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Abstract

An autonomous Unmanned Combat Aerial Vehicle (UCAV) carrying out a surveillance or strike mission
must be able to handle situations where the different mission objectives are in conflict and a tradeoff must
be made, e.g. when the time of arrival is in conflict with the prescribed safety distance to an enemy surface
to air missile (SAM) site. This paper describes a framework called Behavior Control Lyapunov Functions
(BCLF), to handle such tradeoffs. The framework combines the natural idea of different control behaviors
for different mission objectives, suggested in the Behavior Based robotics approach, with the mathematical
transparency of Control Lyapunov Functions (CLF) from control theory.

First, each behavior is represented by a scalar function with certain CLF-like properties, describing to
what extent that mission objective is satisfied. The operator then edits a priority table reflecting the order
of importance between different objectives, as well as different levels of satisfaction. Based on the table
and the current levels of satisfaction the algorithm decides which objectives should be focused on right now,
and which should currently be ignored. Finally, the current high priority objectives are transformed into
recommended subsets of the available control choices, and passed to the controller. The paper is concluded
with simulation examples illustrating the approach.

I. Introduction

The issues of autonomous UAV control have been given an increasing amount of attention in recent
years.1 2 79 11,1315 The path planning part of an autonomous UAV is always important, however in dynamic
environments, when the UAV must react to pop-up threats, as well as the motion of friendly and enemy
aircraft, planning alone will not solve the problem.

A number of new approaches,'® ! building upon ideas from model predictive control (MPC) have emerged
trying to incorporate long term planning into short term control schemes. These short term schemes often use
trajectory optimization formulations, an approach that is powerful, but of a very low degree of transparency,
from an operator point of view.

In mixed initiative control applications, where an autonomous system is to cooperate with, and in some
situations be controlled by, a human operator, situations when the operator is surprised by the autonomous
system must be avoided. Therefore, from a mixed initiative point of view, frameworks such as the behavior
based approaches®? are very attractive, but unfortunately lack the mathematical formalism necessary to
guarantee certain system properties.

In this paper we propose a framework called Behavior Control Lyapunov Functions (BCLF). It is our hope
to combine the reactivity and operator transparency of the behavior based approach with the mathematical
rigor of Lyapunov theory. This rigor will furthermore enable the operator to make the different mission
objectives and their order of priority explicit in such a way that the autonomous system at all times can
state which objectives are being fulfilled, which are focused on right now and what lower priorities are not
addressed currently. Or conversely, what mission objective tradeoff, e.g. time of arrival vs. threat level, needs
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to be solved, and how the system intends to make that tradeoff. Finally, to avoid the drawbacks inherent in
all reactive approaches, the framework accepts as one of the mission objectives to follow a given path, this
path can be planned by a human operator, or produced by an on board planning algorithm, such as the one
presented in.'?

The organization of this paper is as follows. In Section II we review the main ideas of Lyapunov theory
and discuss the structure of behavior based architectures. Section IIT then presents the BCLF framework
and some analytical properties. Then, in Section IV, the approach is illustrated by a simulation example
and conclusions are drawn in Section V.

II. Background: Lyapunov Theory and Behavior Based Architectures

In this Section we will describe the two main ideas built upon in this paper.

A. Lyapunov Theory of Stability

The ideas below were first presented in 1892 by the Russian mathematician Aleksandr Lyapunov, and they
build upon a very natural observation: if the energy of a system decreases monotonically everywhere, except
at a local energy minimum, then the system will end up in that minimum.

The definition below is taken from an excellent book by Sastry [12, p. 199].

Theorem II.1 (Lyapunov Theorem - LaSalle’s Principle) Suppose we are given a system & = f(x), x(tg) =
To, an equilibrium point ™ = 0 and a positive definite function V(x). If =V >0, and the set S = {z € R" :
V(z) = 0} contains no trajectories except x = 0, then x* is globally asymptotically stable.

We call the function V(-) a Lyapunov function.

Remark I1.2 In Section III we will make significantly stronger assumptions than the ones above, in order
to prove finite time properties in a straight forward manner. So even though we do not use the above theorem
explicitly, the ideas of this paper rest heavily upon the framework presented above.

The step to control Lyapunov functions is now not far, but was defined much later, 1983, in a paper by
Artstein.3

Definition I1.3 (Control Lyapunov Function) A positive definite C* function V(zx) : R™ — R" is called
a control Lyapunov function if,
inf, (VVT f(z,u) <0), Vo £0.

This definition is motivated by the fact that if V' is a control Lyapunov function, then the right choice of
control u(z) will make it a Lyapunov function. We now move on to the area of reactive control architectures.

B. Behavior Based Architectures

In a book as late as 1998, by Georgia Tech researcher R. Arkin? an approach called behavior based control
is described in detail. Arkin summarizes the idea as follows. “Simply put, reactive control is a technique
for tightly coupling perception and action, typically in the context of motor behaviors, to produce timely
robotic response in dynamic and unstructured worlds.” [2, p. 22]

A typical reactive architecture is seen in Figure 1. The behaviors work in parallel, each describing its own
complete sensor-to-actuator mapping. The desired actuator commands of the behaviors are then merged by
an arbitrator. There are mainly four suggested ways of arbitration:

1. Suppression: A strict hierarchy of behaviors is defined, where the highest active one makes the call.
For example, the avoid-obstacle can override the go-to-goal behavior if there is an obstacle close
by. This is the arbitration mechanism suggested by Brooks in the subsumption architecture® .

2. Selection: A variable hierarchy where both the agent’s goals and sensory information governs what
behavior gets control.

3. Voting: All behaviors are allowed to vote on their preferred action. The choice with the most votes is
then executed.
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Figure 1. A Typical reactive architecture, from [2, p. 112-114].

4. Vector summation: All behavior outputs are in the form of a vector, e.g. either desired velocity or
acceleration. These vectors are then summed, and in some implementations normalized, to get the
desired motor command.

Having reviewed the ideas of Behavior Based robotics as well as some basic Lyapunov theory we are
ready to describe what we mean by Behavior Control Lyapunov Functions and how they can be used to do
arbitration in a more transparent way.

ITI. The Behavior CLF Framework

In this section we will describe how to translate a set of mission objectives and priorities into Behavior
CLFs and a priority table. We then characterize what control sets meet the different objectives. Finally,
based on these sets a controller is proposed.

A. Mission Objectives as BCLF's

The first step in the controller design is to state a number of mission objectives and a corresponding set of
scalar functions describing to what degree those objectives are met. Examining our UCAV application, a set
of reasonable objectives in a strike mission might be the following:

e Arrive at the target within the given time window and deliver the ordnance.
e Return to base without running out of fuel.

e Stay on, or close to, a given waypoint flight path.

e Stay outside of the range of SAM sites.

e Stay away from enemy fighters.

Ideally, the mission can be performed while accomplishing all these objectives. There are however situations
where the objectives are contradicting, and a tradeoff decision has to be made. For example when enemy
fighters are patrolling the target area, or when a pop-up SAM is found to be blocking the way to the target,
in such a way that there is a choice of either avoiding the threat and arriving too late on target, or arriving
on time but enduring a higher risk of being shot down.

To make the five mission goals above explicit in terms of functions and inequality constraints we write

(tt _ t) _ dlbt(p,pt)

UHO’ITL

Vi = < Tyindow (1)



Vi = —(xy —dist(p,pp)c) <0

Vp, = {distance from designated path} < 1km
- _lp—psll <1

range
Ve = —llp—pell £ —50km

where t; is the desired time of arrival, p is the UCAV position, p; is the target position, dist(-,-) is the
distance, following the waypoint path, between two positions, v,em is the nominal speed of the UCAV,
Twindow is the size of the time window around ¢, c is fuel consumption, zs is the amount of fuel left, p,
is the base position, p. is the position of the closest enemy fighter, ps is the position of the closest enemy
SAM and drange is the threat range of that particular SAM type. Note that we used <-constraints in all
inequalities above, and that the right hand sides, called b;; below, are all set by the operator before the
mission. The main idea of this approach is then to choose controls that decrease the functions, and thus
satisfy the inequalities and the corresponding mission objectives. For this to work, the functions must have
some particular properties defined below.
We will now formally define what we mean by Behavior Control Lyapunov Functions (BCLF)

Definition III.1 (BCLF) Given a system & = f(x,u), a bounded set of admissible controls Uugm, a piece-
wise C function V : R™ — R, and scalars b and ¢ > 0. Then V is a BCLF for the bound b and € if

min VV7T f(z,u) < —¢, Vo : V(x) >b.
u€Uadm

With this definition we can state the following Lemma.
Lemma II1.2 If V is a BCLF, for b,e, then there exists a control sequence that achieves the objective
V(z) < b in finite time.

Proof. Assume we start at some x = zo. Apply the control

VVT f(z,u).

u* = argmin, ¢,

adm

Then V < —¢ and hence the bound b will be reached in time t < W

In our example we assume that we already have an autopilot accepting speed and heading commands.
To capture the high level behavior and fuel consumption of the UCAV we choose the following model

1 = vCoSQ,

Tog = ovsing,

Ty = —ko — kv — kov?,
it = 1,

where (z1,22)7 = p is position, xy is the amount of fuel, ¢ is commanded heading and v is commanded
speed, with the bound vpin, < v < Upmas. We write © = (21,22, 24,t)7 and v = (v, ¢)”. We have included
time ¢ into the state to avoid explicit time dependence in V(z). Finally, using a general second degree
polynamial model in v for the fuel consumption, with constants k; > 0, enables us to capture the effect of
speed dependent fuel efficiency. Note that we use a planar UCAV model throughout this paper. This is just
for convenience, and there are no general restrictions as to what kind of system & = f(z,u) can be.

Letting dist(p, p») = ||(21,22) — po||, we can now calculate e.g. Vi and V7.

v - c(r1 — pp1) : c(2 — pr2) ,—1,0)
11, w2) = poll [1(21,22) — py|
VVvif = ((x1,22) — pi (C9S¢>vc+k e
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T
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Figure 2. Level curves for VVfo, as a function of velocities (vi,v2) = (vcos ¢, vsin¢), with the goal direction
to the right in the figure. Choosing a velocity towards the goal, within the 0-curve, makes the predicted fuel
level when landing increase. Flying in the opposite direction, i.e. left in the figure, makes the predicted level
decrease rapidly. The fuel consumption constants were set to kg = 0.002, k1 = 0.05,k2 = 0.17,c¢ = 0.1.

Level curves for VVfT f and VVIf are depicted in Figure 2 and Figure 4. Note that choosing e.g.
€ = 0.001 makes V; a BCLF in the sense of Definition IIL.1 above.

So far we have only discussed one mission objective and one BCLF. As we saw in Section II, a key point
of behavior based robotics is how to combine a set of different control behaviors. Our hope is to propose a
method that enables the human operator to give very clear priorities between the different mission objectives.

Coming back to the application examples, it is conceivable that the highest mission priority might be to
deliver the weapon on target, and the second highest priority might be to get the UCAV back to base with
just enough fuel to land. When that can be achieved, the third priority might be to avoid known SAM sites,
and equally important increase the fuel safety margin to say 10%. Mission objectives might thus re-appear
on different priority levels with different values. In detail, a mission priority table might look like Table 1
and 2. Each column represents a set of bounds to the functions on the left hand side of (1). Note that the
bound “< o0” trivially holds and thus PL 0 is always satisfied, while the highest level, PL 6 in this case, is
the hardest to achieve.

A high risk example is shown in Table 1. As can be seen, the highest priority level, PL 1, corresponds to
arriving at the target location on time, PL 2 corresponds to reaching the target on time, as well as arriving
back to the base without running out of fuel, and so on. Similarly, a low risk example is shown in 2, where
fuel and threats are more important that time on target.

by lpLol 1+ | 2 | 3 | 4 [ 5 | 6 |
=V < [e'e) 5min | 5min | 5min 5min 5min 5min
Vo=V < 00 00 0 —10% | —15% | —15% —15%
V3=V, < [e'e) [e'e) 0 0 00 00 5km
Vi=Vs < 0 00 0 -1 —1.2 -1.2 —-1.2
V=V < o0 9 00 o0 %9 —50km | —50km

Table 1. High risk mode. Note e.g. that arriving on target, (PL 1), is more important than avoiding SAMs,
(PL 3).

Given a priority table with {b;;} values, such as Table 1 and 2, one can formally define the current
priority level as



b lpo] 1 | 2 | 3 ] 4 | 5 [ 6 |
Vi=V: < 00 0 00 0 S5min Smin Smin
Vo=V < 0 -10% | —10% | —15% | —15% | —15% —15%
V=V, < | o0 00 00 00 00 00 5km
Vi=V, < ) ) -1 -1 -1 -1 -1

Vs =Ve < 00 [ee) 00 oS 00 —50km | —50km

Table 2. Low risk mode. Note that coming back with a 15% fuel margin and avoiding SAMs, (PL 3), is more
important than reaching the target area, (PL 4).

Definition II1.3 (CPL) Given a set of BCLFs, V;, and bounds, b;;, such that bijo = co,Vi. Let the Current
Priority Level (CPL) or jopr(x), be given by

jepr(z) = max{j : Vi(z) < by, Vi}
i.e. jopr(x) is the rightmost column of {b;;}, where all constraints are satisfied.

Note that demanding b;y = co for all ¢ guarantees that the CPL is always defined. The control objective
of the UCAV can now be stated in terms of maximizing the CPL, i.e. move the system as far down the
priority level list as possible.

B. Control Sets that Satisfy Different Mission Objectives

We will now make explicit the relationship between controls and CPLs.
To increase the CPL the controller must strive to satisfy the constraints on the next PL, while not
violating the constraints of the current PL. Below we will see how this can be made more precise.

Definition II1.4 (Control Sets) Fiz k > 0 and let € > 0 be the same as in Definition III.1. Given a set
of BCLFs, V;, with corresponding bounds, b;;. Let
Usarla) = Vi) < 0y = Vi@)), J = oo (a), Vil

the set of controls satisfying the bounds of the CPL. Let furthermore

Lneat(w) = {i : Vi(®) > bi(j41), § = jopL(2)},
the set of objectives to be focused on and

Uine(x) = {u: Vi(z,u) < —€,Vi € Leas ()},
the set of controls aiming to increase the CPL.

We will now characterize the sets that guarantee the satisfaction of the CPL and the future increase in
PL.

Lemma II1.5 If a system starts at x(to) = xg, and the chosen controls u satisfy
u € Usge (),
then jopr(zo) < jopr(xz(t)), Vt > to, i.e. the CPL will not decrease. If furthermore
u € Usat(x) N Uipe(),
then jopr(zo) < jopr(x(t)) will be satisfied in finite time, i.e. the CPL will increase.

Proof. Assume that there was a decrease in CPL at some state #. Then b;; = Vi(2) and V;(&,u) > 0 for

some i = 1.
But since u € Usq(z) we have Vi(z,u) < k(b;; —V;) = 0, which contradicts the assumption. This

proves the first part of the Lemma. For the second part we note that jopr(ro) < jepr(z(f)) in time

Vi—bigj41)
€

t < maXier,,..(x) , similarly to Lemma III.2. n



Remark II1.6 The constant k governs how fast a satisfied bound b;; can be approached. If the worst possible
u € Usqy 1s chosen, then we have equality in the constraints, Vi(z,u) = %(bij —Vi(z)), and V; approaches b;;
exponentially, with the time constant k.

Remark ITI.7 Note that in cases where a tradeoff must be made, e.q. when a target point is located within
a SAM threat area, the sets Ugqi(x) and Uipne(x) might be empty, depending on the current priority level.
The sets are however a clear representation of the controls that guarantee kept or increased CPLs.

Before going into details about controller design we look at one example of what Uy, and U;p,. might
look like.

Example I11.8 Consider the situation depicted in Figure 3, where the UCAV is heading east towards the
base when a threat in terms of a SAM-site appears 30km to the north-east. The amount of remaining fuel
is xy = 16%, with a nominal fuel consumption ¢ = 0.1%/km, the SAM distance is ||p — ps|| = 30km and
the nominal threat range (dotted circle) is drange = 24km. Furthermore, the priorities of Table 2 where used
and k = 50.
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Figure 3. The UCAV (triangle) at (60,64) is heading towards the base (x) at (110,64) when a SAM (*) pops
up at (80, 85).

We start with calculating the BCLF's:

Vi = —(xy — dist(p,pp)c) = —(16 — 50-0.1) = —11
lp —psll _ 30
Vi = —————=—=-125
° drange 24

There are no known fighters airborne, making Vi = —oco. The UCAV is on the path, V, = 0, and since the
target is already passed, Vi is defaulted to V; = 0.

Looking at table 2, we have CPL=2, since the bound Vo = Vy = —11 < by3 = —15 does not hold.
Calculating Ugqr we get

: 1
Usar = {u:  Vi(z,u) < -=(c0 = 0) = o0,

Va(z,u) < i(—10 — (=11)) = 0.02,

Va(x,u) < %(oo —0) = oo,

. 1

Va(w,u) < == (~1 - (~1.25)) = 0.005,
. 1

Vs(@,u) < p5(00 = (=00)) = oo}
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Figure 4. The important control sets of the example shown in Figure 3. Note that the recommended control
set Utot = Uggm NUsat NUjn corresponds to heading east-south-east at a fuel efficient speed, which is reasonable,
looking at Figure 3. Level curves of VV f, dotted, are also shown in the figure.

i.e. the set shown in Figure 4, which is the intersection of the set within the 0.02 bound in Figure 2, and
below the 0.005 line in Figure 4.
Going on to calculate Ineq(x) we get

Inea:t(-r) - {Z : V;(.’E) Z bi?)} = {Z}a
since the fuel bound of 15% is the only objective not satisfied at PL 3. This makes
Uine(z) = {u: Va(z,u) < —0.001},

the corresponding level curve can be found in Figure 2. The sets Usqe and Usne are both depicted in Figure
4, together with Uggm = {(v,¢) : 150m/s < v < 300m/s}, representing the flight envelope of the UCAV, i.e.
the set of physically achievable velocities.

To summarize, to avoid violating the CPL=2, i.e. to retain a distance > 24km to the SAM and a predicted
fuel margin of 10% , the UCAV must apply a control in the set Usqs N Uzam i-€. either move slowly north,
or chose an arbitrary speed heading south-east. In order to improve the chances of reaching CPL=3, i.e.
increase the estimated fuel margin to 15%, a control can be chosen in Ut = Usqt NUugm NUine, corresponding
to flying east-south-east with a fuel efficient speed.

The question of what control to choose in the recommended set is the topic of the next section.



C. Controller Synthesis

As seen above, choosing a control in Uy N Uy, is attractive, but as noted in Remark II1.7, one or both of
these sets might be empty.

In cases when U, is empty the CPL can probably not be sustained and is about to drop one or more
levels. In these situations we propose to search the priority table to find the highest PL that can be satisfied
in the near future. The controls are then chosen to satisfy this level. To formalize this we make the following
definition.

Definition II1.9 Let k be the same as in Definition I11.4. Let furthermore

(bij — Vi(w)), Vi}

el

jepr—a(z) = max{j : Vi(z) < by, 3u € Ungm : Vi(w,u) <

and

Ugee(®) = {0 € Ugam : Vi(z,u) < —(bij — Vi(x)), j = jorr—a(z),Vi},

i.e. jopr—a(x) is the rightmost column of {b;;}, where all constraints are satisfied, and there is a nonempty
set, Ugee, of controls that does not immediately violate them.

T =

Lemma II1.10 The set Uge.(x) is never empty.

Proof. The proof follows directly from the definition of jopy—a(z). ™

With these sets we are ready to define the control set to be used in the controller design.

Definition III.11 Define the set Uiy as follows:
]f Uinc N Usat N Uadm 7& [Z) then Utot = Uinc N Usat N Uadm7
else lf Usat N Uadm 7& @ then Utot = Usat N Uadm7
else Uior = Ugee-

Note the properties of Uy, as stated in Lemma IT1.5 and III.10.
The remaining question is what control to choose in U,. It is clear that the objectives in I,¢.: should
be focused on. We suggest the following:

u = argminuertEiGInezt kl‘/;(x7 u)v (2)

where
VZ(Z) - bi(jCPL(i’)-‘rl)

ki = )
[VVi(2)]l

or u* = argminueUtotZiVi(x,u) if CPL is at maximum.

We can now compare this control structure to the different arbitration alternatives in Behavior Based
Robotics, reviewed in Section II. The priority table and Us,y, U;ne clearly borrows a lot from the arbitration
methods Selection and Suppression. Using set intersection of Ug,y and Uy, is similar to Voting, in that
options that are acceptable relative to many mission objectives are favored. Finally, minimizing a sum
of V;(CL‘, u) resembles the arbitration method Vector summation. Thus the BCLF framework borrows and
merges a set of ideas from Behavior Based Robotics, using a mathematic framework inspired by CLFs.

In the next section we illustrate the approach with an example mission.

IV. Simulation Examples

Consider the mission setup and trajectories depicted in Figure 5. Two UCAVs are simulated using the
priorities of Table 3, one with desired time of arrival {7 = 840 and one with ¢t = 720.

At the start near A, both UCAVs are in CPL 4, and I,,..+ = {3}, since the distance to the planned path
is larger than 10km. This makes both UCAVs move straight towards the closest part of the path, to increase
the CPL.

Moving towards B, the distance to the enemy aircraft is close to the desired minimum range of 50km.
Note that the small triangles represent three different snapshots of the UCAVs and enemy aircraft, at the
first two snapshots the two UCAVs have not parted yet.
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Figure 5. Two different UCAV mission trajectories. Both UCAVs start at (10,80), an enemy aircraft starts at
100, 50, the dashed line is the planned waypoint trajectory, passing the two dotted SAM threats in the middle.
The third SAM threat is a pop-up, discovered during the mission.

by, lprol 1 [ 2 [ 3 ] 4 [ 5 | 6 |
=< o0 120s | 120s 120s 120s 120s 120s
Vo=V < | o0 oo | =10% | —=10% | —10% | —10% | —100%
V=V, < | o0 00 00 00 00 10km 10km
Vi=Vs < o) [e'e) 00 —1 -1 -1 —1

Ve =V < 00 00 00 00 —50km | —50km | —50km

Table 3. The priority table of the example.

At B both UCAVs have to turn to avoid getting too close to the fighter. The UCAV with a later desired
time of arrival flies away from the threat. For the other UCAV, V; is close to the bound. Us,; is empty, there
is no way to achieve the time of arrival and the threat distance at the same time. This makes jopr_q = 3
and Uge. does not contain the 50km constraint since arrival time is of higher priority. However I,e.t = {5}
and a heading is chosen to maximize the threat distance, while not violating the time constraint, thus the
UCAV is not heading straight for the next waypoint.

At C, the upper UCAV still maintains the safety distance of 50km while the lower is roughly 37km away
from the threat. After the threat has passed both UCAVs proceed to the next waypoint.

At D, both UCAVs switch waypoints. Since they are within 10km of the waypoint and the next path
segment, switching does not decrease the CPL. Note that the BCLF framework can thus also be used to
decide when to switch waypoints, this is however not the main topic of the paper.

At F, the radar warning receiver of both UCAVs detect an a priori unknown SAM, and there is a conflict
between the path, the time of arrival and the SAM threat distance constraints. The UCAV with earliest
time of arrival is still close to violating it. Thus Uy is again empty, the path constraint is removed in Uge,
and the UCAV proceeds to pass the SAM. The other UCAV makes a couple of turns, to stay at CPL=5 as
long as possible. This is where a replanning functionality would be used to supply a new path without a
inherent path/threat conflict. In this simulation however, replanning is not integrated, no new plan is given,
and once the time of arrival objective is in danger Uy, again removes the path constraint.

At F, Ie0t = {3} makes the UCAV follow the threat circle until the path constraint is again satisfied.
Then a straight heading towards the next waypoint is chosen.

At G, where the target is, the UCAVs do not switch waypoints at 10km, but proceed to deliver the



ordnance. The first UCAV was 83s after its desired time on target while the second one was 59s late. Both
times well inside the 120s constraint of the priority table. Having made the drop, both UCAVs then proceed
to the home base.

Apart from the low fidelity simulations presented above, high fidelity, man-in-the-loop simulations were
also carried out at the Swedish Air Force Air Combat Simulation Center (FLSC). These simulations are part
of an ongoing effort to explore the advantages and disadvantages of unmanned air combat systems.

V. Conclusions

Reactive approaches are fast, and easy to understand and predict from an operator point of view. How-
ever, they often lack the mathematical rigor and preciseness of model based control schemes. In this paper
we have proposed an approach that combines the transparency of behavior based robotics with tools from
Lyapunov theory to enable an operator to state mission objective preferences in a clear and detailed way.
Further more, we specify the control sets that keep and/or improve the current level of mission objective
satisfaction. A simulation example was presented to illustrate the approach.
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