
To appear in the Proceedings of IEEE ICRA 2003

Obstacle Avoidance in Formation

PetterÖgren
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Abstract— In this paper, we present an approach to ob-
stacle avoidance for a group of unmanned vehicles moving
in formation. The goal of the group is to move through a
partially unknown environment with obstacles and reach a
destination while maintaining the formation. We address this
problem for a class of dynamic unicycle robots. Using Input-
to-State Stability we combine a general class of formation-
keeping control schemes with a new dynamic window ap-
proach to obstacle avoidance in order to guarantee safety and
stability of the formation as well as convergence to the goal
position. An important part of the proposed approach can
be seen as a formation extension of the configuration space
obstacle concept. We illustrate the method with a challenging
example.

I. I NTRODUCTION

The problem of controlling formations of unmanned
vehicles has received a lot of attention in recent years, [5],
[11], [6], [13], [9], [10]. This work has typically focused
on formation keeping or coordination along preplanned
trajectories. Indeed, very little vehicle formation control
work has considered moving the formation through a
partially unknown environment with obstacles. Yet, for
applications such as search and rescue and terrain data
acquisition using ground or low flying vehicles, avoiding
obstacles is essential. The papers that do address obsta-
cle avoidance have either taken an approach based on
planning and optimal control [13] or a classical reactive
approach [8]. The optimal control approaches usually
suffer from extensive computational demands, while the
purely reactive schemes are often heuristic or dependent
on specialized obstacle assumptions.

The obstacle avoidance approach we use is both reactive
and deliberate. The reactive part consists of a short-
horizon, discretized (and therefore tractable), optimal con-
trol scheme that can avoid newly discovered obstacles.
The deliberate part relies on a solution to a shortest path
problem on a graph approximation of the obstacle-free
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space. This solution is used to form a navigation function
[7], which in turn is used to construct a Lyapunov function
guaranteeing convergence.

The problem we address here is to combine the obstacle
avoidance scheme above with a formation-keeping method
of a given class. We select one robot in the formation
to be the leader. There will typically be some implicit
communication, i.e., robots can sense and follow others.
Depending on whether or not explicit communication is
available we get different problems but they can all be
formulated in a disturbance-rejection framework.

Using Input-to-State Stability (ISS), we show how the
disturbances affect the geometry of the formation. Given
a bound on the disturbances, we compute anUncertainty
Region, a region the robots are guaranteed to occupy,
around the perfect formation. We further propose how to
use uncertainty regions in the obstacle avoidance problem
facing the leader. The leader’s problem is to determine
which actions it can take and still be confident that none
of the followers will collide while attempting to maintain
the formation. This information is contained and presented
in a formation-leader obstacle map, a concept similar to
configuration space obstacles [7], when viewing the whole
Uncertainty Region as one vehicle.

The proposed approach is valid for a general class
of asymptotically stabilizing controllers which fix the
orientation of the “perfect” formation. Our approach to
combine any controller of this class with our obstacle
avoidance method ensures that the properties of safety and
goal convergence proved for the single-vehicle obstacle
avoidance problem carry over to the formation case.

The organization of the paper is as follows. In Section
II we provide the construction of the formation-leader ob-
stacle map for a wide class of formation control schemes.
In Section III we briefly present the Convergent Dynamic
Window Approach to obstacle avoidance [3], [4]. Then, in
Section IV we apply our method to a simulation example
and draw conclusions in Section V.

II. FORMATION CONTROL

The robot model we consider is the dynamic unicycle
[12]. This model is accurate for many indoor robots



such as the Nomadic Technologies Super Scout as well
as all caterpillar-type outdoor vehicles. The equations of
motions are

_x = v cos �;

_y = v sin �;
_� = !;

_v = F=m;

_! = �=J:

wherex; y is the position,� the orientation,v the trans-
lational velocity,! the angular velocity andF=m and
�=J are force per mass and torque per moment of inertia,
respectively. A kinematic version of this model (wherev
and! are the controls) was used in [8], [13]. It was shown
in [11] that the dynamics of the positionr 2 IR2 of an off-
wheel axis point of this model can be feedback linearized
to �r = u, i.e. a two-dimensional double integrator (which
is the model used in [2], [5], [10]).

The problem we consider in this paper is to control a
set ofn vehicles�ri = ui; i = 1 : : : n moving in formation
towards some goal point without colliding with obstacles.

Given a formation keeping scheme there are basically
two ways for a leader to move the whole formation. One
is by just moving and letting the others follow when they
try to stay in formation. The other way, when explicit
information exchange is possible, is to send the same
motion command to all robots and superimpose it on
their individual formation controls. Ideally this would just
translate the whole formation, but time delays, calibration
and other errors will unavoidably cause deviations. Both
of these cases can be seen as disturbances to the formation
keeping.

We explore in this section how such disturbances influ-
ence the formation and how this influence can be quan-
tified in so-calledUncertainty Regions. We further show
how the influence of the disturbances on the formation
can be used in choosing the path of the leader towards
the goal with so-calledformation-leader obstacle maps.
We do not specialize to a particular formation-keeping
scheme but allow for a general class of such controllers.
Before defining that class we need to first define what we
mean by a formation.

By a perfect formation we mean that all relative, inter-
robot, position vectors are fixed over time

ri(t)� rj(t) = dij ; 8 t: (1)

Note that this means that the orientation of the perfect
formation is fixed. Instances where this is not desirable
can be imagined and such extensions seem possible but
are beyond the scope of this paper.

For clarity it is useful to write the control as the sum
of two terms:

�ri = uiform + uidist;

whereuiform is the formation-keeping control term and
uidist is the remaining input, either a disturbance or a

deliberate control term used to translate the formation, as
described above. We will be using the concepts of trees
and graphs and for clarity we review the definitions below.

Definition 2.1 (Tree): A tree is a directed graph without
cycles such that exactly one node called the root has
indegree 0 and all others indegree 1. A directed graphG
is an ordered triplet(V;E; �), whereV is a set of nodes
or vertices,E is a set of edges and� : E ! V � V , a
mapping from the edges to the ordered set of vertex pairs.
The outdegree of a nodev 2 V is the number of edges
that havev as first element andindegree the number of
edges that havev as second element. Apath is a sequence
of edges such that the second node of an edge is the first
node of the next edge.

Note that the tree definition implies that the graph is
connected, i.e. there is a path from the root to all other
vertices. A typical tree structure can be found in Figure
1.
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Fig. 1. A tree structureE , we let the robotsri be the nodes of the tree.
The edges can, but do not have to indicate which robot is being tracked
by which. In a perfect formationri(t) � rj(t) = dij .

Definition 2.2: (Asymptotically Stable Formation Con-
trol) Let the robotsfrig form nodes of a treeE where
the leaderr1 is the root. The edges may correspond to the
way the robots sense and follow each other but they may
also be randomly assigned as long as they don’t violate
the tree property. Let new coordinates be given by

rij = ri � rj � dij ; 8(i; j) 2 E ; (2)

wheredij are the desired relative position vectors defined
in equation (1) and(i; j) are vertex pairs corresponding
to edges. Note that addingr1 to the setfrijg gives a one-
to-one correspondence betweenfr igi andfr1; rijg(i;j)2E .
Let the state of the system bex = frij ; _rijg. The
formation dynamics can now be written as

_x = f(x; uform(x); udist) (3)

whereudist is a disturbance. By an Asymptotically Sta-
ble Formation Controluform we mean thatx = 0 is
an asymptotically stable equilibrium of the undisturbed
system (udist = 0). We also require the leader to be
unaffected by the formation control,u1form = 0, and add
the technical conditionsf 2 C1 and @f

@x
, @f
@u

bounded.
Since the tree property makes the graph connected,x =

0 implies that the robots are in a perfect formation, i.e.
equation (1) holds for all(i; j), not just(i; j) 2 E .

Note that for a given formation control scheme the
choice ofE is not unique. Choosing a different treeE gives



different coordinatesx and thus different ISS bounds and
a different Uncertainty Region in Lemma 2.11 below.

The control algorithm presented in [17] satisfies Def-
inition 2.2. There the authors show how to calculate
ISS bounds for different interconnections, e.g. cycles
and multi-leader following. The control scheme presented
there can also be used in the framework of this paper to
compute the Uncertainty Regions described below.

Example 2.3: (Asymptotically Stable Formation Con-
trol) Consider as an example the tree in Figure 1. We
choose to let the implicit communication in the control
scheme match the tree structure and apply a simple PD
controller at each edge ofE . If (i; j) is an edge this
corresponds to letting

uiform = �kp(ri � rj � dij)� kd( _ri � _rj):

In terms of the relative coordinates defined in Equation
(2) we get

�rij = �kprij � kd _rij � uj :

This can be viewed as a stable system with the disturbance
uj , the control of robotrj that is being tracked. This
part of the system is ISS (see Definition 2.7) and since
cascaded ISS systems are again ISS [16], so is the whole
formation. Withu1dist = 0 the system is then asymptot-
ically stable and Definition 2.2 is satisfied. Note that we
have argued here from ISS to asymptotical stability while
Lemma 2.8 below goes the other way.

Theorem 2.4 (Main): Suppose we are given the sys-
tem �ri = ui = uiform + uidist, an asymptotically stable
formation controluiform, an obstacle setO � IR2 and
disturbance boundsjjuidistjj � Ki.

Then, there exists a formation-leader obstacle setFLO,
O � FLO � IR2, such that for eacht0, r1(t) 62
FLO; 8t � t0 implies ri(t) 62 O; 8i; t � t0, i.e. no
vehicle will collide with an obstacle if the leader stays
out of theFLO.

Furthermore, this set can be computed by the following
double integral.

FLO(a; b) =

�

�ZZ
IR2

O(a+ y1; b+ y2)UR(y1; y2)dy1dy2

�
;

where the Uncertainty RegionUR can be calculated using
Lemma 2.11,UR(�);O(�);FLO(�); are binary member-
ship functions for the setsUR;O;FLO and � is the
Heaviside step function (�(z) = 1 if z > 0, 0 else).

Remark 2.5: The Formation Leader ObstacleFLO can
be seen as an extension of the concept of configuration
space obstacles [7], to formation control.

Remark 2.6: In the case of explicit information ex-
change, as described in the beginning of this section, we
haveK1 large andKi 6=1 small. In the other case, (feed
forward), time delays and other errors must be accounted
for in all Ki bounds.

Before we prove the main theorem we need a few
definitions and lemmas. The first two can be found in
[16].

Definition 2.7 (Input-to-State Stability (ISS)): The sys-
tem _x = f(t; x; u) is locally input-to-state stable if there
exists a class KL function�, a class K function,
constantsk1; k2 > 0 such that wheneverjjx(t0)jj � k1
andmax��t jju(�)jj � k2 the solution exists and satisfies

jjx(t)jj � �(jjx(t0)jj; t� t0) + (sup��tjju(�)jj)
for all t � t0 � 0.
ISS thus means that a bounded input will result in a
bounded state.

Lemma 2.8 (Asymptotic Stability to ISS): Consider
the system _x = f(x; u). Suppose that, in some
neighborhood of the equilibrium,f is continuously
differentiable and that@f

@x
and @f

@u
are bounded, uniformly

in t. If the unforced system has a uniformly asymptotically
stable equilibrium atx = 0, then the system is locally
ISS.

The ISS concept will be used in Lemma 2.11 to
calculate the Uncertainty Region in the general case.

Definition 2.9 (Uncertainty Region (UR)): If there ex-
ists a subsetUR � IR2 such that rj(t) � r1(t) 2
UR; 8t; rj and8uidist : jjuidist(t)jj � Ki, then this set
will be denoted anUncertainty Region of the formation.

When using the uncertainty region in the obstacle avoid-
ance approach, a smaller region is better (less uncertainty).
In [17] it is shown how to design a formation control
scheme to get low ISS bounds. This can be used in our
framework to get a small uncertainty region and thus more
effective formation obstacle avoidance.

Example 2.10 (Uncertainty Region): We calculate the
Uncertainty Region for a small formation as described
in Example 2.3. Let the Lyapunov function candidate be,
(with r = rij ),

V =
1

2
(r + _r)T (r + _r) + rT r + _rT _r:

Let x = (r; _r). Sincejjxjj2 � V (x) � 2jjxjj2, V is clearly
positive definite and decrescent. Letting the control beu =
�r � _r + udist we get

_V =
�1
2
jjr + _rjj2 � 1

2
jjrjj2 � 3

2
jj _rjj2 + (r + 3 _r)Tudist

� �1
2
jjxjj2 + (r + 3 _r)Tudist

�
��1

2
jjxjj+

p
10jjudistjj

�
jjxjj

�
 
�1
2

r
V

2
+
p
10jjudistjj

!
jjxjj:

Looking at V such that _V = 0 we see that the region
fx : V (x) � 80jjudistjj2g is invariant. Therefore,jjxjj �
9jjudistjj and jjrjj � 9jjudistjj is an Uncertainty Region.
Note that this is with feedback gainkd = kp = 1 in the PD
controller. The higher the gain the smaller the uncertainty
region for a given disturbance.

Consider now a triangular formation withd21 =
(�1:5; 0:75), d31 = (�1:5;�0:75) and a disturbance
bound ofjjudistjj � 1

24 . This givesjjri�r1�d1ijj � 3
8 as



shown in Figure 2. The leader has a point uncertainty by
definition,r1�r1 = 0, but to account for the shape of the
vehicle we add a small disc around it to the uncertainty
region. A similar argument can be made to slightly enlarge
the uncertainty region around all the robots.
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Fig. 2. The Uncertainty Region around a perfect formation, as described
in Example 2.10. The small black circles are the robots and the shaded
area is the uncertainty region. Note that the leader to the right has low
uncertainty (a small disc) in its own position.

We now go on to show how to calculate the Uncertainty
Region in the general case.

Lemma 2.11 (ISS to Uncertainty Region):Let the
unique path fromr1 to ri in E bePi = fe1; e2; : : : ; eNg,
whereN is the number of edges. Suppose the system (3)
is ISS, then the individual error satisfies

jjri � riref jj �
p
NM(t);

where riref = r1 + de1 + de2 + : : : + deN , the desired
perfect formation position anddek = dij whenek = (i; j).
M(t) = �(jjx(t0)jj; t � t0) + (sup��tjju(�)jj from the
ISS definition. This bound can furthermore be used to
calculate an uncertainty region as

UR = fr 2 IR2j 9i; jjr � riref jj �
p
NM(t)g:

Proof: We start by noting that

1p
N
�N jxij �

p
�N jxij2 � �N jxij:

Since the system is ISS we have that

M(t) � jjxjj =
q
�E jjrij jj2 + jj _rij jj2

�
q
�E jjrij jj2

=
q
�E jjri � rj � dij jj2

�
q
�Pl jjri � rj � dij jj2

� 1p
N
�Pl jjri � rj � dij jj

M(t)
p
N � jj�Pl(ri � rj � dij)jj

= jj(r2 � r1 � d21) + (r3 � r2 � d32)

+ : : :+ (rl�1 � rl�2 � d(l�1)(l�2))

+(rl � rl�1 � dl(l�1))jj
= jjrl � r1 � (de1 + de2 + : : :+ deN )jj
= jjrl � rlref jj

which concludes the proof.

Proof of Main Theorem: By Lemma 2.8 the system
is ISS and by Lemma 2.11 this in turn gives rise to an
uncertainty regionUR. Writing the setsO;FLO;F as
binary memberships functions,O(z) = 1 if z 2 O and
O(z) = 0 if z 62 O, we have

FLO(a; b)

= �

�ZZ
IR2

O(a+ y1; b+ y2)UR(y1; y2)dy1dy2

�
:

If O or UR has isolated regions of measure zero this
must be handled separately by Dirac delta functions etc.
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Fig. 3. Calculating theFLO by checking which positions are
guaranteed free.

The double integral equals zero when there is no
intersection between the Uncertainty RegionUR and
the obstaclesO, as in (a) and (c) of Figure 3 . If,
however, there is an intersection, as in (b), the integral
will not be zero and the� function will return1 and the
corresponding leader position will be marked as occupied
in theFLO.

The problem is now to drive the leader�r1 = u1dist
through theFLO to the goal point. To do this we will
use the convergent dynamic window approach to obstacle
avoidance [3], [4].

III. O BSTACLE AVOIDANCE

The problem of robotic motion planning is a well-
studied one, see for instance [7]. Apart from the classical
approaches of histograms and vector addition, a few
somewhat more recent schemes have emerged. One of
them is the Dynamic Window Approach [1], [2]. We will
use a revised version of the latter that can be viewed as
a synthesis inspired by [15] of the performance-oriented
approaches [1], [2] and the convergence-oriented method
of exact navigation by artificial potentials presented in[14].

In [4], a Provable Convergent Dynamic Window Ap-
proach is proposed. The original approach is reformulated
as a combined Receding Horizon Control and Control
Lyapunov Function scheme. The problem is stated as

infu(�)2C V (x(t + T )) (4)

s.t. �r = u (5)
_V (x; u) � 0 (6)



wherex = (r; _r) is the state,C is a somewhat technical
control sequence set andV is a control Lyapunov function
V (x) = 1

2 _r
T _r + kp

2
NF (r). NF (r) is the Navigation

Function, a continuous approximation of the length of the
shortest obstacle-free path to the goal. Below we restate
the main results of [4] but refer to that paper for proofs
and details.

Theorem 3.1 (Asymptotic Stability): If the control
scheme in (4) is used and if there is a traversable path
from start to goal in the occupancy grid. Then the robot
will reach the goal position.

Remark 3.2: Note that this excludes all so-called local
minima problems present in some navigation schemes.

Theorem 3.3 (Safety): If the control scheme in (4)
is used and if the robot starts at rest in an unoccupied
position. Then, the robot will not run into an obstacle.

IV. SIMULATION EXAMPLE

We will now illustrate the approach with a simulation
example. In [2] as well as in [4] it is assumed that the
sensors can supply us with an occupancy grid map of
the surroundings. I.e the state spaceIR2 is partitioned
into small squares, and each square is marked as being
occupied or free. The setO is depicted in Figure 4.
The formation uncertainty regionUR, from Figure 2, is
discretized in the same way asO and is shown in Figure
5.
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Fig. 4. The obstacle setO.

−2 −1 0
−1

0

1

Fig. 5. The uncertainty regionUR.

Calculating the two-dimensional integral of Theorem
2.4 using the commandconv2 in Matlab we get the
formation leader obstacles,FLO, as seen in Figure 6.

Note how the low uncertainty in leader position (only
one square) gives rise to an identical copy ofO in FLO.
The larger uncertainty regions of the two followers result
in larger regions to the right of theO copy. Note especially
how the double passage is turned into a single slot at
(7; 5).

Running the algorithm we get the trajectories of Figure
7. Since we set the disturbances to zero in the simulation,
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Fig. 6. TheFLO resulting from theO, UR computation.

the robots are in the center of the uncertainty regions and
it can be seen how the obstacles are avoided with larger
margins for the followers than for the leader, e.g. at(5; 5).
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Fig. 7. Trajectories of the three robots. The circles illustrate the size
of the Uncertainty Regions. All robots start close to (1,3).

In Figure 8 the leader trajectory can be seen not to
intersect the setFLO. The level curves of the navigation
function are also plotted. Note how the receding horizon
control favors going perpendicular to the level curves since
it minimizesV (t+T ) in Equation (4). At(8�9; 5) there
is a ridge in the navigation function corresponding to the
choice of going above or below the obstacle.
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Fig. 8. TheFLO as well as the Navigation Function level curves and
resulting leader trajectory.

V. CONCLUSIONS ANDFUTURE RESEARCH

By combining a general class of formation schemes
with a new convergent dynamic window approach we have
shown how to do safe and convergent obstacle avoidance



while staying in a formation. The approach is illustrated
by a simulation example.

A natural extension of this work is to consider problems
of formation rotation and expansion.
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