This pattern is supported using the new method yieldDone: invoking yieldDone emits 
an onComplete event and then terminates the current observable.

Fig. 3 shows how the forwarder example can be simplified significantly using yieldDone. In this new version, the 
created observable is terminated unconditionally on line 7 by invoking yieldDone. As a result, it is not necessary to 
maintain a last event to be published after finishing the iteration. In order to enable the use of yieldDone for any type of 
observable, yieldDone has a generic type:

def yieldDone[A](): A = ...

Note that invoking yieldDone publishes an onComplete event, and then discards the continuation until the end of the 
rasync block.

A challenge problem. In order to illustrate the expressive power of RAY in comparison with the Reactive Extensions model 
introduced earlier, consider the following “challenge problem.” Given two input streams stream1 and stream2, our task 
is to create a new output stream that

• yields, for each value of stream1, the sum of the previous three values of stream1,
• except if the sum is greater than some threshold, in which case the next value of stream2 should be subtracted.

Note that this composition of stream1 and stream2 is stateful and involves conditional waiting for, and publishing of, 
asynchronous events. Before attempting a solution to this challenge, consider the following example input streams and the 
expected output stream for a threshold of 5:
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val three = stream1.window(3).map(w => w.reduce(_ + _))

val withIndex = three.zipWithIndex

val big = withIndex.filter(_._1 >= threshold).zip(stream2).map {
case ((l, i), r) => (l - r, i)

}

val output = withIndex.filter(_._1 < threshold).merge(big)

Fig. 4. Challenge solution using Reactive Extensions.

val output = rasync[Int](stream1, stream2) {
var window = List(0, 0, 0)
var evt = await(stream1)
while (evt.nonEmpty) {
window = window.tail :+ evt.get
val next = window.reduce(_ + _) match {
case big if big > Threshold =>
await(stream2).map(x => big - x)

case small => Some(small)
}
evt = if (next.isEmpty) None else { yieldNext(next.get); await(stream1) }

}
yieldDone()

}

Fig. 5. Challenge solution using RAY.

stream1: 7, 1, 0, 2, 3, 1, ...
stream2: 0, 7, 0, 4, 6, 5, ...
output: 7, 1, 8, 3, 5, 2, ...

The first value of the output stream is 7: the sum of the previous three values of stream1 is 7, which is greater than the 
threshold 5; thus, the next value of stream2, which is 0, is subtracted, giving 7. The second value of the output stream 
is 1: the sum of the previous three values of stream1 is 8, which is greater than the threshold 5; thus, the next value of 
stream2, which is 7, is subtracted, giving 1; and so on.

We first discuss a solution to this challenge problem using the Reactive Extensions model introduced in Section 2.2; Fig. 4
shows our solution. First, we define a stream three which uses a window combinator, as well as map and reduce (on 
regular arrays) to produce a stream that carries the sum of the previous three values of stream1. (The result of invoking 
window is a stream of arrays of size 3.) Then, withIndex is simply a stream which pairs each event of stream three 
with its index; this index is used to control the ordering of events subsequently. The big stream carries the numbers 
greater than the threshold reduced by the numbers of stream2 paired with their index. This index is used in combination 
with the merge combinator (last line) to “insert” those numbers at the right positions when merging with those numbers 
of three that are smaller than the threshold.

In summary, the solution using Reactive Extensions:

• requires complex combinators like window and merge;
• requires manually ensuring the correct event ordering through explicit management of event indices;
• uses several higher-order functions and lambdas.

The use of several combinators and lambdas indicates that this style of programming is negatively affected by the same 
inversion of control that motivated the introduction of the async-await model in languages like C� in the first place. In par-
ticular, writing stateful stream combinators is difficult. As a result, Reactive Extensions is likely hard to use for programmers 
not comfortable with higher-order functions.

Fig. 5 shows a solution to the challenge problem using RAY. Given the rasync, await, and yieldNext constructs 
introduced earlier, the body of the rasync call, which defines the behavior of the output stream can be understood 
sequentially. The state of the composition logic is managed using a regular variable window, which is simply a list of 
integers. As long as stream1 carries more values, the window is updated. Then, the sum of the window is computed to 
decide whether a next event should be received from stream2. Note that await which suspends awaiting the next event 
from stream2 is simply called from within a nested pattern matching block within the while loop. As soon as the next 
value for the output stream is computed, it is published using yieldNext.
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1 def sequenceEqual[T](src1: Observable[T], src2: Observable[T])
2 (compare: (T, T) => Boolean): Observable[Boolean] =
3 rasync(src1, src2) {
4 var result = false
5 var done = false
6
7 while (!done) {
8 val opt1 = await(src1)
9 val opt2 = await(src2)

10 if (opt1.isEmpty && opt2.isEmpty) {
11 result = true
12 done = true
13 } else if (opt1.nonEmpty && opt2.nonEmpty) {
14 if (!compare(opt1.get, opt2.get))
15 done = true
16 } else {
17 done = true
18 }
19 }
20
21 result
22 }

Fig. 6. The sequenceEqual combinator.

In summary, the solution using RAY:

• does not require additional complex combinators like window or merge;
• does not require the explicit management of event ordering using indices as before;
• significantly reduces the importance of higher-order functions;
• enables a simple expression of custom higher-level abstractions (like zip), reducing the need for large third-party 

libraries (the following Section shows two examples).

3.3. Implementing combinators

As shown in the previous section, the Reactive Extensions model gains a lot of flexibility through higher-order func-
tions, or combinators, that combine and transform observables. However, the implementation of such combinators can be 
surprisingly challenging, due to complex internal state machines whose state transitions are triggered by callbacks. Thus, 
one promising use case of RAY’s direct-style constructs is the implementation of such high-level combinators. This section 
discusses two such combinators.

The sequenceEqual combinator. The first combinator is called sequenceEqual: given two observables of type 
Observable[T] and a comparison function of type (T, T) => Boolean, the sequenceEqual combinator returns 
an observable of type Observable[Boolean] which publishes a single Boolean indicating whether the sequences of 
events published by the two parameters are equal. Fig. 6 shows a simple implementation using RAY. Essentially, the created 
observable loops, awaiting the next event of each observable; as long as the event sequences are not shown to be unequal, 
the iteration continues. The direct-style nature of await allows the implementation to focus on just a single pair of optional 
values at a time, while other events are being buffered in the background.

The zip combinator. The second combinator is called zip: given a collection of observables of type Observable[T] and 
a zipper function of type Array[T] => R, the zip combinator returns an observable of type Observable[R] where 
each R event is computed as follows. Whenever each of the observables in the argument collection has published a next 
event, an array of these events (one event per observable) is passed to the provided zipper function to compute a value of 
type R. This R value is published as the next event of the observable returned by zip.

Fig. 7 shows an implementation of zip using RAY. The state machine needed for zip is similar to that of 
sequenceEqual. The two main differences are: (1) the observable created by zip in general publishes more than one 
event, and (2) zip combines an arbitrary number of observables (the size of the sources collection is unknown). Despite 
these two fundamental generalizations compared to sequenceEqual, the implementation of zip is not markedly more 
complex. The use of yieldNext is straightforward. More interesting is how to deal with an unbounded number of input 
observables. Here, the direct-style nature of await helps us by allowing us to iterate over the input observables using a 
standard while loop (lines 12–15), awaiting the next event or termination (line 13), in each iteration. As before, buffering 
of events being published while suspended in an await invocation is performed automatically.3

3 The syntax rasync(sources: _*) on line 3 converts the sources collection to repeated arguments, as expected by rasync.



P. Haller, H. Miller / Journal of Logical and Algebraic Methods in Programming 105 (2019) 75–111 83
1 def zip[T, R](sources: Seq[Observable[T]],
2 zipper: Array[T] => R): Observable[R] =
3 rasync(sources: _*) {
4 val sourcesArr: Array[Observable[T]] = sources.toArray
5 var done = false
6 var lastProduced: Option[R] = None
7
8 while (!done) {
9 // await next event of each source

10 val nextEvents = Array.ofDim[Option[T]](sourcesArr.length)
11 var i = 0
12 while (i < sources.size) {
13 nextEvents(i) = await(sourcesArr(i))
14 i += 1
15 }
16 if (nextEvents.exists(_.isEmpty)) {
17 done = true
18 } else {
19 val arg = nextEvents.map(_.get).toArray
20 if (lastProduced.nonEmpty)
21 yieldNext(lastProduced.get)
22 lastProduced = Some(zipper(arg))
23 }
24 }
25
26 lastProduced.get
27 }

Fig. 7. The zip combinator.

1 val source = new CancellationTagSource
2 val ct = source.mkTag // create cancellation tag
3 // pass cancellation tag ‘ct‘ to newly created stream:
4 val s = rasync[Int](ct) {
5 await(delay(100))
6 yieldNext(5)
7 ...
8 }
9 ...

10 ct.cancel()

Fig. 8. Cancellation of a stream.

3.4. Selective queueing

The implementations of the sequenceEqual and zip combinators above leverage the fact that an rasync block by 
default buffers all events emitted by streams to which the rasync block is subscribed. In some cases, however, the incoming 
events of certain streams should be dropped while waiting for other events, in order to reduce memory consumption 
of buffers, or to implement desired runtime semantics. Therefore, RAY provides the following two variants of await: 
awaitIgnore(stream1, stream2) waits for the next event from stream1 while ignoring all values produced by 
stream2; awaitOnly(stream1) waits for the next event from stream1 while ignoring all values produced by any 
other stream to which the current rasync block is subscribed.

3.5. Cancellation

Stream-producing rasync blocks may be long-running; rasync may be arbitrarily complex and may include while 
loops among others. However, just like with asynchronous tasks, other parts of the program may determine that the events 
produced by a running stream are no longer needed. In this case, the stream may be cancelled. In our model, cancellation 
is supported using a special kind of runtime tags: a cancellation tag is a runtime capability to cancel one or more streams. 
Cancellation tags are an adaptation of F� ’s cancellation tokens [54]. In the following we summarize how cancellation tags 
enable cancellation of streams in RAY.

Cancellation tags are unforgeable, and can only be created using cancellation tag sources. To enable cancelling a stream 
s, a cancellation tag must be passed to the creator of s. This is illustrated in Fig. 8.

Using a cancellation tag, a stream created as shown in Fig. 8 may be cancelled by invoking the cancellation tag’s cancel 
method (line 10). Note that calling cancel does not forcibly terminate the stream; it merely signals a request to cancel the 
stream. Streams check for the presence of cancellation requests whenever RAY operators are invoked. For example, suppose 
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that ct.cancel() on line 10 is executed after the stream suspends using the await on line 5. Then, stream s notices the 
cancellation request upon executing yieldNext(5) on line 6. As a result of cancelling stream s, downstream subscribers 
receive an onError event with a special CancellationException that has a reference to the cancellation tag. This 
enables subscribers to decide how to respond to the cancellation, also based on the identity of the cancellation tag.

Resource clean-up. Like Scala Async, RAY is designed to enable the use of try-catch-finally within rasync blocks. 
In particular, it is valid to invoke await within the body of try; for example:

1 def m(s: Observable[Int]) = rasync(s) {
2 e1
3 try {
4 e2
5 val x = await(s)
6 e3
7 } finally {
8 // clean up
9 }

10 e4
11 }

Suppose an exception is thrown within expression e2, and the closest enclosing catch or finally is the one on line 7. 
Then, control is transferred to the body of finally (line 8), even though the finally clause appears “after” the in-
vocation of await on line 5. The rationale behind this behavior is that programmers should be able to reason about the 
behavior of await as if it was a blocking method. It is also possible that the invocation of await(s) (line 5) throws an 
exception, namely when the observable s publishes an onError event. Also in that case, control is transferred to the body 
of finally (line 8).

3.6. Discussion

The RAY programming model, as introduced above, occupies a point in the design space which is different from related 
programming models in important ways. The asynchronous programming features of the Dart language [8] and the F�

AsyncSeq [18] library constitute the most closely related work. In the following we discuss these relationships in more 
detail, as well as design alternatives.

Asynchronous push-based reactive programming. Dart supports creating and consuming asynchronous streams using ded-
icated language constructs, namely async*, await, and yield, which are similar to the constructs of RAY. The main 
difference between RAY and Dart is the fact that in Dart, subscribers have the possibility to pause and resume streams. When 
subscribing to a stream, a StreamSubscription object is returned which exposes pause and resume methods. As 
long as the subscription is paused, it does not emit any events. In contrast, in RAY, subscriptions by default buffer all in-
coming events, unless awaitOnly and awaitIgnore are used which enable ignoring (i.e., dropping) events from certain 
streams while waiting for a specific next event (see Section 3.4). This means that event emission is resumed as soon as 
an invocation of awaitOnly or awaitIgnore returns. In Dart, a paused subscription must be resumed explicitly either 
using a “resume signal” or using the StreamSubscription’s resume method.

Despite these differences, both Dart and RAY provide an asynchronous push-based reactive programming model. Both 
models are push-based in the sense that consumers have no control over the generation of events, unless this generation 
is paused (Dart), or events from certain streams are dropped (RAY): events are not retrieved by the consumer on its own 
terms, but they are pushed downstream by the publisher.

An alternative to RAY’s awaitOnly and awaitIgnore methods for controlling event buffering would be to (a) use 
explicit subscription objects, and (b) expose methods for enabling and disabling event buffering. In fact, this would only 
require exposing parts of the existing implementation (currently utilized by awaitOnly and awaitIgnore) behind an 
extended public interface for subscriptions.

A further extension would be to expose methods to request upstream publishers to buffer events until further notice. In 
turn, such an upstream publisher could request its own upstream publishers to buffer events, thereby realizing a form of 
flow control.

Asynchronous pull-based reactive programming. The F� AsyncSeq [18] library provides a sequence abstraction where indi-
vidual elements are retrieved asynchronously, on demand. Similar to RAY, the library provides syntactic sugar analogous to 
rasync blocks based on computation expressions [50]. Thus, AsyncSeq shows that computation expressions are sufficient 
to provide this syntactic sugar; the full expressive power of Scala’s macro system is not necessary for realizing a comparable 
programming model. However, computation expressions are not flexible enough to generate efficient state machines as de-
scribed in Section 6, and they are restricted to a sublanguage of F� , whereas RAY is designed to enable using its constructs 
in regular Scala code.
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p ::= cd mb Program

cd ::= public class C { f d md} Class declaration

f d ::= public σ f ; Field declaration

md ::= public φ m(σ x) mb | rasync public ψ m(σ x) mb Method declaration

mb ::= { σ x;s } Method body

φ ::= σ | void Return type

σ ,τ ::= γ | ρ Type

γ ::= bool | int | Option<σ> Value type

ρ ::= C | Observable<σ> Reference type

ψ ::= Observable<σ> Observable return type

Fig. 9. Programs and types. C ranges over class names, f , m, x range over identifiers.

F� AsyncSeq implements an asynchronous pull semantics: in contrast to RAY, elements are not asynchronously pushed to 
consumers, but instead they are asynchronously pulled by consumers. Note that it is possible to convert between the two 
styles. A pull-based source can be converted to a push-based source by first pulling, automatically, and pushing events to 
downstream consumers as they become available. Conversely, a push-based event source can be converted to a pull-based 
source by buffering its output until pulled by the consumer. While such conversions are possible in principle, they do not 
always preserve non-functional properties such as (soft real-time) responsiveness.

3.7. Summary

In this section we have presented RAY, an asynchronous programming model which generalizes the async-await model 
from tasks/futures to observables. RAY enables an intuitive coordination and composition of streams, with important prop-
erties: first, there is no need to use higher-order functions; second, RAY provides a direct style API for awaiting stream 
events; finally, programmers can leverage their experience using the async-await model known from C� and F� .

4. Formalization

We formalize the introduced programming model in the context of an imperative, object-based core language. Our focus 
is modeling concurrent stream producers and consumers using the rasync, await, and yieldNext constructs informally 
introduced in Section 3. Therefore, the operational model includes (a) concurrently reduced frame stacks (“threads”) and (b) 
a shared heap that is used to communicate asynchronous events between frame stacks. Orthogonal features of the core 
language, such as classes, are as simple as possible. Concretely, our core language extends Featherweight C� [7], or FC�

5, 
which has been used to formalize the features for asynchronous programming in C� 5.0 (async/await). The principles 
of this core language are similar to well-known, class-based core languages, including Classic Java [17], MJ [6], Creol [36], 
ABS [35], and Welterweight Java [48]. Consequently, we do not expect any challenges integrating the presented asynchronous 
features into more complex core languages.

Notation. In our formalization we adopt the overbar notation of Featherweight Java [32]; i.e., we write x for a possibly 
empty sequence x1, . . . , xn and ε for the empty sequence. We also use the overbar notation to abbreviate operations and 
expressions involving multiple sequences. For example, we write x : σ for the (possibly empty) sequence x1 : σ1, . . . , xn : σn . 
Similarly, we write f �→ L(y) for the sequence f1 �→ L(y1), . . . , fn �→ L(yn). Finally, we write L(y) = p for the sequence 
L(y1) = p1, . . . , L(yn) = pn .

4.1. Syntax

Figs. 9 and 10 show the syntax of our core language. A RAY program consists of a sequence of class definitions, cd, as 
well as the body of a “main” method, mb. A class C has (a possibly empty) sequence of fields, f d, and methods, md. Note 
that our core language does not support any form of subtyping; thus, class declarations do not specify a superclass. This is 
adopted from [7]; the presented asynchronous features are orthogonal to subtyping.

Types, ranged over by σ , τ , are either value types γ or reference types ρ . Value types only include bool, int, and 
the built-in generic type Option<σ>. The type Option<σ> is the type of optional values which have one of two 
forms: None<σ>, an empty optional value, or Some(v), a “full” optional value containing value v . Reference types are 
either class types C, introduced by class definitions, or instances of the built-in generic type Observable<σ>. The type 
Observable<σ> is the type of observables, i.e., asynchronous event streams. An object of observable type produces ex-
actly one stream of events which can be consumed by other observables. Conversely, an observable can choose to subscribe 
to several other observables in order to consume their events. Methods marked with modifier rasync must have an ob-
servable return type ψ .

In order to simplify the presentation of the operational semantics, programs are written in statement normal form [7]
(SNF) which requires all subexpressions to be named. Apart from their syntax in SNF, most statements and expressions are 
standard, including expressions for Boolean and integer constants, variables, conditionals, field selection, field assignment, 
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e ::= Expressions

c Constant

| x Variable

| x ⊕ y Built-in operator

| x. f Field selection

| x.m(y) Method invocation

| new C() Object creation

| Some(x) Full optional value

| None<σ> Empty optional value

| get x Get optional value

| await x Await expression

s, t ::= Statements

x = e; Assignment

| if (x) {s} else {t} Conditional

| while (x) {s} Iteration

| x. f = y; Field assignment

| x.m(y); Method invocation statement

| return; Return statement

| return x; Return value statement

| yieldNext x; Yield value statement

| yieldDone(); Yield finish statement

Fig. 10. Expressions and statements.

S ::= object state:
FM field map

| ST running state

Fig. 11. Heap object state.

method invocations, and instance creation. The expression Some(x) creates a non-empty optional value containing x. The 
expression None<σ> creates an empty optional value; the type argument σ is used in the corresponding type rule to 
assign the expression type Option<σ>. The expression get x extracts the value contained in an optional value x (if any). 
Note that attempting to extract a value from an empty option causes reduction to get stuck; however, this is an allowed 
stuck state in our system (see case (f) in Theorem 2). Our type system is not intended to prevent incorrect option usages. 
The yieldNext and yieldDone statements and the await expression are new: yieldNext x asynchronously emits 
event x to subscribers of the current observable; yieldDone() emits a “done” event to subscribers and terminates the 
current observable; await x awaits the next event emitted by observable x.

4.2. Dynamic semantics

We define the dynamic semantics of the core language using a small-step operational semantics. The operational se-
mantics is based on three different transition relations for (a) frames, (b) frame stacks, and (c) processes. A frame 〈L, s〉l

combines a sequence of statements s with a variable environment L which maps the free variables in s (if any) to their val-
ues. The frame label l distinguishes between synchronous and asynchronous frames. For now, we only consider synchronous 
frames where l = s. (Asynchronous frames are discussed below in Section 4.2.2.) A frame stack F ◦ F S models a “thread” 
in our system; the stack of frames is used for both (a) method call/return transitions and (b) creation of asynchronous 
observables. Finally, a process is a set of frame stacks. Reduction of processes is defined using an interleaving semantics: at 
each step, the next frame stack to reduce is chosen non-deterministically.

All transition relations include a heap (or store [51]). The heap is necessary for two orthogonal aspects: first, mutation 
of regular objects; second, communication of asynchronous events between concurrent frame stacks.

Definition 4.1 (Heap). H ∈ Oid ⇀ ρ × S .

A heap, denoted H , partially maps object identifiers o ∈ Oid to heap objects 〈ρ, S〉, pairs of a reference type and an 
object state. An object state (see Fig. 11) is either a field map FM or a running state ST (running states are defined in 
Section 4.2.2 below). A field map partially maps fields f to values, ranged over by v , where v can be either an integer, 
a Boolean, an empty option (None<σ>), a full option (Some(v)), or an object identifier.

4.2.1. Synchronous transition rules
Fig. 12 shows simple frame transition rules. We use −→ to denote the transition relation for single frames. Note that 

all transition rules preserve the labels of frames. Rule E-Constant updates variable x in local variable mapping L to map to 
constant c; reduction continues with statements s. Rule E-Var looks up the value L(y) of variable y in mapping L. The local 
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H, 〈L, x=c;s〉l −→ H, 〈L[x �→ c], s〉l (E-Constant)

H, 〈L, x=y;s〉l −→ H, 〈L[x �→ L(y)], s〉l (E-Var)

H, 〈L, x=y ⊕ z;s〉l −→ H, 〈L[x �→ L(y) ⊕ L(z)], s〉l (E-Op)

H(L(y)) = 〈C, FM〉 f ∈ dom(FM)

H, 〈L, x=y. f ;s〉l −→ H, 〈L[x �→ FM( f )], s〉l
(E-Field)

r =
{

s u if L(x) = true

t u otherwise

H, 〈L,if (x) {s} else {t} u〉l −→ H, 〈L, r〉l
(E-CondEq)

r =
{

s while (x){s} t if L(x) = true

t otherwise

H, 〈L,while (x){s} t〉l −→ H, 〈L, r〉l
(E-While)

L(x) = o H0(o) = 〈C, FM〉 f ∈ dom(FM) H1 = H0[o �→ 〈C, FM[ f �→ L(y)]〉]
H0, 〈L, x. f =y;s〉l −→ H1, 〈L, s〉l

(E-Asn)

f ields(C) = τ f o /∈ dom(H0) H1 = H0[o �→ 〈C, f �→ default(τ )〉]
H0, 〈L, x=new C();s〉l −→ H1, 〈L[x �→ o], s〉l

(E-New)

Fig. 12. Simple frame transition rules.

H, 〈L, x=Some(y);s〉l −→ H, 〈L[x �→ Some(L(y))], s〉l (E-Some)

H, 〈L, x=None<σ>;s〉l −→ H, 〈L[x �→ None<σ>], s〉l (E-None)

L(y) = Some(v)

H, 〈L, x=get y;s〉l −→ H, 〈L[x �→ v], s〉l
(E-Get)

Fig. 13. Frame transition rules for options.

H, F −→ H ′, F ′

H, F ◦ F S � H ′, F ′ ◦ F S
(E-Frame)

H(L(y)) = 〈ρ, F M〉 mbody(ρ,m) = mb : (σ x) →s σ1,mb = τ y;t
L′ = [x �→ L(z), y �→ default(τ ),this �→ L(y)]

H, 〈L, x=y.m(z);s〉l ◦ F S � H, 〈L′, t〉s ◦ 〈L, s〉l
x ◦ F S

(E-Method-Exp)

H(L(x)) = 〈ρ, F M〉 mbody(ρ,m) = mb : (σ x) →s σ1,mb = τ y;t
L′ = [x �→ L(y), y �→ default(τ ),this �→ L(x)]

H, 〈L, x.m(y);s〉l ◦ F S � H, 〈L′, t〉s ◦ 〈L, s〉l ◦ F S
(E-Method-Stmt)

H, 〈L,return y;s〉s ◦ 〈L′, t〉l
x ◦ F S � H, 〈L′[x �→ L(y)], t〉l ◦ F S (E-Return-Val)

H, 〈L,return;s〉s ◦ 〈L′, t〉l ◦ F S � H, 〈L′, t〉l ◦ F S (E-Return)

Fig. 14. Synchronous method call/return transition rules.

variable mapping of the target frame maps x to L(y). Rule E-Op is analogous. Rule E-Field looks up the value of field y. f
using L and H ; as before, reduction continues with statements s. Rules E-CondEq and E-While are straightforward; they 
are adopted unchanged from Featherweight C� [7], the basis for our formal model. Rule E-Asn combines the heap H , local 
variable mapping L, and field mapping FM in the natural way for field assignment. Rule E-New creates a new instance of 
class C, assigning type-specific default values to the fields of the new instance. For a type τ , the default value default(τ ) is 
defined in the obvious way, such that default(Option<σ>) = None<σ> and default(ρ) = null if ρ is a reference type.

Fig. 13 shows the frame transition rules for options. Rule E-Some creates a “full” option instance. Analogously, rule
E-None creates an “empty” option instance. Rule E-Get extracts the wrapped value of a full option instance.

Fig. 14 shows the transition rules for method call and return. We use � to denote the transition relation for frame stacks 
(−→ transitions single frames). Rule E-Frame transitions a frame stack F ◦ F S by transitioning frame F . Rule E-Method-Exp

evaluates a result-returning method invocation. The run-time type of the receiver, ρ , is looked up in heap H . Using the 
auxiliary function mbody we look up the body of method m in ρ . Note that this transition rule only applies if the method 
is a synchronous method (i.e., not marked with modified rasync); this requirement is indicated using function arrow →s

in the type of the method. To evaluate the method body, a new frame with synchronous label s is created and pushed 
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H(L(y)) = 〈ρ, F M〉 mbody(ρ,m) = mb : (σ x) →a ψ,mb = τ y;t
L′ = [x �→ L(z), y �→ default(τ ),this �→ L(y)]

H ′′ = H[o �→ 〈ψ, running(ε, ε)〉] o /∈ dom(H)

p = {L(zi) | zi ∈ z ∧ σi = ψi} H ′ = subscribe(o, p, H ′′)
H, 〈L, x=y.m(z);s〉l ◦ F S � H ′, 〈L′, t〉a(o,p) ◦ 〈L[x �→ o], s〉l ◦ F S

(E-RAsync-Method)

H(o) = 〈Observable<σ>, running(F , S)〉
(o, R) = resume(F ,Some(L(z))) Q = {R ◦ ε | R ∈ R}

S ′ = [〈o′,q :: L(z)〉 | 〈o′,q〉 ∈ S] ::: [〈oi , []〉 | oi ∈ o]
H ′ = H[o �→ 〈Observable<σ>, running(ε, S ′)〉]

H, {〈L,yieldNext z;s〉a(o,p) ◦ F S} ∪ P � H ′, {〈L, s〉a(o,p) ◦ F S} ∪ P ∪ Q
(E-Yield)

H(o) = 〈Observable<σ>, running(F , S)〉
(o, R) = resume(F ,Some(L(x))) Q = {R ◦ ε | R ∈ R}

S ′ = [〈o′,q :: L(x)〉 | 〈o′,q〉 ∈ S] ::: [〈oi , []〉 | oi ∈ o]
H0 = H[o �→ 〈Observable<σ>,done(S ′)〉]
∀i ∈ 1 . . .n. Hi = Hi−1[pi �→ unsub(o, pi , H)]

H, {〈L,return x;s〉a(o,p) ◦ F S} ∪ P � Hn, {F S} ∪ P ∪ Q
(E-RAsync-Return)

H(o) = 〈Observable<σ>, running(F , S)〉
(o, R) = resume(F ,None<σ>) Q = {R ◦ ε | R ∈ R}

S ′ = S ∪ {〈oi , []〉 | oi ∈ o}
H0 = H[o �→ 〈Observable<σ>,done(S ′)〉]
∀i ∈ 1 . . .n. Hi = Hi−1[pi �→ unsub(o, pi , H)]

H, {〈L,yieldDone();s〉a(o,p) ◦ F S} ∪ P � Hn, {F S} ∪ P ∪ Q
(E-YieldDone)

Fig. 15. Asynchronous method call/return transition rules.

on top of the frame stack. Importantly, the caller frame (with statements s) is annotated with variable x; this annotation 
is used for the transfer of the return value as follows. Rule E-Return-Val shows how a value is returned from a method 
invocation to the caller. A method call returns when the statements of its frame have been reduced to a sequence beginning 
with return y;. The method’s frame is popped off the frame stack, and the frame of the caller is replaced with a frame 
that maps variable x to the value of y. Rules E-Method-Stmt and E-Return are analogous for the cases where a method 
invocation or a return statement does not return result values, respectively.

4.2.2. Asynchronous transition rules
In contrast to synchronous transition rules, asynchronous transition rules involve asynchronous frames, in addition to 

the synchronous frames used for method call/return transitions. An asynchronous frame has the form 〈L, t〉l with an asyn-
chronous label l = a(o, p). In this label, o is the object identifier of a corresponding observable object 〈Observable<σ>, ST 〉. 
Instead of a field map FM, an observable object has a running state ST . ST has one of two forms:

• ST = running(F , S): this state indicates that observable o is running, i.e., its behavior has not yet been reduced to a 
value. Observable o may still await events of other observables and/or yield events itself. F is a list of asynchronous 
frames, namely, all observables that are currently suspended awaiting o to publish a new event. S is a list of subscribers. 
A subscriber S ∈ S is a pair S = 〈o′, q〉 where o′ is an observable that has expressed interest in awaiting events published 
by o, and q is a queue of events published by o, but not yet consumed by o′ .

• ST = done(S): this state indicates that observable o is done, i.e., its behavior cannot be reduced further. Observable o
may no longer await or yield events. However, subscribers 〈o′, q〉 ∈ S may still consume events from their queue q.

The second component of an asynchronous label a(o, p) is a sequence of identifiers p of observable objects that observ-
able o is subscribed to. As explained above, subscriptions are used for managing asynchronicity: receivers of asynchronous 
events may not always be ready to receive new events; therefore, subscriptions are used for setting up queues within the 
sending/publishing observables for buffering events until they can be consumed.

Notation. Given a sequence q, we use v :: q for denoting the sequence that prepends a single element v to q. Conversely, 
we use q :: v for denoting the sequence that appends a single element v to q. Given two sequences q and p, we use q ::: p
for denoting the sequence that concatenates the two sequences. The binary operator ⊕ is used to express the destructuring 
of a sequence such that Q = R ⊕ S if ∀r ∈ R. r ∈ Q ∧ r /∈ S and ∀s ∈ S. s ∈ Q ∧ s /∈ R . Finally, given sets Q , R , and S , we use 
Q = R � S to express the fact that Q is equal to the disjoint union of R and S .

Fig. 15 shows the asynchronous transition rules. These rules transition either between frame stacks (�) or processes 
(�).

Rule E-RAsync-Method evaluates the invocation of an rasync method. The look-up of such a method is identical 
to that of a regular, synchronous method. However, the method type looked up using mbody indicates using function 
arrow →a that the method is marked as rasync. Thus, the method’s result type is guaranteed to be an observable type 
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∀pi ∈ p. H0(pi) = 〈ψi , running(F i , Si)〉 |p| = n
∀i ∈ 1 . . .n. Hi = Hi−1[pi �→ 〈ψi , running(F i , 〈o, []〉 :: Si)〉]

subscribe(o, p, H0) = Hn

Fig. 16. Function subscribe computes, starting from a heap H0, a heap Hn where a given observable o is subscribed to a set of observables p.

rasync public Observable<int> fwd(Observable<int> s) {
int x;
x = await s;
yieldNext x;

}

Fig. 17. Example rasync method.

resume(F , v) = [(o, 〈L[x �→ v], t〉a(o,p)) | 〈L, x=await y;t〉a(o,p) ∈ F ]
unsub(S,o) = [〈o′,q〉 | 〈o′,q〉 ∈ S ∧ o′ �= o]

unsub(o, p, H) =
{

〈ψ, running(F , unsub(S,o))〉 if H(p) = 〈ψ, running(F , S)〉
〈ψ,done(unsub(S,o))〉 if H(p) = 〈ψ,done(S)〉

Fig. 18. Auxiliary functions.

ψ = Observable<σ> (ensured by rule AsyncMeth-OK; see Fig. 23). Rule E-RAsync-Method allocates a new observable o
of type ψ with running state running(ε, ε). Furthermore, this new observable o subscribes itself to all other observables p
passed as arguments in the method invocation. The actual subscription is performed using the subscribe function which is 
defined in Fig. 16; the function adds o as a subscriber (with an empty queue) to each observable pi ∈ p. Finally, back in rule
E-RAsync-Method, a new asynchronous frame 〈L′, t〉a(o,p) is pushed onto the frame stack. The asynchronous label a(o, p)

indicates that the frame belongs to the behavior of observable o, which is subscribed to observables p .

Example. Consider an invocation of the rasync method fwd shown in Fig. 17. Suppose the executing process has thus 
a frame stack 〈L, w=y.fwd(z);s〉l ◦ F S for some mapping L, variables w, y, z, statements s, label l, and frame stack F S
such that {w, y, z} ⊆ dom(L). Furthermore, suppose H(L(y)) = 〈C, F M〉, mbody(C, fwd) = mb : (Observable<int> s) →a

Observable<int>, and mb as shown in Fig. 17. Then, by rule E-RAsync-Method, H, 〈L, w=y.fwd(z);s〉l ◦ F S �
H ′, 〈L′, t〉a(o,p) ◦ 〈L[w �→ o], s〉l ◦ F S where

(1) H ′′ = H[o �→ 〈Observable<int>, running(ε, ε)〉], o /∈ dom(H)

(2) H ′ = subscribe(o, p, H ′′), p = {L(z)}
(3) L′ = [s �→ L(z), x �→ 0, this �→ L(y)]
(4) t = x=await s;yieldNext x;

(1) allocates the new stream o in heap H ′′; o’s running state has empty sets of waiters and subscribers. (2) adds the newly 
created stream o as a subscriber to stream L(z) (since p = {L(z)}): subscribe(o, p, H ′′) = H ′′[L(z) �→
〈Observable<int>, running(F , 〈o, []〉 :: S)〉] where H ′′(L(z)) = 〈Observable<int>, running(F , S)〉. (3) initializes the 
mapping L′ of the new asynchronous frame 〈L′, t〉a(o,p) . Finally, (4) initializes the statements of the new frame which are 
equal to the body of the fwd method.

Differences to the informal semantics. In the formal model, the invocation of an rasync method y.m(z) such that 
H(L(y)) = 〈ρ, FM〉 and mbody(ρ, m) = mb : (σ x) →a ψ corresponds to the invocation of a method of the following form in 
the informal description:

def m(x : σ): ψ = rasync(x′) {
...

}

Here, x′ = [xi ∈ x | σi = ψi] is a list of all parameters with an observable type. The implementation does not enforce the 
above form, though; thus, not passing an observable parameter as an argument to rasync would lead to a semantic 
difference between the practical implementation described in Section 3 and the formal model described here.

Rule E-Yield models the built-in yieldNext statement which publishes a new event to all waiters and subscribers of 
observable o. Waiters F ∈ F are resumed by creating a set of new frame stacks Q based on frames created using the resume
auxiliary function (defined in Fig. 18). Rule E-Yield resumes waiters with value L(z). The state of observable o is updated 
such that the set of waiters is empty. Furthermore, for each resumed waiter, an empty queue is added to the new subscriber 
set S ′.

In rule E-RAsync-Return a process has an asynchronous frame 〈L, return x;s〉a(o,p) on top of its frame stack. Since the 
frame’s statements have been reduced to a sequence beginning with return x;, this means the corresponding observable 
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L(y) = o′ H(o′) = 〈Observable<σ>, running(F , S)〉 S = R � {〈o, []〉}
H ′ = H[o′ �→ 〈Observable<σ>, running(〈L, x=await y;s〉a(o,p) :: F , R)〉]

H, 〈L, x=await y;s〉a(o,p) ◦ F S � H ′, F S
(E-Await1)

L(y) = o′ H(o′) = 〈Observable<σ>, running(F , S)〉 S = R � {〈o,q :: v〉}
H ′ = H[o′ �→ 〈Observable<σ>, running(F , R ∪ {〈o,q〉})〉]

H, 〈L, x=await y;s〉a(o,p) −→ H ′, 〈L[x �→ Some(v)], s〉a(o,p)
(E-Await2)

L(y) = o′ H(o′) = 〈Observable<σ>,done(S)〉 S = R � {〈o,q :: v〉}
H ′ = H[o′ �→ 〈Observable<σ>,done(R ∪ {〈o,q〉})〉]

H, 〈L, x=await y;s〉a(o,p) −→ H ′, 〈L[x �→ Some(v)], s〉a(o,p)
(E-Await3)

L(y) = o′ H(o′) = 〈Observable<σ>,done(S)〉 S = R � {〈o, []〉}
H, 〈L, x=await y;s〉a(o,p) −→ H, 〈L[x �→ None<σ>], s〉a(o,p)

(E-Await4)

Fig. 19. Asynchronous transition rules for await.

H, {ε} ∪ P � H, P (E-Exit)

H, F S � H ′, F S ′

H, {F S} ∪ P � H ′, {F S ′} ∪ P
(E-Schedule)

Fig. 20. Process transition rules.

o is about to publish L(x) as its very last event. Therefore, any waiters F are resumed with result Some(L(x)). The state 
of observable o is updated to 〈Observable<σ>, done(S ′)〉, indicating that o has transitioned to the terminated state; the 
(updated) subscribers S ′ are defined in exactly the same way as in the case of yielding an event (see above). Importantly, 
even though o has terminated, events previously published to its subscribers S ′ remain available for consumption (see rules 
for await below). Finally, o unsubscribes from all observables p using the unsub auxiliary function defined in Fig. 18.

Rule E-YieldDone is analogous to rule E-RAsync-Return, except that the waiting frames F are resumed with an empty 
option value None<σ> instead of a full option value Some(L(x)). The statement sequence s following the yieldDone()
invocation is discarded.

Fig. 19 shows the transition rules for the await expression. Rule E-Await1 adds the asynchronous frame F of observable 
o to the waiters of observable o′ in the case where there is no event from o′ ready to be consumed by o. Rule E-Await2 han-
dles the dual case where observable o immediately receives an event from observable o′; the subscribers of o′ are updated 
accordingly in the target heap H ′. Rule E-Await3 handles the case where observable o′ is in a terminated state done(S). 
Importantly, a subscriber queue in S may contain an event that can be consumed by the await-invoking observable o. 
In case the corresponding subscriber queue is empty (E-Await4), await reduces to None<σ>, since observable o′ is in a 
terminated state and will therefore not yield any further events. Note that rules E-Await2-4 use the −→ transition relation, 
since their transition depends only on a single frame and the state of the heap. In contrast, rule E-Await1 replaces the entire 
frame stack (by popping the top frame); therefore, it is necessary to use a different transition relation, �.

Process transition rules enable reducing frame stacks, i.e., threads; Fig. 20 shows the transition rules. We use an inter-
leaving semantics. Rule E-Schedule non-deterministically selects and transitions a thread; note that the transition may have 
side effects on the heap. Rule E-Exit removes threads with empty frame stacks from the soup of threads.

4.3. Static semantics

The typing relation for expressions and statements is defined using a judgement of the form � � e : σ where � is a 
standard type environment consisting of bindings x : ρ , e is an expression or a statement, and σ is a type. Fig. 21 shows 
the typing rules for expressions.

Most typing rules are standard and identical to those of FC�
5. Rule C-Await is different from the rule of the same name 

in FC�
5: in FC�

5 await is used to wait for the completion of a task that produces a single result. In RAY, await is used 
to wait for the next emitted event of an observable. For an expression await x to be well-typed, x must be an observable 
of type Observable<σ>. The result of await x is an optional value, since it is possible that observable x has already 
finished emitting events when await is invoked.

Fig. 22 shows the type checking of statements. All type rules except for C-Yield and C-YieldDone are unchanged com-
pared to FC�

5. Note that for type checking statements, the type σ in the judgement � � s; : σ indicates that statement 
s may only return (or yield) values of type σ ; however, statement s may also not return (or yield) anything, e.g., in rule
C-Asn.

Recall that a program is a sequence of class declarations followed by the body of a “main” method. Fig. 23 shows 
the rules for method and class typing. A class is well-typed if its methods are well-typed (Class-OK); note that fields 
are well-formed thanks to their syntax. A method is well-formed if its body is well-typed under the type environment 
constructed from the current this, the method’s formal parameters x, and the method’s local variables y (Meth-OK and
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� � b : bool (C-Bool)

� � i : int (C-Int)

� � null : ρ (C-Null)

� � x : σ0 � � y : σ1 ⊕ : σ0 × σ1 → τ

� � x ⊕ y : τ (C-Op)

� � new C() : C (C-New)

�, x : τ � x : τ (C-Var)

ftype(σ , f ) = τ

�, x : σ � x. f : τ (C-Field)

mtype(σ0,m) = (τ ) → σ1 �, x : σ0 � y : τ
�, x : σ0 � x.m(y) : σ1

(C-MethInv)

� � x : σ
� � Some(x) : Option<σ> (C-Some)

� � None<σ> : Option<σ> (C-None)

� � x : Option<σ>
� � get x : σ (C-Get)

�, x : Observable<σ> � await x : Option<σ> (C-Await)

Fig. 21. Expression type checking.

�, x : σ � e : σ
�, x : σ � x = e; : φ (C-Asn)

�, x : bool � s : φ �, x : bool � t : φ
�, x : bool � if (x) {s} else {t} : φ (C-Cond)

�, x : bool � s : φ
�, x : bool � while (x) {s} : φ (C-While)

ftype(σ0, f ) = σ1 �, x : σ0 � y : σ1

�, x : σ0 � x. f = y; : φ (C-FAsn)

mtype(σ0,m) = (τ ) → void �, x : σ0 � y : τ
�, x : σ0 � x.m(y); : φ (C-MInv)

� � return; : void (C-Return)

�, x : σ � return x; : σ (C-ReturnExp)

�, x : σ � yieldNext x; : σ (C-Yield)

� � yieldDone(); : φ (C-YieldDone)

Fig. 22. Statement type checking.

AsyncMeth-OK). The body of a regular, synchronous method may not contain await expressions (Meth-OK). Note that 
statements in the body of an rasync method with return type Observable<σ0> are type-checked with expected type 
σ0; as a result, values emitted using yieldNext must have type σ0 (C-Yield), as required when creating an observable of 
type Observable<σ0>.
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C � md ok

� public class C { f d md} ok
(Class-OK)

x : σ , y : τ ,this : C � s : φ ∀e ∈ s. e �= await _

C � public φ m(σ x) { τ y;s } ok
(Meth-OK)

x : σ , y : τ ,this : C � s : σ0

C � rasync public Observable<σ0> m(σ x) { τ y;s } ok
(AsyncMeth-OK)

Fig. 23. Method and class typing.

� � s : σ dom(�) ⊆ dom(L)

∀(x : ρ) ∈ �. typeof (L(x), H) = ρ
l = a(o, p) =⇒ okObs(H,o, σ )

H � 〈L, s〉l : σ (T-Frame1)

�, x : τ � s : σ dom(�) ⊆ dom(L)

∀(y : ρ) ∈ �. typeof (L(y), H) = ρ
l = a(o, p) =⇒ okObs(H,o, σ )

H �τ
x 〈L, s〉l

x : σ (T-Frame2)

H � 〈L, s〉l : σ
H � 〈L, s〉l ◦ ε : σ (T-FS1)

F S �= ε ∃τ . H � 〈L, s〉a(o,p) : τ H � F S : σ
H � 〈L, s〉a(o,p) ◦ F S : σ (T-FS2)

H �τ
x Gx : σ

H �τ
x Gx ◦ ε : σ (T-FS3)

G S �= ε ∃τ ′. H �τ
x Gx : τ ′ H � G S : σ

H �τ
x Gx ◦ G S : σ (T-FS4)

∃τ . H � F s : τ ∧ H �τ
x Gx ◦ G S : σ

H � F s ◦ Gx ◦ G S : σ (T-FS5)

∃τ ′. H �τ
x Fx : τ ′ ∧ H �τ ′

y G y ◦ G S : σ
H �τ

x Fx ◦ G y ◦ G S : σ (T-FS6)

P = {F S} ∪ Q ∃σ . H � F S : σ H � Q : �
H � P : � (T-Proc)

Fig. 24. Typing frames, frame stacks, and processes.

Typing frames, frame stacks, and processes. Rules T-Frame1 and T-Frame2 shown in Fig. 24 extend statement typing to 
frames. Rule T-Frame1 covers the case where a frame F is not annotated with a variable eventually carrying the result 
of a method invocation. Such non-annotated frames are created when applying the E-Method-Exp, the E-Method-Stmt, 
or the E-RAsync-Method reduction rule. (Rule E-Method-Exp creates a new non-annotated frame and adds an annotation 
to an existing frame.) Note that the T-Frame1 rule abstracts from the label l of the frame 〈L, s〉l; thus, l can either be a 
synchronous label l = s or an asynchronous label l = a(o, p). The frame’s term must be well-typed in a type environment �
whose domain is a subset of the domain of L. Crucially, for frame F to be well-typed, the types of values L(x) of variables 
x in heap H , typeof (L(x), H), must agree with the static type environment �.

Rule T-Frame2 covers the case where a frame F is annotated with a variable x eventually carrying the result of a method 
invocation. The judgement H �τ

x F : σ dictates the type of result variable x to be τ . Consequently, the frame’s statements s
must be well-typed in an environment �, x : τ . Note that the dynamic variable mapping L is undefined for x. The annotated 
judgement �τ

x is introduced by rule T-FS5, i.e., whenever a synchronous frame is followed by a non-empty frame stack. 
(A synchronous frame followed by an empty frame stack is handled by rule T-FS1.) In that case, the frame stack right below 
the synchronous frame (Gx ◦ G S in T-FS5) is checked for well-formedness using the annotated judgement in order to keep 
track of the expected type τ of variable x. Rules T-FS3 and T-FS4 have annotated judgements for frame stacks in their 
conclusion and require well-formed (single) frames according to an annotated judgement. In turn, that judgement is defined 
by T-Frame2. Otherwise, T-Frame2 is analogous to T-Frame1. Both rules include a well-formedness condition okObs(H, o, σ)

in case the frame label l is asynchronous, i.e., l = a(o, p).
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H � ε ok
(EmpFS-ok)

H � F ok H � F S ok obsIds(F )#obsIds(F S)

H � F ◦ F S ok
(FS-ok)

H � F s ok
(SF-ok)

H � F s ok

H � F s
x ok

(CSF-ok)

Running(H(o))

∀o′ ∈ dom(H). o /∈ waiters(H(o′)) ∧ (o ∈ subscribers(H(o′)) ⇔ o′ ∈ p)

H � F a(o,p) ok
(AF-ok)

∀o ∈ dom(H). H � H(o) ok
∀o1 �= o2 ∈ dom(H). waiters(H(o1))#waiters(H(o2))

� H ok
(H-ok)

H � 〈C, F M〉 ok
(HO-ok)

H � 〈Observable<σ>,done(S)〉 ok
(DOHO-ok)

∀i �= j ∈ {1..n}. obsIds(Fi)#obsIds(F j)

∀i ∈ {1..n}. ∀o ∈ obsIds(Fi). Running(H(o))

H � 〈Observable<σ>, running(F1, . . . , Fn, S)〉 ok
(ROHO-ok)

H � F S1 ok . . . H � F Sn ok
∀i �= j ∈ {1..n}. obsIds(F Si)#obsIds(F S j)

H � {F S1, . . . , F Sn} ok
(Proc-ok)

Fig. 25. Non-interference properties.

Definition 1 (Well-formed Observable). An observable o yielding values of type σ is well-formed in heap H , written 
okObs(H, o, σ), iff

H(o) = 〈Observable<σ>, running(F , S)〉
=⇒ ∀F ∈ F . H � F : τ ∧ F = 〈K , x=await y;t〉l ∧ typeof (K (x), H) = Option<σ>

Essentially, okObs(H, o, σ) requires waiter frames of running observables to be well-typed and the result of the sus-
pended await must be an option of a type matching the type of values yielded by observable o.

Rules T-FS1 to T-FS6, shown in Fig. 24, extend frame typing to frame stacks. Essentially, pushing a well-typed frame F
onto a well-typed frame stack G S with type σ (in heap H) preserves type σ for the extended frame stack F ◦ G S in H . 
Importantly, frame F may have a type different from σ in H . The precise formulation of these rules is critical for the proof 
of subject reduction (e.g., in case E-Method-Exp in the proof of Lemma 2 in Section A.2).

Finally, rule T-Proc extends frame stack typing to process typing. Note that processes are simply sets of frame stacks.

5. Correctness properties

We show that well-typed programs satisfy desirable properties:

1. Observable protocol. For example, a terminated observable never publishes events again; this protocol property is cap-
tured by a heap evolution invariant, Definition 2 (see below).

2. Subject reduction. Reduction of well-typed programs preserves types.

The proofs of these properties are based on the typing relation defined in Section 4.3, as well as invariants preserved 
by reduction. To establish the correctness properties we have to consider non-interference properties for processes, frame 
stacks, frames, and heaps; these properties are shown in Fig. 25.

The application obsIds(F S) of the obsIds auxiliary function returns the set of all object addresses o in labels 
a(o, p) of the asynchronous frames F S (similarly for a single asynchronous frame F ). In particular, obsIds(F ) = ∅ if 
F is a synchronous frame. The waiters function returns the observable ids of the waiting frames of the running 
state of a given observable heap object. For an observable heap object H(o) = 〈Observable<σ>, running(F , S)〉, 
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waiters(H(o)) = obsIds(F ). The subscribers function returns the set of subscribers of an observable o. For an observ-
able heap object H(o) = 〈Observable<σ>, running(F , 〈p,q〉)〉, subscribers(H(o)) = p. For an observable heap object 
H(o) = 〈Observable<σ>, done(〈p,q〉)〉, subscribers(H(o)) = p. To test whether an observable is currently running (as 
opposed to done) we use a simple predicate, Running . Finally, to express disjointness of (sets of) heap addresses we use 
the symbol #.

To enforce non-interference during evaluation we define a relation between heaps. The following relation also (a) pre-
serves the types of heap objects and (b) bounds the observable ids of new running states.

Definition 2 (Heap Evolution). Heap H evolves to H ′ in one step with respect to a set of observable ids B , written H ≤B H ′ , 
iff

(i) ∀o ∈ dom(H ′). if o /∈ dom(H) and H ′(o) = 〈ψ, running(F , S)〉 then F = S = ε , and
(ii) ∀o ∈ dom(H).

• if H(o) = 〈C, F M〉 then H ′(o) = 〈C, F M ′〉,
• if H(o) = 〈ψ, done(S)〉 and S = R ⊕ [〈o′, q〉] then H ′(o) = 〈ψ, done(R :: 〈o′, q′〉)〉 or H ′(o) = H(o), and
• if H(o) = 〈ψ, running(F , S)〉 then

(a) H ′(o) = 〈ψ, running(F , 〈o′, []〉 :: S)〉 for some o′ ∈ dom(H ′); or
(b) H ′(o) = 〈ψ, running(F , R)〉 where S = R ⊕ [〈o′, q′〉]; or
(c) H ′(o) = 〈ψ, running(ε, S ::: R)〉 where R = [〈o′, []〉 | F a(o′,r) ∈ F ]; or
(d) H ′(o) = 〈ψ, running(F , R :: 〈o′, q〉)〉 where S = R ⊕ [〈o′, q :: v〉]; or
(e) S = R ⊕ [〈o′, []〉 | Ga(o′,r) ∈ G] =⇒ H ′(o) = 〈ψ, running(F ::: G, R)〉 ∧ obsIds(F )#obsIds(G) ∧ obsIds(G) ⊆ B; or
(f) H ′(o) = 〈ψ, done(S ::: [〈o′, []〉 | F a(o′,r) ∈ F ])〉.

The above heap evolution property specifies the state transition protocol of observables in RAY. Informally, newly created 
observables have empty sets of waiters and subscribers; the set of subscribers may increase (a) or decrease (b) such that 
new subscribers are added with empty event queues; the set of waiters may be converted to subscribers with empty event 
queues (c); subscribers may consume queued events using await (d); subscribers with empty event queues may become 
waiters (e); an observable may transition from a ‘running’ to a ‘done’ state, converting waiters to subscribers with empty 
event queues (f).

Example 1. Consider the reduction of the frame stack 〈L, x=y.m(z);s〉l ◦ F S in heap H where H(L(y)) = 〈ρ, F M〉 and 
mbody(ρ, m) = mb : (σ x) →a ψ, mb = τ y;t . The arrow →a indicates that m is an asynchronous method in class type ρ . 
Then, according to reduction rule E-RAsync-Method (see Fig. 15) H evolves to H ′ in one step, such that dom(H ′) \dom(H) =
{o} where H ′(o) = 〈ψ, running(ε, ε)〉. Thus, case (i) of Definition 2 holds.

Example 2. Consider the reduction of the frame 〈L, x=await y;s〉a(o,p) in heap H where L(y) = o′ , H(o′) =
〈Observable<σ>, running(F , S)〉, and S = R ⊕ [〈o, q :: v〉]. This means that subscriber o has a value v ready to be con-
sumed from the publishing observable o′ . Then, by reduction rule E-Await2 (see Fig. 19) H evolves to H ′ in one step, 
such that H ′(o′) = 〈Observable<σ>, running(F , R :: 〈o, q〉)〉 and H ′(o′′) = H(o′′) ∀o′′ ∈ dom(H ′) \ {o′}. Thus, case (ii.d) of 
Definition 2 holds.

In the following section we prove that the protocol stipulated by Definition 2 is preserved by reduction using a subject 
reduction theorem.

5.1. Subject reduction

The following subject reduction theorem is based on the typing relation defined in Section 4.3. Following a standard 
approach, frames, frame stacks, and processes must be reduced in well-typed heaps, which are defined as follows.

Definition 3 (Well-typed Heap). A heap H is well-typed, written � H : � iff

∀o ∈ dom(H). H(o) = 〈σ , F M〉 =⇒
(dom(F M) = f ields(σ ) ∧ ∀ f ∈ dom(F M). typeof (F M( f ), H) = f type(σ , f )

where

typeof (o, H) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ if o ∈ dom(H) ∧ H(o) = 〈ρ, F M ′〉
Option<σ> if o = None<σ>∨ (o = Some(o′) ∧ typeof (o′, H) = σ)

bool if o = b

int if o = i
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Theorem 1 (Subject Reduction). If � H : � and � H ok then:

1. If H � F : σ , H � F ok and H, F −→ H ′, F ′ then � H ′ : �, � H ′ ok, H ′ � F ′ : σ , H ′ � F ′ ok, and ∀B. H ≤B H ′ .
2. If H � F S : σ , H � F S ok and H, F S � H ′, F S ′ then � H ′ : �, � H ′ ok, H ′ � F S ′ : σ , H ′ � F S ′ ok and H ≤obsIds(F S) H ′ .
3. If H � P : �, H � P ok and H, P � H ′, P ′ then � H ′ : �, � H ′ ok, H ′ � P ′ : � and H ′ � P ′ ok.

Proof. Part (1) is proved by induction on the derivation of H, F −→ H ′, F ′ (see Appendix A.1). Part (2) is proved by 
induction on the derivation of H, F S � H ′, F S ′ and part (1) (see Appendix A.2). Part (3) is proved by induction on the 
derivation of H, P � H ′, P ′ and part (2) (see Appendix A.3). �
5.2. Soundness

Using a standard syntactic approach [56] we prove soundness of the type system as a corollary of subject reduction and 
a progress theorem.

The progress theorem states that in a well-formed heap, a well-typed process can either be reduced (according to �) 
or each of its frame stacks satisfies one of two conditions: either the statements in its only remaining frame begin with a
return statement, or it is in a permitted stuck state (see below for a discussion of the permitted stuck states).

Theorem 2 (Progress). If � H : � and � H ok then:
If H � P : � and H � P ok then

1. H, P � H ′, P ′ for some H ′, P ′; or
2. ∀F S ∈ P , one of the following holds:

(a) F S = 〈L, return;t〉s ◦ ε or F S = 〈L, return x;t〉s ◦ ε
(b) F S = 〈L, s;t〉l ◦ F S ′ where (s = y=x.m(z) or s = x.m(z) or s = y=x. f or s = x. f =y) and L(x) = null
(c) F S = 〈L, y=x.m(z);t〉l ◦ F S ′ where H(L(x)) = 〈ρ, F M〉, mbody(ρ, m) = mb : (σ x) →a ψ , and ∃pi ∈ {L(zi) | zi ∈ z ∧ σi =

ψi} such that H(pi) = 〈ψi, done(S)〉
(d) F S = 〈L, y=await x;t〉a(o,p) ◦ F S ′ where L(x) = null or L(x) /∈ p
(e) F S = 〈L, ε〉l ◦ F S ′
(f) F S = 〈L, y=get x;t〉l ◦ F S ′ where L(x) = None<σ>

Proof. By induction on the derivation of H � P : � (see Appendix A.5). �
The definition of permitted stuck states is mostly standard. For example, attempting to get the value of an empty option 

is a typical permitted stuck state; avoiding such stuck states would require a more complex type system able to statically 
ensure initialization (e.g., [45,34,16,12]).

The following permitted stuck states are specific to our system. The first stuck state is state 2.c) where an rasync 
method is invoked which attempts to subscribe to an observable that already terminated. The reduction semantics does not 
buffer all published events; therefore, it would not be clear which events to publish from a terminated observable to a new 
subscriber. Thus, in order to simplify the reduction semantics, we decided to require subscribing to running observables 
only. The second stuck state is state 2.d) where an observable o attempts to await the next event of another observable o′ , 
but o did not subscribe to o′ . This permitted stuck state is due to the only run-time type check of our system that can fail: 
awaiting the next event of an observable o requires the awaiting observable to be a subscriber of o. Crucially, failures of 
this run-time check cannot invalidate the heap evolution invariant which guarantees that the state of all observables in the 
system evolves correctly.

Soundness of the type system follows from Theorem 1 and Theorem 2.

Example. We illustrate stuck state 2.d) using an example. Consider the reduction of the frame stack F S = 〈L, x=y.m(z);
w=await x;s〉a(o,p) ◦ F S ′ in heap H and soup of processes P where H(L(y)) = 〈ρ, F M〉 and mbody(ρ, m) = mb :
(int v) →a ψ, mb = return v;. Then, by reduction rule E-RAsync-Method, H, F S � H ′, F S ′′ where F S ′′ =
〈L′, return v;〉a(o′,ε) ◦ 〈L[x �→ o′], w=await x;s〉a(o,p) ◦ F S ′ for some o′ /∈ dom(H) and thus o′ /∈ p. Note that the label 
of the top-most frame of F S ′′ is a(o′, ε), because the type of the parameter of method m is int and not an observable 
type. Then, by reduction rule E-RAsync-Return, H ′, {F S ′′} ∪ P � H ′′, {〈L[x �→ o′], w=await x;s〉a(o,p) ◦ F S ′} ∪ P where 
H ′′(o′) = 〈ψ, done(ε)〉. We have thus produced the stuck state 2.d), since L[x �→ o′](x) = o′ /∈ p.

Note that this stuck state does not break type soundness or cause a problem for the preservation of the heap evolution 
invariant: all involved observables (o and o′ in the above example) evolve according to Definition 2. Stuck state 2.d) merely 
expresses the fact that our type system does not guarantee deadlock freedom for communication between observables. Such 
a guarantee is outside the scope of the present paper, and would require a more powerful type system, such as session types
(see, e.g. [31]).
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1 def fwd(s: Observable[Int]) = rasync(s) {
2 var x: Option[Int] = None
3 x = await(s)
4 x.get
5 }

Fig. 26. A simple rasync expression.

5.3. Discussion

Ideally, the presented formalization could provide a formal foundation also for APIs for asynchronous streams, such as 
Reactive Streams [21]. This would enable formal reasoning about programs using such APIs. One approach to provide such a 
formal foundation would be to formulate a weaker variant of the heap evolution relation (see Definition 2) which applies to 
the semantics provided by an API. For example, heap evolution for RAY states that new subscribers are added with empty 
event queues. A similar property is provided also by widely-used asynchronous stream APIs. Similarly, possible transitions 
between waiting and non-waiting subscribers as formulated in Definition 2 would likely have corresponding formulations for 
asynchronous stream APIs. In contrast, certain invariants enforced by RAY would not be possible to enforce in asynchronous 
APIs. For example, RAY ensures that terminated streams never publish events again (see Theorem 1). In an asynchronous 
API where (attempted) publication of events is typically unrestricted (programmers may call “emit” without constraints). 
As a result, such an asynchronous API could not prevent runtime exceptions that are thrown when a method is invoked to 
emit an event from a terminated stream.

In summary, while the provided guarantees would be weaker compared to RAY or other language-based approaches, we 
believe that our formal model could serve as a starting point for developing formal operational semantics that could help 
make informal specifications more precise.4

6. Implementation

We have implemented RAY in terms of two components: (1) a macro which extends Scala Async [26],5 and (2) a library, 
scala-async-flow,6 which provides abstractions for creating observables using the introduced constructs.

The macro component leverages Scala’s (experimental) support for macros [9] to analyze and expand expressions of the 
form rasync(...) { <block> }. Invocations of the pseudo-method await are treated as markers that are used to 
transform the block of code (<block>) into a state machine that can be paused and resumed at each invocation site of 
await. The block of code is first converted to statement normal form (SNF) [7]. Like A-Normal Form (ANF), SNF requires all 
subexpressions to be named. In addition, if, while, match, and other control-flow constructs are only used as statements 
whose results are ignored. Note that our formal model is based on the same normal form (see Section 4).

For example, consider the simple rasync expression shown in Fig. 26. The body of the rasync block is already SNF-
normalized; all subexpressions are named. The single await on line 3 divides the block of code into two logical parts: the 
part before await and the part after await. The RAY macro thus generates a state machine with two logical states, as well 
as code to execute the body starting from these two different states. The first and initial state enables executing the body 
from the beginning, i.e., from line 2. The second state enables executing the body from line 4, given a value for variable x.

Fig. 27 shows a sketch of the generated state machine.7 The state machine is implemented by a class with several fields: 
the state field (line 2) maintains the current state of the FSM; initially, state = 0. The result field (line 3) refers to 
a promise which is asynchronously completed with the result of the rasync block; this result is the last event emitted 
by the rasync block’s observable. The state and result fields are common to all state machines. In addition, this 
particular state machine has a field x which maintains the value of variable x across all states where x is used.

Invoking the apply method (line 6) executes the body of the corresponding rasync block from the beginning. Since 
state= 0, the branch on line 10 is evaluated. This branch contains the code before the first (and only) await expression; 
in this case, the code only consists of the initialization x = None. The original await expression is replaced by the code 
on lines 12–25. First, flow.pubToSub(s) looks up the subscription object corresponding to the observable s (flow is 
a constructor parameter of the StateMachine class; below we describe its role in more detail). The subscription object 
exposes methods to query if an event is available for consumption, and to obtain the event if available; this extends the 
push-based interface of observables as required for await. These pull-based methods are used as follows.

The call sub.getCompleted returns the next (regular) event emitted by s, or null if there is currently no event 
ready to be consumed. In the latter case, the state machine registers its unary apply method as the on-completion handler 

4 See, for instance, the informal specification of the Reactive Streams API: https://github .com /reactive -streams /reactive -streams -jvm /blob /v1.0 .2 /README .
md #specification.

5 See https://github .com /phaller /async (branch async-flow).
6 See https://github .com /phaller /scala -async -flow.
7 The shown listing is a sketch, because we omit aspects such as implicit execution contexts [25] which are not essential for the presentation, but would 

obscure it.

https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#specification
https://github.com/phaller/async
https://github.com/phaller/scala-async-flow
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#specification
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1 class StateMachine(flow: Flow[Int]) {
2 var state = 0
3 val result = Promise[Int]()
4 var x: Option[Int] = _
5
6 def apply(): Unit =
7 apply(null)
8
9 def apply(tr: Try[Int]): Unit = state match {

10 case 0 =>
11 x = None
12 val sub = flow.pubToSub(s)
13 val completed = sub.getCompleted
14 if (completed == null) {
15 state = 2
16 sub.onComplete(evt => apply(evt))
17 return
18 } else if (completed.isFailure) {
19 result.complete(completed)
20 return
21 } else {
22 x = completed.get
23 state = 1
24 apply() // recursive call
25 }
26 case 1 =>
27 result.complete(x.get)
28 return
29 case 2 =>
30 if (tr.isFailure) {
31 result.complete(tr)
32 return
33 } else {
34 x = tr.get
35 state = 1
36 apply() // recursive call
37 }
38 }
39 }

Fig. 27. Sketch of state machine generated for rasync block of Fig. 26.

1 val forwarder = new Flow[Int]
2 forwarder.subscribe(s)
3 forwarder.init((flow: Flow[Int]) => {
4 val stateMachine = new StateMachine(flow)
5 Future { stateMachine.apply() }
6 stateMachine.result.future
7 })
8 return forwarder

Fig. 28. Expansion of the body of the fwd method in Fig. 26.

with sub (line 16) after setting state to 2. Therefore, as soon as s emits the next event or completes with an exception, 
the state machine’s apply method is invoked (line 9). Since state is equal to 2 when this happens, the branch on line 29 
is evaluated. In case s was completed with an exception, the result promise is completed with the same failure object 
(line 31). Otherwise, the result is assigned to x (line 34), and the state machine resumed immediately, but in state 1. 
This results in the execution of the final part of the rasync body starting on line 26. Here, it simply consists of evaluating 
x.get which is also the result of the rasync block; this result is used to complete the result promise, which completes 
the evaluation of the rasync block.

The library component. The state machine described above is augmented with a library component. The body of the fwd 
method in Fig. 26 is expanded as shown in Fig. 28. Each rasync block is represented by an instance of the Flow class 
whose main purpose is to manage subscriptions. First, the forwarder instance is used to subscribe to observable s (line 2). 
Then, the invocation of init registers the body for execution. Actual execution of the body only starts once the first 
observer subscribes to the created observable. The body itself consists of instantiating the state machine (line 4) of Fig. 27
and creating a new asynchronous task that runs the state machine from the beginning (line 5). The future corresponding to 
the state machine’s result promise (see above) is used to communicate the final emitted event to forwarder. Finally, the 
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forwarder instance is returned as the observable created by the original rasync block (class Flow[T] also implements 
Observable[T]).

7. Related work

Google’s Dart programming language [33] has recently been extended with asynchronous functions and generator func-
tions. Asynchronous functions carrying the modifier async* asynchronously produce streams of values, similar to the 
rasync construct introduced in this article. Meijer et al. [42] define a continuation semantics for a “featherweight” sub-
set of Dart’s asynchronous and generator functions in Scott-Strachey style [53]. However, correctness properties are neither 
proved nor formalized. An important contribution of this article is a formalization of the main correctness property of 
constructs like rasync and async*, as well as a complete formal proof.

Our formalization of the introduced programming model builds on the formalization of asynchronous C� by Bierman 
et al. [7]; in particular, we adopt the approach of formulating a heap evolution property that encodes valid “protocol 
transitions” of the programming model. Our main contribution is a generalization of this approach from a future-like pro-
gramming model to a programming model based on streams of asynchronous events. To enable this generalization we 
introduce technical novelties in the underlying formal model absent from the more basic model of [7], such as the concept 
of subscribers which enable the emission and reception of a potentially unbounded number of asynchronous events.

The proposed programming model, RAY, is related to previous work on object-based concurrency. The programming 
model of Creol [36,10] is based on concurrent objects, asynchronous method calls, and processor release points. The primary 
motivation for Creol is an integration of object orientation and distributed programming. Processor release points enable 
methods to suspend execution until pending asynchronous method calls have returned replies. A guard statement await g , 
where g is a guard, declares a release point; guards may check whether replies to asynchronous invocations are available. 
The main difference between Creol, and related languages including ABS [35] and JCoBox [52], and RAY is that in Creol 
asynchronous methods have a bounded number of output parameters, whereas in RAY an rasync block may yield an 
unbounded sequence of events/results. Furthermore, in Creol each call of an asynchronous method creates its own process 
within the receiver object; in contrast, in RAY there is only a single “thread” (frame stack) associated with each observable, 
and all clients are served concurrently. We believe that building on the design of RAY (and its formal model), languages like 
Creol or ABS could be extended to enable asynchronous methods to yield a statically unbounded number of results, while 
enforcing an observable-like communication protocol.

The abstraction of observables provided by RAY is related to channel-based communication in progress algebras like 
CSP [29] and π -calculus [44]. Both CSP and π -calculus are based on synchronous communication. The asynchronous 
π -calculus [30] encodes asynchronous communication in a synchronous framework using dummy processes. In contrast, 
RAY’s communication model is purely asynchronous. The actor model [28,1] is a powerful foundation for asynchronous 
programming [2] due to fair, asynchronous communication without “artificial” message ordering constraints. Recently, imple-
mentations of the actor model in languages like Erlang [4], Scala [24,22], and, more generally, on the JVM [39] have gained 
increasing interest with numerous commercial applications in telecommunications, internet commerce, and others [3]. The 
concurrency model of RAY is less general in the sense that RAY imposes stricter ordering constraints on asynchronous mes-
sages; conversely, RAY provides stronger guarantees such as the observable stream protocol, which cannot be enforced by 
“general-purpose” actor languages. The message queues of observables in RAY are reminiscent of asynchronous channels in 
JoCaml [19], Scala Joins [23], or other implementations of the join-calculus [20]. The main difference is that join-calculus 
style channels allow multiple concurrent senders on the same channel, whereas in RAY only a single “thread” yields all
events of a given observable. Communication in RAY is similar to publish/subscribe systems where objects subscribing to an 
event are notified through anonymous method invocation [15].

8. Conclusions

Asynchronous programming is at the core of an increasingly important class of software systems, including large-scale 
web applications running on cloud computing platforms, providing rich, client-side interfaces. However, programming with 
pervasive asynchronous events is challenging using mainstream languages, which provide only limited support for asyn-
chronicity.

In this paper we have presented a design for asynchronous stream generators, called RAY, which builds on the popular 
async-await model, known from F� and C� , to simplify programming with asynchronous event streams. Importantly, RAY 
enables expressing asynchronous stream computations in direct style, i.e., in a familiar blocking style while using efficient 
non-blocking concurrency control under the hood.

The recent addition of asynchronous generators to Google’s Dart programming language suggests a strong developer 
need for such programming facilities. Unlike Dart, our design targets statically-typed languages. Furthermore, we have pre-
sented a reduction semantics of the programming model, including a static type system with a complete type soundness 
proof. Crucially, we have shown that type soundness implies that RAY enforces an important state transition protocol for 
asynchronous streams. Establishing this result has required a novel technical treatment of “subscriptions” in the reduction 
semantics and type system.
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Finally, given the presented state transition protocol, we believe that our formal development could be refined to provide 
a foundation also for popular stream-based APIs, including Reactive Extensions [41] and the proposed Reactive Streams [21]
JVM standard.

Appendix A. Full proofs

A.1. Proof of Lemma 1

Lemma 1. If � H : � and � H ok then:
If H � F : σ , H � F ok and H, F −→ H ′, F ′ then � H ′ : �, � H ′ ok, H ′ � F ′ : σ , H ′ � F ′ ok, and ∀B. H ≤B H ′ .

Proof. By induction on the derivation of H, F −→ H ′, F ′ .

- Case (E-Var)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F : σ
(d) H � F ok
(e) H, F −→ H ′, F ′

2. By (E-Var)
(a) F = 〈L, x=y;s〉l

(b) H ′ = H
(c) F ′ = 〈L[x �→ L(y)], s〉l

3. By 1.c), 2.a), and (T-Frame1)
(a) � � x=y; : σ
(b) � � s : σ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ ′) ∈ �. typeof (L(z), H) = ρ ′
(e) l = a(o, p) =⇒ okObs(H, o, σ)

4. By 3.a), (C-Asn), and (C-Var), {x : τ , y : τ } ⊆ �.
5. By 2.b), 3.d), and 4. we have ∀(z : τ ′) ∈ �. typeof (L[x �→ L(y)](z), H ′) = τ ′
6. By 2.b-c), 3.a-c), 3.e), 5., and (T-Frame1) we have H ′ � F ′ : σ
7. By 1.d), 2.b-c), (SF-ok), (CSF-ok), and (AF-ok) we have H ′ � F ′ ok
8. 1.a-b), 2.b), 6., and 7. conclude this case

- Case (E-Field)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F : σ
(d) H � F ok
(e) H, F −→ H ′, F ′

2. By (E-Field)
(a) F = 〈L, x=y. f ;s〉l

(b) H ′ = H
(c) F ′ = 〈L[x �→ F M( f )], s〉l where H(L(y)) = 〈ρ, F M〉

3. By 1.c), 2.a), and (T-Frame1)
(a) � � x=y. f : σ
(b) � � s : σ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : τ ′) ∈ �. typeof (L(z), H) = τ ′
(e) l = a(o, p) =⇒ okObs(H, o, σ)

4. By 3.a) and (C-Asn)
(a) � � y. f : τ
(b) (x : τ ) ∈ �

5. By 4.a) and (C-Field)
(a) (y : σ ′) ∈ �

(b) f type(σ ′, f ) = τ
6. By 3.d) and 5.a), typeof (L(y), H) = σ ′ .
7. By 1.a) and 6.

(a) H(L(y)) = 〈σ ′, F M〉
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(b) dom(F M) = f ields(σ ′)
(c) ∀g ∈ dom(F M). typeof (F M(g), H) = f type(σ ′, g)

8. By 5.b) and 7.c), typeof (F M( f ), H) = τ
9. By 3.d), 4.b), and 8., ∀(z : τ ′) ∈ �. typeof (L[x �→ F M( f )](z), H) = τ ′ .

10. By 2.b-c), 3.b-c), 3.e), 9. and (T-Frame1), H � F ′ : σ .
11. By 1.d), 2.b-c), (SF-ok), (CSF-ok), and (AF-ok) we have H � F ′ ok
12. 1.a-b), 2.b), 10., and 11. conclude this case

- Case (E-Asn)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F : σ
(d) H � F ok
(e) H, F −→ H ′, F ′

2. By (E-Asn)
(a) F = 〈L, x. f =y;s〉l

(b) L(x) = o
(c) H(o) = 〈ρ, F M〉
(d) H ′ = H[o �→ 〈ρ, F M[ f �→ L(y)]〉]
(e) F ′ = 〈L, s〉l

3. By 1.b), 2.d), (HO-ok), and (H-ok) we have � H ′ ok
4. By 1.c), 2.a), and (T-Frame1)

(a) � � x. f =y; : σ
(b) � � s : σ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : τ ′) ∈ �. typeof (L(z), H) = τ ′
(e) l = a(o, p) =⇒ okObs(H, o, σ)

5. 4.a), (C-FAsn), and (C-Var)
(a) (x : ρ) ∈ �

(b) f type(ρ, f ) = τ
(c) (y : τ ) ∈ �

6. By 2.d) and 4.d) we have ∀(z : τ ′) ∈ �. typeof (L(z), H ′) = τ ′
7. By 2.e), 4.b-c), 4.e), 6., and (T-Frame1) we have H ′ � F ′ : σ
8. By 1.d), 2.d), (SF-ok), (CSF-ok), and (AF-ok) we have H ′ � F ′ ok
9. By 2.d) we have ∀B. H ≤B H ′

10. 1.a), 2.d), 3., 7., 8., and 9. conclude this case
- Case (E-Await4)

1. By the assumptions
(a) � H : �
(b) � H ok
(c) H � F : σ
(d) H � F ok
(e) H, F −→ H ′, F ′

2. By (E-Await4)
(a) H ′ = H
(b) F = 〈L, x=await y;s〉a(o,p)

(c) F ′ = 〈L[x �→ None<σ ′>], s〉a(o,p)

3. By 1.c), 2.b), and (T-Frame1)
(a) � � x=await y : τ
(b) � � s : σ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : τ ′) ∈ �. typeof (L(z), H) = τ ′
(e) okObs(H, o, σ)

4. By 3.a), (C-Asn), and (C-Await)
(a) x : Option<σ ′> ∈ �

(b) dom(�) ⊆ dom(L[x �→ None<σ ′>])
5. By 3.d), 4.a-b), and def. typeof , we have ∀(z : τ ′) ∈ �. typeof (L[x �→ None<σ ′>](z), H) = τ ′
6. By 2.a), 2.c), 3.b), 3.e), 4.b), 5., and (T-Frame1), we have H ′ � F ′ : σ
7. By 1.d), 2.a), and (AF-ok), we have H ′ � F ′ ok
8. By 2.a) we have ∀B. H ≤B H ′
9. 1.a), 1.b), 2.a), 6., 7., and 8. conclude this case
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- Cases (E-Constant), (E-Op), (E-New), (E-While), (E-CondEq), (E-Some), (E-None), (E-Get), and (E-Await2-3) follow analo-
gously. �

A.2. Proof of Lemma 2

Lemma 2. If � H : � and � H ok then:
If H � F S : σ , H � F S ok and H, F S � H ′, F S ′ then � H ′ : �, � H ′ ok, H ′ � F S ′ : σ , H ′ � F S ′ ok and H ≤obsIds(F S) H ′ .

Proof. By induction on the derivation of H, F S � H ′, F S ′ .

- Case (E-Frame)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F S : σ
(d) H � F S ok
(e) H, F S � H ′, F S ′

2. By (E-Frame)
(a) F S = F ◦ G S
(b) F S ′ = F ′ ◦ G S
(c) H, F −→ H ′, F ′

3. By 1.d), 2.a) and (FS-ok)
(a) H � F ok
(b) H � G S ok
(c) obsIds(F )#obsIds(G S)

4. We show H � F : τ for some τ
(a) Case G S = ε: by 1.c), 2.a) and (T-FS1), H � F : σ
(b) Case G S �= ε ∧ l = s where F = K l: by 1.c), 2.a) and (T-FS5), H � F : τ for some τ
(c) Case G S �= ε ∧ l = a(o, p) where F = K l: by 1.c), 2.a) and (T-FS2), H � F : τ for some τ

5. By 1.a-b), 3.a), 4., 2.c) and Lemma 1
(a) � H ′ : �
(b) � H ′ ok
(c) H ′ � F ′ : τ
(d) H ′ � F ′ ok
(e) ∀B. H ≤B H ′

6. By 5.e) and Definition 2 we have ∀o ∈ dom(H). H(o) = 〈C, F M〉 =⇒ H ′(o) = 〈C, F M ′〉.
7. We show H ′ � F S ′ : σ

(a) Case G S = ε
i. By 1.c), 2.a) and (T-FS1), H � F : σ

ii. By 5.c), i. and (T-FS1), H ′ � F ′ ◦ ε : σ
iii. By 2.b) and ii., H ′ � F S ′ : σ

(b) Case G S �= ε ∧ l = s where F = K l

i. By 1.c), 2.a), 4. and (T-FS5)
(a) G S = Gx ◦ G S ′
(b) H �τ

x Gx ◦ G S ′ : σ
ii. By 6., i.b), (T-FS1-6), (T-Frame1) and (T-Frame2), H ′ �τ

x Gx ◦ G S ′ : σ
iii. By 5.c), ii. and (T-FS5), H ′ � F ′ ◦ Gx ◦ G S ′ : σ
iv. By 2.b), i.a) and iii., H ′ � F S ′ : σ

(c) Case G S �= ε ∧ l = a(o, p) where F = K l

i. By 1.c), 2.a), 4. and (T-FS2), H � G S : σ
ii. By 6., i., (T-FS1-6), (T-Frame1) and (T-Frame2), H ′ � G S : σ

iii. By 5.c), ii. and (T-FS2), H ′ � F ′ ◦ G S : σ
iv. By 2.b) and iii., H ′ � F S ′ : σ

8. By 2.c) and the frame transition rules we have obsIds(F ′) = obsIds(F ).
9. By 3.c) and 8. we have obsIds(F ′)#obsIds(G S).

10. By 3.b) and (FS-ok) we have H � G ok ∀G ∈ G S .
11. Let G = K a(o,p) ∈ G S .
12. By 2.c) and the transition rules we have ∀o′ ∈ dom(H). o′ ∈ dom(H ′) ∧ Running(H(o′)) = Running(H ′(o′)).
13. By 11. and 12. we have Running(H ′(o)).
14. By 2.c), 3.b) and the transition rules we have ∀o′ ∈ dom(H ′). o /∈ waiters(H ′(o′)).
15. By 2.c) and the transition rules we have ∀o′ ∈ dom(H ′) ∩ dom(H). subscribers(H ′(o′)) = subscribers(H(o′)).
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16. By 10., 11. and (AF-ok)
(a) Running(H(o))

(b) ∀o′ ∈ dom(H). o /∈ waiters(H(o′)) ∧ (o ∈ subscribers(H(o′)) ⇔ o′ ∈ p)

17. By 13., 14., 15., 16.b) and (AF-ok) we have H ′ � G ok.
18. By 11., 17., 3.b) and (FS-ok) we have H ′ � G S ok.
19. By 2.b), 5.d), 9., 18. and (FS-ok) we have H ′ � F S ′ ok.
20. 5.a), 5.b), 7., 19. and 5.e) conclude this case.

- Case (E-Method-Exp)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F S : σ
(d) H � F S ok
(e) H, F S � H ′, F S ′

2. By (E-Method-Exp)
(a) F S = 〈L, x=y.m(z);s〉l ◦ G S
(b) H ′ = H
(c) H(L(y)) = 〈ρ, F M〉
(d) mbody(ρ, m) = mb : (τ x) →s τ ′, mb = σ y;t
(e) L′ = [x �→ L(z), y �→ default(σ ), this �→ L(y)]
(f) F S ′ = 〈L′, t〉s ◦ 〈L, s〉l

x ◦ G S
(g) F = 〈L, x=y.m(z);s〉l

3. By 1.a), 1.b), and 2.b)
(a) � H ′ : �
(b) � H ′ ok
(c) We show H � F : τ =⇒ ∃τ ′. H � 〈L′, t〉s : τ ′ ∧ H �τ ′

x 〈L, s〉l
x : τ

i. By 2.g) and (T-Frame1)
(a) � � x=y.m(z); : τ
(b) � � s : τ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ ′) ∈ �. typeof (L(z), H) = ρ ′
(e) l = a(o, p) =⇒ okObs(H, o, τ )

ii. By i.a) and (C-Asn)
(a) (x : τ ′) ∈ �

(b) � � y.m(z) : τ ′
iii. By ii.b), 2.d), and (C-MethInv)

(a) � � y : ρ for some ρ
(b) mtype(ρ, m) = (τ ) → τ ′
(c) � � z : τ

iv. By 2.d), 2.e), iii.b) and (Meth-OK)
(a) this : ρ, x : τ , y : σ � t : τ ′
(b) �′ = this : ρ, x : τ , y : σ
(c) dom(�′) ⊆ dom(L′)

v. By 2.e) and i.d), ∀(z : ρ ′) ∈ �′. typeof (L′(z), H) = ρ ′
vi. By iv.a), iv.b), iv.c), v. and (T-Frame1), H � 〈L′, t〉s : τ ′

vii. By i.b-e), ii.a), and (T-Frame2), H �τ ′
x 〈L, s〉l

x : τ
4. We show H ′ � F S ′ : σ

(a) Case G S = ε
i. By 1.c), 2.a), 2.g) and (T-FS1), H � F : σ

ii. By 3.c) and i.
(a) H � 〈L′, t〉s : τ ′ for some τ ′
(b) H �τ ′

x 〈L, s〉l
x : σ

iii. By ii.b) and (T-FS3), H �τ ′
x 〈L, s〉l

x ◦ ε : σ
iv. By 2.b), 2.f), ii.a), iii. and (T-FS5), H ′ � F S ′ : σ

(b) Case G S �= ε ∧ l = s
i. By 1.c), 2.a), 2.g) and (T-FS5)

(a) F S = F ◦ G y ◦ G S ′
(b) H � F : τ for some τ
(c) H �τ

y G y ◦ G S ′ : σ
ii. By 3.c) and i.b)

(a) H � 〈L′, t〉s : τ ′ for some τ ′
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(b) H �τ ′
x 〈L, s〉l

x : τ
iii. By i.c), ii.b) and (T-FS6), H �τ ′

x 〈L, s〉l
x ◦ G y ◦ G S ′ : σ

iv. By ii.a), iii. and (T-FS5), H � 〈L′, t〉s ◦ 〈L, s〉l
x ◦ G y ◦ G S ′ : σ

v. By 2.b), 2.f) and iv., H ′ � F S ′ : σ
(c) Case G S �= ε ∧ l = a(o, p)

i. By 1.c), 2.a), 2.g) and (T-FS2)
(a) H � F : τ for some τ
(b) H � G S : σ

ii. By 3.c) and i.a)
(a) H � 〈L′, t〉s : τ ′ for some τ ′
(b) H �τ ′

x 〈L, s〉l
x : τ

iii. By i.b), ii.b) and (T-FS4), H �τ ′
x 〈L, s〉l

x ◦ G S : σ
iv. By ii.a), iii. and (T-FS5), H � 〈L′, t〉s ◦ 〈L, s〉l

x ◦ G S : σ
v. By 2.b), 2.f) and iv., H ′ � F S ′ : σ

5. By (SF-ok), H ′ � 〈L′, t〉s ok
6. By 1.d), 2.a), and (FS-ok)

(a) H � F ok
(b) H � G S ok
(c) obsIds(F )#obsIds(G S)

7. By 2.b), 6.a), (CSF-ok) and (AF-ok), H ′ � 〈L, s〉l
x ok

8. By 2.b) and 6.b), H ′ � G S ok
9. By 2.g), 6.c) and def. obsIds, obsIds(〈L, s〉l

x)#obsIds(G S)

10. By 7., 8., 9. and (FS-ok), H ′ � 〈L, s〉l
x ◦ G S ok

11. By 2.f), 5., 10., (FS-ok) and def. obsIds, H ′ � F S ′ ok
12. By 2.b), H ≤obsIds(F S) H ′
13. 3.a), 3.b), 4., 11. and 12. conclude this case.

- Case (E-Method-Stmt) follows analogously.
- Case (E-Return-Val)

1. By the assumptions
(a) � H : �
(b) � H ok
(c) H � F S : σ
(d) H � F S ok
(e) H, F S � H ′, F S ′

2. By (E-Return-Val)
(a) F S = 〈L, return y;s〉s ◦ 〈L′, t〉l

x ◦ G S
(b) F S ′ = 〈L′[x �→ L(y)], t〉l ◦ G S
(c) H ′ = H

3. By 1.a), 1.b) and 2.c)
(a) � H ′ : �
(b) � H ′ ok

4. By 1.c), 2.a) and (T-FS5)
(a) H � 〈L, return y;s〉s : τ for some τ
(b) H �τ

x 〈L′, t〉l
x ◦ G S : σ

5. By 4.a) and (T-Frame1)
(a) � � return y; : τ
(b) � � s : τ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ) ∈ �. typeof (L(z), H) = ρ
6. By 5.a) and (C-ReturnExp), y : τ ∈ �.
7. By 5.d) and 6., typeof (L(y), H) = τ .
8. We show: H � F S ′ : σ

(a) case G S �= ε
i. By 4.b) and (T-FS4)

(a) H �τ
x 〈L′, t〉l

x : τ ′ for some τ ′
(b) H � G S : σ

ii. By i.a) and (T-Frame2)
(a) �′, x : τ � t : τ ′
(b) dom(�′) ⊆ dom(L′)
(c) ∀(z : ρ) ∈ �′. typeof (L′(z), H) = ρ
(d) l = a(o, p) =⇒ okObs(H, o, τ ′)
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iii. By ii.b), dom(�′, x : τ ) ⊆ dom(L′[x �→ L(y)]).
iv. By ii.c) and 7., ∀(z : ρ) ∈ (�′, x : τ ). typeof (L′[x �→ L(y)](z), H) = ρ .
v. By ii.a), ii.d), iii., iv., and (T-Frame1), H � 〈L′[x �→ L(y)], t〉l : τ ′ .

vi. By i.b), v. and (T-FS2), H � F S ′ : σ .
(b) case G S = ε

i. By 4.b) and (T-FS3), H �τ
x 〈L′, t〉l

x : σ .
ii. By i. and (T-Frame2)

(a) �′, x : τ � t : σ
(b) dom(�′) ⊆ dom(L′)
(c) ∀(z : ρ) ∈ �′. typeof (L′(z), H) = ρ
(d) l = a(o, p) =⇒ okObs(H, o, σ)

iii. By ii.b), dom(�′, x : τ ) ⊆ dom(L′[x �→ L(y)]).
iv. By ii.c) and 7., ∀(z : ρ) ∈ (�′, x : τ ). typeof (L′[x �→ L(y)](z), H) = ρ .
v. By ii.a), ii.d), iii., iv., and (T-Frame1), H � 〈L′[x �→ L(y)], t〉l : σ .

vi. By v. and (T-FS1), H � F S ′ : σ .
9. By 1.d) and (FS-ok)

(a) H � 〈L′, t〉l
x ok

(b) obsIds(〈L′, t〉l
x)#obsIds(G S)

10. By 9.a), (SF-ok), (CSF-ok) and (AF-ok)
(a) H � 〈L′[x �→ L(y)], t〉l ok
(b) obsIds(〈L′[x �→ L(y)], t〉l)#obsIds(G S)

11. By 10.a-b) and (FS-ok), H � F S ′ ok.
12. 2.c), 3.a), 3.b), 8. and 11. conclude this case.

- Case (E-Return) follows analogously.
- Case (E-RAsync-Method)

1. By the assumptions
(a) � H : �
(b) � H ok
(c) H � F S : σ
(d) H � F S ok
(e) H, F S � H ′, F S ′

2. By (E-RAsync-Method)
(a) F S = F ◦ G S
(b) F = 〈L, x=y.m(z);s〉l

(c) F S ′ = 〈L′, t〉a(o,p) ◦ 〈L[x �→ o], s〉l ◦ G S
(d) H(L(y)) = 〈ρ, F M〉
(e) mbody(ρ, m) = mb : (σ x) →a ψ, mb = τ y;t
(f) L′ = [x �→ L(z), y �→ default(τ ), this �→ L(y)]
(g) H0 = H[o �→ 〈ψ, running(ε, ε)〉]
(h) o /∈ dom(H)

(i) p = [L(zi) | zi ∈ z ∧ σi = Observable<ρi>]
(j) H ′ = subscribe(o, p, H0)

3. By 2.j) and Definition subscribe (see Fig. 16)
(a) ∀pi ∈ p. H0(pi) = 〈ψi, running(F i, Si)

(b) |p| = n
(c) ∀i ∈ 1 . . .n. Hi = Hi−1[pi �→ 〈ψi, running(F i, 〈o, []〉 :: Si)〉]
(d) H ′ = Hn

4. By 2.d-j), 3.a-d), and Definition 2, � H ′ : �.
5. By 1.b), (H-ok) and 3.d), ∀o′ ∈ dom(H ′) \ ({o} ∪ p). H ′ � H ′(o′) ok.
6. By 2.g) and (ROHO-ok), H ′ � H ′(o) ok.
7. By 2.h), 3.a-d) and (ROHO-ok), ∀pi ∈ p. H ′ � H ′(pi) ok.
8. By 1.b) and (H-ok)

(a) ∀o ∈ dom(H). H � H(o) ok
(b) ∀o1 �= o2 ∈ dom(H). waiters(H(o1))#waiters(H(o2)).

9. By 5., 6. and 7., ∀o′ ∈ dom(H ′). H ′ � H ′(o′) ok.
10. By 2.g), 3.a-c), 8.b), ∀o1 �= o2 ∈ dom(H ′). waiters(H ′(o1))#waiters(H ′(o2)).
11. By 9., 10. and (H-ok), � H ′ ok.
12. We show H � F : τ for some τ

(a) Case G S = ε: by 1.c), 2.a) and (T-FS1), H � F : σ
(b) Case G S �= ε ∧ l = s: by 1.c), 2.a), 2.b) and (T-FS5), H � F : τ for some τ
(c) Case G S �= ε ∧ l = a(o, p): by 1.c), 2.a), 2.b) and (T-FS2), H � F : τ for some τ
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13. By 2.b), 12. and (T-Frame1)
(a) � � x=y.m(z); : τ
(b) � � s : τ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ) ∈ �. typeof (L(z), H) = ρ
(e) l = a(o, p) =⇒ okObs(H, o, τ )

14. By 13.a) and (C-Asn)
(a) (x : ψ ′) ∈ �

(b) � � y.m(z) : ψ ′
15. By 2.d-e), 14.b), and (C-MethInv)

(a) (y : ρ) ∈ �

(b) � � z : σ
(c) ψ ′ = ψ

16. By 2.e) and (AsyncMeth-OK)
(a) �′ = x : σ , y : τ , this : ρ
(b) �′ � t : ρ ′
(c) ψ = Observable<ρ ′>

17. By 2.d,f), 13.d), 15.b), and 16.a), ∀(z : σ) ∈ �′. typeof (L′(z), H ′) = σ .
18. By 2.f-j), 16.a-b), 17., and (T-Frame1), H ′ � 〈L′, t〉a(o,p) : ρ ′ .
19. By 13.c-d), and 14.a), dom(�) ⊆ dom(L[x �→ o]).
20. By 2.g), and 3.c-d), H ′(o) = 〈ψ, running(ε, ε)〉.
21. By 14.a) and 15.c), ∀(z : ρ) ∈ �. typeof (L[x �→ o](z), H ′) = ρ .
22. By 2.j), 13.b), 13.e), 19., 21. and (T-Frame1), H ′ � 〈L[x �→ o], s〉l : τ .
23. By 3.a-d), ∀o′ ∈ dom(H ′) ∩ dom(H). typeof (H ′(o′)) = typeof (H(o′)).
24. We show H ′ � F S ′ : σ

(a) Case G S = ε
i. By 1.c), 2.a) and (T-FS1), H � F : σ

ii. By 22., i. and (T-FS1), H ′ � 〈L[x �→ o], s〉l ◦ ε : σ
iii. By 2.c), 18., ii. and (T-FS2), H ′ � F S ′ : σ

(b) Case G S �= ε ∧ l = s
i. By 1.c), 2.a-b), 12. and (T-FS5)

(a) G S = G y ◦ G S ′
(b) H �τ

y G y ◦ G S ′ : σ
ii. By 23., i.b), (T-FS1-6), (T-Frame1) and (T-Frame2), H ′ �τ

y G y ◦ G S ′ : σ
iii. By 22., ii. and (T-FS5), H ′ � 〈L[x �→ o], s〉l ◦ G y ◦ G S ′ : σ
iv. By 2.c), 18., iii. and (T-FS2), H ′ � F S ′ : σ

(c) Case G S �= ε ∧ l = a(o, p)

i. By 1.c), 2.a), 2.b), 12. and (T-FS2), H � G S : σ
ii. By 23., i., (T-FS1-6), (T-Frame1) and (T-Frame2), H ′ � G S : σ

iii. By 22., ii. and (T-FS2), H ′ � 〈L[x �→ o], s〉l ◦ G S : σ
iv. By 2.c), 18., iii. and (T-FS2), H ′ � F S ′ : σ

25. By 2. and (AF-ok)
(a) H ′ � 〈L′, t〉a(o,p) ok
(b) H ′ � 〈L[x �→ o], s〉l ok
(c) H ′ � G S ok

26. By 2.h), obsIds(〈L′, t〉a(o,p))#obsIds(〈L[x �→ o], s〉l ◦ G S).
27. By 1.d) and (FS-ok)

(a) H � F ok
(b) H � G S ok
(c) obsIds(F )#obsIds(G S)

28. By 2.b) and 27.c), obsIds(〈L[x �→ o], s〉l)#obsIds(G S).
29. By 25.a-c), 26., 28. and (FS-ok), H ′ � F S ′ ok.
30. By 2. and Definition 2, H ≤obsIds(F S) H ′ .
31. 4., 11., 24., 29. and 30. conclude this case.

- Case (E-Await1)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � F S : σ
(d) H � F S ok
(e) H, F S � H ′, F S ′
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2. By (E-Await1)
(a) F S = F ◦ F S ′
(b) F = 〈L, x=await y;s〉a(o,p)

(c) L(y) = o′
(d) H(o′) = 〈Observable<σ>, running(F , S)〉
(e) S = R ⊕ [〈o, []〉]
(f) H ′ = H[o′ �→ 〈Observable<σ>, running(F :: F , R)〉]

3. By 1.a), 2.d), 2.f) and Definition 3, � H ′ : �.
4. By 1.b) and (H-ok)

(a) ∀q ∈ dom(H). H � H(q) ok
(b) ∀o1 �= o2 ∈ dom(H). waiters(H(o1))#waiters(H(o2))

5. By 1.d), 2.a) and (FS-ok)
(a) H � F ok
(b) H � F S ′ ok
(c) obsIds(F )#obsIds(F S ′)

6. By 5.a), 2.b) and (AF-ok)
(a) Running(H(o))

(b) ∀q ∈ dom(H). o /∈ waiters(H(q)) ∧ (o ∈ subscribers(H(q)) ⇔ q ∈ p)

7. By 6.b), ∀i ∈ {1..n}. obsIds(F )#obsIds(Fi).
8. By 2.d), 4.a) and (ROHO-ok)

(a) ∀i �= j ∈ {1..n}. obsIds(Fi)#obsIds(F j)

(b) ∀i ∈ {1..n}. ∀o ∈ obsIds(Fi). Running(H(o))

9. By 8.b) and 2.f), ∀i ∈ {1..n}. ∀o ∈ obsIds(Fi). Running(H ′(o)).
10. By 7., 8.a), 9. and (ROHO-ok), H ′ � H ′(o′) ok
11. By 10., 2.f) and 4.a), ∀q ∈ dom(H ′). H ′ � H ′(q) ok.
12. By 4.b), 6.b) and 2.f), ∀o1 �= o2 ∈ dom(H ′). waiters(H ′(o1))#waiters(H ′(o2)).
13. By 11., 12. and (H-ok), � H ′ ok.
14. Given that F S ′ �= ε , by 1.c), 2.a-b) and (T-FS2), H � F S ′ : σ
15. By 2.f) and 14., H ′ � F S ′ : σ .
16. Let K a(r,q) = G ∈ F S ′ .

(a) By 5.c), r �= o
(b) By 5.b) and (FS-ok), H � G ok.
(c) By 16.b) and (AF-ok), Running(H(r)) ∧ ∀o′ ∈ dom(H). r /∈ waiters(H(o′)) ∧ (r ∈ subscribers(H(o′)) ⇔ o′ ∈ q)

(d) By 16.a), 16.c) and 2.f), H ′ � G ok.
(e) By 5.b), 16.d) and (FS-ok), H ′ � F S ′ ok

17. By 2.d), 2.f) and Definition 2, H ≤obsIds(F S) H ′ .
18. 17., 16.e), 15., 13. and 3. conclude this case. �

A.3. Proof of Lemma 3

Lemma 3. If � H : � and � H ok then:
If H � P : �, H � P ok and H, P � H ′, P ′ then � H ′ : �, � H ′ ok, H ′ � P ′ : � and H ′ � P ′ ok.

Proof. By induction on the derivation of H, P � H ′, P ′ and Lemma 2.

- Case (E-Exit) is trivial.
- Case (E-Schedule)

1. By the assumptions
(a) � H : �
(b) � H ok
(c) H � P : �
(d) H � P ok
(e) H, P � H ′, P ′

2. By (E-Schedule)
(a) P = {F S} ∪ Q
(b) P ′ = {F S ′} ∪ Q
(c) H, F S � H ′, F S ′

3. By 1.c), 2.a) and (T-Proc) there is σ such that
(a) H � F S : σ
(b) H � Q : �
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4. By 1.d) and (Proc-ok)
(a) H � F S ok
(b) ∀G S ∈ Q . H � G S ok ∧ obsIds(G S)#obsIds(F S)

5. By 1.a-b), 2.c), 3.a), 4.a) and Lemma 2
(a) � H ′ : �
(b) � H ′ ok
(c) H ′ � F S ′ : σ
(d) H ′ � F S ′ ok
(e) H ≤obsIds(F S) H ′

6. By 2.b), 3.b), 5.c) and (T-Proc) we have H ′ � P ′ : �.
7. By 2.c) and inspection of rules (E-Method-Exp), (E-Method-Stmt), (E-Return-Val), (E-Return), (E-Frame), (E-RAsync-

Method) and (E-Await1-3) we have ∀G S ∈ Q . obsIds(G S)#obsIds(F S ′).
8. Let G S ∈ Q where G S = G ◦ G S ′ for some G, G S ′ . We show H ′ � G S ok by induction on the size of G S .

(a) By 4.b), (EmpFS-ok) and (FS-ok) we have H � G ok, H � G S ′ ok and obsIds(G)#obsIds(G S ′).
(b) Trivially, (G = F s ∨ G = F s

x) =⇒ H ′ � G ok
(c) By 8.b), the definition of obsIds and the IH (G = F s ∨ G = F s

x) =⇒ H ′ � G S ok.
(d) Let G = F a(o,p̄) . By 4.b) o /∈ obsIds(F S).
(e) By 8.a), 8.d) and (AF-ok) we have Running(H(o)) and ∀o′ ∈ dom(H). o /∈ waiters(H(o′)) ∧ (o ∈ subscribers(H(o′))

⇔ o′ ∈ p̄)

(f) By 2.c), 8.e), (E-RAsync-Method) and (E-Await1-3) we have Running(H ′(o)).
(g) By 2.c), 8.d), 8.e), (E-Frame), (E-New) and (E-RAsync-Method) we have ∀o′ ∈ dom(H ′). o /∈ waiters(H ′(o′))
(h) Let o′ ∈ dom(H ′). By 2.c), (E-RAsync-Method), (E-Await1-3) and (E-Frame) we have o ∈ subscribers(H ′(o′)) ⇔

o ∈ subscribers(H(o′)).
(i) By 8.e) and 8.h) we have ∀o′ ∈ dom(H ′). o ∈ subscribers(H ′(o′)) ⇔ o′ ∈ p̄.
(j) By 8.f), 8.g), 8.i) and (AF-ok) we have H ′ � G ok.
(k) By 8.j), the definition of obsIds and the IH we have G = F a(o,p̄) =⇒ H ′ � G S ok.
(l) By 8.c) and 8.k) we have H ′ � G S ok.

9. By 2.b), 5.c), 7., 8. and (Proc-ok) we have H ′ � P ′ ok.
10. 5.a), 5.b), 6. and 9. conclude this case.

- Case (E-Yield)
1. By the assumptions

(a) � H : �
(b) � H ok
(c) H � P : �
(d) H � P ok
(e) H, P � H ′, P ′

2. By (E-Yield)
(a) P = {G S} ∪ T
(b) G S = 〈L, yieldNext z;s〉a(o,p) ◦ F S
(c) H(o) = 〈Observable<σ>, running(F , S)〉
(d) (o, R) = resume(F , Some(L(z)))
(e) Q = {R ◦ ε | R ∈ R}
(f) S ′ = [〈o′, q :: L(z)〉 | 〈o′, q〉 ∈ S] ::: [〈oi, []〉 | oi ∈ o]
(g) H ′ = H[o �→ 〈Observable<σ>, running(ε, S ′)〉]
(h) P ′ = {〈L, s〉a(o,p) ◦ F S} ∪ T ∪ Q

3. By 1.c), 2.a) and (T-Proc) there is σ ′ such that
(a) H � G S : σ ′
(b) H � T : �

4. By 1.d), 2.a) and (Proc-ok)
(a) H � G S ok
(b) ∀H S ∈ T . H � H S ok ∧ obsIds(H S)#obsIds(G S)

(c) ∀H Si, H S j ∈ T , i �= j. obsIds(H Si)#obsIds(H S j)

5. By 1.a) and 2.g) we have � H ′ : �.
6. By 1.b) and (H-ok) we have ∀o′ ∈ dom(H). H � H(o′) ok.
7. By (ROHO-ok) we have H ′ � 〈Observable<σ>, running(ε, S ′)〉 ok.
8. By 2.g), 6. and 7. we have ∀o′ ∈ dom(H ′). H ′ � H ′(o′) ok.
9. By 2.g) and def. waiters we have waiters(H ′(o)) = ∅.

10. By 1.b), 2.g), 9. and (H-ok) we have ∀o1 �= o2 ∈ dom(H ′). waiters(H ′(o1))#waiters(H ′(o2)).
11. By 8., 10. and (H-ok) we have � H ′ ok.
12. By 2.b), 3.a), (T-FS1) and (T-FS2) there is τ such that

(a) H � 〈L, yieldNext z;s〉a(o,p) : τ
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(b) F S = ε ∨ H � F S : σ ′
13. By 2.c), 12.a) and (T-Frame1) there is � such that

(a) � � yieldNext z;s : σ
(b) dom(�) ⊆ dom(L)

(c) ∀(x : ρ) ∈ �. typeof (L(x), H) = ρ
14. By 2.c), 2.g) and 13.c) we have ∀(x : ρ) ∈ �. typeof (L(x), H ′) = ρ .
15. By 13.a-b), 14. and (T-Frame1) we have H ′ � 〈L, s〉a(o,p) : σ .
16. By 2.c), 2.g) and 12.b) we have F S = ε ∨ H ′ � F S : σ ′ .
17. By 15., 16., (T-FS1) and (T-FS2) we have H ′ � 〈L, s〉a(o,p) ◦ F S : σ ′′ for some σ ′′ .
18. Let R = 〈K [x �→ Some(L(z))], t〉a(o′,q) where 〈K , x=await y;t〉a(o′,q) ∈ F
19. By 18. and (T-Frame1)

(a) H � 〈K , x=await y;t〉a(o′,q) : τ ′′ for some τ ′′
(b) typeof (K (x), H) = Option<σ>

20. By 19.a) and (T-Frame1) there is �′ such that
(a) �′ � x=await y;t : τ ′′
(b) dom(�′) ⊆ dom(K )

(c) ∀(w : ρ) ∈ �′. typeof (K (w), H) = ρ
(d) okObs(H, o′, τ ′′)

21. By 20.a-b), (C-Await) and (C-Asn)
(a) �′ � t : τ ′′
(b) dom(�′) ⊆ dom(K [x �→ Some(L(z))])

22. By 13.a) and (C-Yield) we have z : σ ∈ �.
23. By 13.c) and 22. we have typeof (L(z), H) = σ .
24. By 2.c), 2.g) and 23. we have typeof (L(z), H ′) = σ .
25. By 24. and def. typeof we have typeof (Some(L(z)), H ′) = Option<σ>.
26. By 19.b) and 20.c) we have x : Option<σ> ∈ �′ .
27. By 2.c), 2.g), 20.c), 25., 26. and def. typeof we have ∀(w : ρ) ∈ �′. typeof (K [x �→ Some(L(z))](w), H ′) = ρ .
28. By 2.c), 2.g) and 20.d) we have okObs(H ′, o′, τ ′′).
29. By 21.a-b), 27., 28. and (T-Frame1) we have H ′ � R : τ ′′ .
30. Since R was chosen arbitrarily in 18., by 2.e) and (T-Proc) we have H ′ � Q : �.
31. By 2.c), 2.g) and 3.b) we have H ′ � T : �.
32. By 17., 30., 31. and (T-Proc) we have H ′ � P ′ : �.
33. By 4.a) and (FS-ok)

(a) H � 〈L, yieldNext z;s〉a(o,p) ok
(b) H � F S ok
(c) {o}#obsIds(F S)

34. By 2.c) and 2.g)
(a) Running(H ′(o))

(b) ∀o′ ∈ dom(H ′). o /∈ waiters(H ′(o′)) ∧ (o ∈ subscribers(H ′(o′)) ⇐⇒ o′ ∈ p)

35. By 34.a-b) and (AF-ok) we have H ′ � 〈L, s〉a(o,p) ok.
36. By 2.c), 2.g), 33.b) and (FS-ok) we have H ′ � F S ok.
37. Define G S ′ := 〈L, s〉a(o,p) ◦ F S
38. By 33.c), 35., 36. and (FS-ok) we have H ′ � G S ′ ok.
39. By 2.b) and 37. we have obsIds(G S) = obsIds(G S ′).
40. By 2.c), 2.g), 4.b), 37. and (FS-ok) we have ∀H S ∈ T . H ′ � H S ok ∧ obsIds(H S)#obsIds(G S ′).
41. By 2.c-g), def. resume, (AF-ok), (FS-ok), and (E-Await1-4) we have ∀I S ∈ Q . H ′ � I S ok.
42. By 2.c), 6. and (ROHO-ok) we have ∀Fi, F j ∈ F , i �= j. obsIds(Fi)#obsIds(F j).
43. By 2.d-e), 42. and def. resume we have ∀I Si, I S j ∈ Q , i �= j. obsIds(I Si)#obsIds(I S j).
44. By 1.d), 2.a-e), 39., (Proc-ok) and (E-Await1)

(a) ∀I S ∈ Q . obsIds(I S)#obsIds(G S ′)
(b) ∀I S ∈ Q . ∀H S ∈ T . obsIds(I S)#obsIds(H S)

45. By 2.h), 4.c), 37., 38., 40., 41., 43., 44.a-b) and (Proc-ok) we have H ′ � P ′ ok.
46. 5., 11., 32. and 45. conclude this case.

- Cases (E-RAsync-Return) and (E-YieldDone) follow analogously. �
A.4. Proof of Theorem 1

Theorem (Subject Reduction). If � H : � and � H ok then:

1. If H � F : σ , H � F ok and H, F −→ H ′, F ′ then � H ′ : �, � H ′ ok, H ′ � F ′ : σ , H ′ � F ′ ok, and ∀B. H ≤B H ′ .
2. If H � F S : σ , H � F S ok and H, F S � H ′, F S ′ then � H ′ : �, � H ′ ok, H ′ � F S ′ : σ , H ′ � F S ′ ok and H ≤obsIds(F S) H ′ .
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3. If H � P : �, H � P ok and H, P � H ′, P ′ then � H ′ : �, � H ′ ok, H ′ � P ′ : � and H ′ � P ′ ok.

Proof. Corollary of Lemma 1, Lemma 2, and Lemma 3. �
A.5. Proof of Theorem 2

Theorem (Progress). If � H : � and � H ok then:
If H � P : � and H � P ok then

1. H, P � H ′, P ′ for some H ′, P ′; or
2. ∀F S ∈ P , one of the following holds:

(a) F S = 〈L, return;t〉s ◦ ε or F S = 〈L, return x;t〉s ◦ ε
(b) F S = 〈L, s;t〉l ◦ F S ′ where (s = y=x.m(z) or s = x.m(z) or s = y=x. f or s = x. f =y) and L(x) = null
(c) F S = 〈L, y=x.m(z);t〉l ◦ F S ′ where H(L(x)) = 〈ρ, F M〉, mbody(ρ, m) = mb : (σ x) →a ψ , and ∃pi ∈ {L(zi) | zi ∈ z ∧ σi =

ψi} such that H(pi) = 〈ψi, done(S)〉
(d) F S = 〈L, y=await x;t〉a(o,p) ◦ F S ′ where L(x) = null or L(x) /∈ p
(e) F S = 〈L, ε〉l ◦ F S ′
(f) F S = 〈L, y=get x;t〉l ◦ F S ′ where L(x) = None

Proof. If ε ∈ P the result follows trivially by E-Exit. Let ε �= F S ∈ P such that F S �= 〈L, return;t〉s ◦ F S ′ and F S �=
〈L, return x;t〉s ◦ F S ′ . Then, F S = F ◦ F S ′ where F = 〈L, s;t〉l . Furthermore, let P = {F S} � Q . We proceed with a case 
analysis of the shape of s.

• Case s = y=x.
1. By (E-Var), H, 〈L, y=x;t〉l −→ H, F ′ for some F ′
2. By (E-Frame), H, F ◦ F S ′ � H, F ′ ◦ F S ′
3. By (E-Schedule), H, {F S} ∪ Q � H, {F ′ ◦ F S ′} ∪ Q

• Case s = y=x. f .
1. By H � P : � and (T-Proc)

(a) H � F S : σ for some σ
(b) H � Q : �

2. By 1.a) and (T-FS1-6)
(a) F S ′ = ε =⇒ H � F : σ
(b) F S ′ �= ε =⇒ (H � F : τ for some τ ∧ H � F S ′ : σ)

3. By 2.a) and 2.b), H � F : τ for some τ
4. By 3. and (T-Frame1)

(a) � � y=x. f : τ
(b) � � t : τ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ) ∈ �. typeof (L(z), H) = ρ
5. By 4.a) and (C-Asn), � � x. f : τ ′ such that (y : τ ′) ∈ �.
6. By 5. and (C-Field)

(a) (x : ρ ′) ∈ �

(b) f type(ρ ′, f ) = τ ′
7. By 4.d), 6.a-b), H(L(x)) = 〈ρ ′, F M〉
8. By 7., � H : � and Definition 3

(a) dom(F M) = f ields(ρ ′)
(b) ∀ f ∈ dom(F M). typeof (F M( f ), H) = f type(ρ ′, f )

9. By 6.b) and 8.a), f ∈ dom(F M)

10. By 7., 9. and (E-Field), H, F −→ H, 〈L[y �→ F M( f )], t〉l

11. 10., (E-Frame), and (E-Schedule) conclude this case.
• Case s = y=await x.

1. By the assumptions and (T-Proc)
(a) H � F S : σ for some σ
(b) H � Q : �

2. We show that H � F : τ for some τ .
(a) Case F S ′ = ε: by 1.a) and (T-FS1), H � F : σ
(b) Case F S ′ �= ε ∧ l = s: by 1.a) and (T-FS5), H � F : τ for some τ
(c) Case F S ′ �= ε ∧ l = a(o, p): by 1.a) and (T-FS2), H � F : τ for some τ

3. By 2., (T-Frame1), (Meth-OK), and (AsyncMeth-OK)
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(a) � � y=await x : τ
(b) � � t : τ
(c) dom(�) ⊆ dom(L)

(d) ∀(z : ρ) ∈ �. typeof (L(z), H) = ρ
(e) l = a(o, p)

4. By 3.a), (C-Asn) and (T-Await)
(a) � � await x : Option<ρ> for some ρ
(b) (x : Observable<ρ>) ∈ �

5. By H � P ok and (Proc-ok), H � F S ok
6. By 5. and (FS-ok), H � F ok
7. By 3.e), 6. and (AF-ok)

(a) Running(H(o))

(b) ∀o′ ∈ dom(H). o /∈ waiters(H(o′)) ∧ (o ∈ subscribers(H(o′)) ⇔ o′ ∈ p)

8. By 3.d) and 4.b), typeof (L(x), H) = Observable<ρ>
9. By 7.b) and 8.

(a) o /∈ waiters(H(L(x)))
(b) o ∈ subscribers(H(L(x))) ⇔ L(x) ∈ p

10. By 9.b), if L(x) ∈ p one of (E-Await1-4) applicable, so that H, F S � H ′, F S ′′
11. By 9.b), if L(x) /∈ p none of (E-Await1-4) applicable (nor any other reduction rule)
12. 10., 11., and (E-Schedule) conclude this case.

• Cases s = x. f =y, s = y=new C(), and others: analogous to case s = y=x. f .

Let F S ∈ P such that F S = 〈L, return y;t〉s ◦ F S ′ , F S ′ �= ε . Furthermore, let P = {F S} � Q .

1. By H � P : � and (T-Proc)
(a) H � 〈L, return y;t〉s ◦ F S ′ : σ for some σ
(b) H � Q : �

2. By 1.a) and (T-FS5)
(a) F S ′ = Gx ◦ G S ′
(b) H � 〈L, return y;t〉s : τ for some τ
(c) H �τ

x Gx ◦ G S ′ : σ
3. By 2.b) and (T-Frame1)

(a) � � return y; : τ
(b) � � t : τ
(c) dom(�) ⊆ dom(L)

4. By 3.a) and (C-ReturnExp), y : τ ∈ �

5. By 3.c) and 4., y ∈ dom(L)

6. By 2.a), 5. and (E-Return-Val), H, F S � H, 〈L′[x �→ L(y)], t〉l ◦ G S ′ where Gx = 〈L′, t〉l
x

7. 6. and (E-Schedule) conclude this case.

Case F S = 〈L, return;t〉s ◦ F S ′ is analogous. �
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