
Math-Net.Ru
All Russian mathematical portal

N. Stepanova, T. Pavlenko, Goodness-of-fit tests based on sup-
functionals of weighted empirical processes, Teor. Veroyatnost. i
Primenen., 2018, Volume 63, Issue 2, 358–388

DOI: https://doi.org/10.4213/tvp5160

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and

agreed to these terms of use

http://www.mathnet.ru/eng/agreement

Download details:

IP: 192.168.20.1

June 26, 2018, 13:17:26



Т ЕО Р ИЯ В ЕР О ЯТ Н ОС Т ЕЙ
Т ом 63 И Е Е П РИ М ЕН Е Н ИЯ В ы пу с к 2

2018

c⃝ 2018 г. STEPANOVA N.∗, PAVLENKO T.∗∗

GOODNESS-OF-FIT TESTS BASED
ON SUP-FUNCTIONALS OF

WEIGHTED EMPIRICAL PROCESSES1)

В настоящей работе рассматривается класс тестовых статистик
для проверки гипотезы согласия, основанных на sup-нормах взвешен-
ных эмпирических процессов. В качестве весовых функций исполь-
зуется верхний класс функций Эрдёша–Феллера–Колмогорова–Пет-
ровского для броуновского моста. На основании результата М. Чёр-
гё, Ш. Чёргё, Хорвата и Мейсона о сходимости по распределению
взвешенных эмпирических процессов данного типа выводятся пре-
дельные распределения изучаемых статистик при нулевой гипоте-
зе и предлагается алгоритм для табулирования квантилей получен-
ных распределений. В работе также вводится семейство непарамет-
рических доверительных полос для оценивания истинной функции
распределения. Полученные результаты, включая новый результат
о сходимости по распределению статистики «высокого критицизма»
Донохоу и Джина, свидетельствуют о преимуществах предложенно-
го нами типа взвешивания с использованием верхнего класса функ-
ций для броуновского моста по сравнению с регулярно меняющимися
весовыми функциями, нередко рассматриваемыми в данном контек-
сте. Кроме того, показывается, что в различных задачах проверки
гипотезы о наличии разреженной неоднородной смеси распределе-
ний, которые описываются с помощью критического радиуса, уста-
новленного Ингстером, изучаемые тестовые статистики ведут себя
оптимально адаптивно по отношению к параметрам смеси.
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1. Introduction. In the context of testing the hypothesis of goodness-
of-fit, the weighted empirical process viewpoint is rather common and very
helpful, provided a suitable weight function is used. For specific types of al-
ternatives, certain classical goodness-of-fit tests, including the Kolmogorov–
Smirnov and Anderson–Darling tests, may benefit significantly from using
proper weights. For examples of standard and nonstandard weight functions,
we refer to [1], [3], [22], [24], [25].

In this paper, we study a class of goodness-of-fit test statistics based on the
supremum of weighted empirical processes. The weight functions q employed
are the Erdős–Feller–Kolmogorov–Petrovski (EFKP) upper-class functions of
a Brownian bridge. As a new class of test statistics, the empirical processes in
EFKP weighted sup-norm metrics appeared for the first time in the work of
Csörgő, Csörgő, Horváth, and Mason [6]. In our study, we extend this class
by allowing any subinterval I ⊆ (0, 1) over which the supremum is taken,
thus getting a class of test statistics indexed by two ‘parameters’, the weight
function q and the interval I. Having a class of test statistics available gives
more flexibility in selecting particular members of the family to meet specific
needs of practical applications.

Asymptotic theory of the tests based on the empirical distribution func-
tion (EDF) is commonly handled by using empirical process techniques and
weak convergence theory on metric spaces. The question of weak conver-
gence of the weighted EDF-based tests turns out to be rather delicate, and
adapting even known convergence results to newly proposed test statistics
is not necessarily straightforward. At the same time, the convergence in
distribution of weighted empirical processes as in Theorem 4.2.3 of [6] (see
also Theorem 26.3 (a) in [12]) has not been fully explored and used by the
statisticians. For an overview and further results along these lines, we refer
to Sections 4.5 and 5.5 of [8], and references therein. The latter theorem of
Csörgő, Csörgő, Horváth, and Mason motivates and provides the background
for the current study.

In Section 2, we consider the EDF-based tests standardized by the EFKP
upper-class functions of a Brownian bridge, along with the characterization
of this class from Section 3 of [6]. The choice of EFKP upper-class functions
ensures that the corresponding test statistics take on finite values with proba-
bility one. A new result on the convergence in distribution of the EDF-based
tests with a commonly used standard deviation-proportional weight func-
tion (see Proposition 2.1) provides further motivation for employing the
EFKP upper-class weight functions. The EDF-based tests standardized by
the EFKP upper-class functions are shown to be consistent against a fixed
alternative.

Typically, the utility of the test depends on whether or not one can work
out the distribution theory of the corresponding test statistic. In Section 3,
by adapting the results of Section 4 in [6], we establish the asymptotic null
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distribution theory for the suggested tests. The whole class of test statistics
is easily seen to be distribution-free. The latter fact allows us to construct
a new family of nonparametric confidence bands for the true distribution
function. In Section 4, we show that, when applied to the problem of de-
tecting sparse heterogeneous mixtures, the entire class of test statistics is
optimally adaptive to an unknown degree of heterogeneity in the Gaussian
and non-Gaussian mixture models. Due to this fact, in various signal detec-
tion and classification problems, the statistics under consideration may be
viewed as competitors to the so-called higher criticism statistic, as defined
in [13]. Section 5 contains some remarks and comments. An algorithm for
tabulating the limit distributions of the proposed test statistics is given in
Section 6, and the proofs of main results are collected in Section 7. Section 8
is a brief summary of the study.

Some notations used throughout the paper are as follows. The symbols D
=

and a.s.
= are used for equality in distribution and almost surely, respectively.

The symbols D−→ and P−→ denote convergence in distribution and convergence
in probability, respectively. For a set A, I(A) is the indicator of the set A.
The notation an ∼ bn means that limn→∞ an/bn = 1, whereas the notation
an ≍ bn means that 0 < lim infn→∞(an/bn) 6 lim supn→∞(an/bn) < ∞.

2. Statement of the problem and motivation. In this section, we de-
fine the main object of our study, the class of test statistics based on weighted
empirical process. Statistical properties of the corresponding tests depend,
to a large extent, on the weight function used. Faced with a large number
of conceivable weight functions, it is of interest to look at the asymptotic
behavior of the resulting test statistics. With this in mind, we obtain an
interesting convergence result (see Proposition 2.1) that partially motivates
the current study.

2.1. Class of test statistics. Let X1, X2, . . . be a sequence of inde-
pendent identically distributed (i.i.d.) random variables with a continu-
ous cumulative distribution function (CDF) F on R. Denote by Fn(t) =
n−1

∑n
i=1 I(Xi 6 t), t ∈ R, the EDF based on X1, . . . , Xn. We are inter-

ested in testing the hypothesis of goodness-of-fit

H0 : F = F0 (2.1)

against either a two-tailed alternative H1 : F ̸= F0 or an upper-tailed alter-
native H ′

1 : F > F0. Before introducing our class of test statistics, we shall
need some definitions.

Definition 1. A function w defined on (0, 1) will be called strictly positive if

inf
ε6u61−ε

w(u) > 0, for all 0 < ε <
1

2
.
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Definition 2. Let q be any strictly positive function defined on (0, 1) with
the property q(u) = q(1 − u) for u ∈ (0, 1/2), which is nondecreasing in
a neighborhood of zero and nonincreasing in a neighborhood of one. Such
a function will be called an Erdős–Feller–Kolmogorov–Petrovski (EFKP)
upper-class function of a Brownian bridge {B(u), 0 6 u 6 1}, if there exists
a constant 0 6 b < ∞ such that

lim sup
u→0

|B(u)|
q(u)

a.s.
= b. (2.2)

An EFKP upper-class function q of a Brownian bridge is called a Chibisov–
O’Reilly function if b = 0 in (2.2).

Note that an EFKP upper-class function does not need to be continuous.
For properties of these functions see Section 3 of [6]. An important example
of an EFKP upper-class function with 0 < b < ∞ in (2.2) is the function

q(u) =

√
u(1− u) ln ln

1

u(1− u)
. (2.3)

Such a choice of q stems from Khinchine’s local law of the iterated logarithm,
which says that

lim sup
u→0

W (u)√
u ln ln(1/u)

a.s.
=

√
2, lim inf

u→0

W (u)√
u ln ln(1/u)

a.s.
= −

√
2, (2.4)

where {W (u), 0 6 u < ∞} is a standard Wiener process starting at zero.
Indeed, relations (2.4) imply via the representation of a Brownian bridge
{B(u), 0 6 u 6 1} D

= {W (u)− uW (1), 0 6 u 6 1} that, cf. (2.2),

lim sup
u→0

|B(u)|√
u(1− u) ln ln(1/u(1− u))

a.s.
=

√
2.

As an example of a Chibisov–O’Reilly function, we mention here the function

q(u) = (u(1− u))1/2−ν , 0 < ν <
1

2
. (2.5)

In practical applications, we recommend to use the weight function as in (2.3)
since, unlike the Chibisov–O’Reilly function (2.5), it does not involve any
parameter that has to be (arbitrarily) chosen by the experimenter.

In order to check whether or not a given strictly positive function q as
above is an EFKP upper-class function, the following characterization of
upper-class functions may be used (see Theorem 3.3 in [6]). Let q be strictly
positive function defined on (0, 1) with the property q(u) = q(1 − u) for
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u ∈ (0, 1/2), which is nondecreasing in a neighborhood of zero and nonin-
creasing in a neighborhood of one. Then q is an EFKP upper-class function
of a Brownian bridge if and only if

I(q, c) :=

∫ 1

0
(x(1− x))−1 exp

(
−c(x(1− x))−1q2(x)

)
dx < ∞

for some constant c > 0 or, equivalently, if and only if

E(q, c) :=

∫ 1

0
(x(1− x))−3/2q(x) exp

(
−c(x(1− x))−1q2(x)

)
dx < ∞,

for some constant c > 0 and limx↓0 q(x)/x
1/2 = limx↑1 q(x)/(1− x)1/2 = ∞.

The integral I(q, c) appeared in [5] and [27]. The integral E(q, c) appeared
in the works of Kolmogorov, Petrovski, Erdős, and Feller (see [6, Section 3]
for details).

The family of the EFKP upper-class functions is connected to a commonly
used family of regularly varying weight functions, which is defined as follows.

Definition 3. Let δ be any strictly positive function defined on (0, 1) with
the property δ(u) = δ(1 − u) for u ∈ (0, 1/2), which is nondecreasing in
a neighborhood of zero and nonincreasing in a neighborhood of one. Such
a weight function will be called regularly varying with power τ ∈ (0, 1/2] if
for any b > 0

lim
t→0

δ(bt)

δ(t)
= bτ .

It is clear that the so-called standard deviation proportional (SDP) weight
function

δ(t) =
√
t(1− t)

is regularly varying with power τ = 1/2, whereas the Chibisov–O’Reilly
function δ(t) = (t(1− t))1/2−ν , ν ∈ (0, 1/2), is regularly varying with power
τ = 1/2− ν.

When dealing with weighted empirical processes, the advantage of using
the family of weight functions as in Definition 2 over that in Definition 3 will
be demonstrated in the next sections.

Now, we are ready to define the test statistics of our interests. Back to
testing H0 : F = F0 versus H1 : F ̸= F0 or H ′

1 : F > F0, consider the statistics
defined by the formulas

Tn(q)= sup
0<F0(t)<1

√
n|Fn(t)−F0(t)|

q(F0(t))
, T+

n (q)= sup
0<F0(t)<1

√
n(Fn(t)−F0(t))

q(F0(t))
,

where q belongs to the family of the EFKP upper-class functions of a Brow-
nian bridge {B(u), 0 6 u 6 1}. Since Tn(q), in this generality, appeared
for the first time in the paper of Csörgő, Csörgő, Horváth, and Mason [6],
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the statistics Tn(q) and T+
n (q) will be called the two-sided and one-sided

Csörgő–Csörgő–Horváth–Mason (CsCsHM) statistics, respectively. If H0 is
true, then by the probability integral transformation, for each n,

Tn(q)
D
= sup

0<u<1

√
n|Un(u)− u|

q(u)
, T+

n (q)
D
= sup

0<u<1

√
n(Un(u)− u)

q(u)
, (2.6)

where Un(u) = n−1
∑n

i=1 I(Ui 6 u) with U1, . . . , Un being i.i.d. uniform
U(0, 1) random variables. The corresponding order statistics will be denoted
by U(1) < · · · < U(n).

The test procedures based on Tn(q) and T+
n (q) are consistent against

the alternatives H1 : F ̸= F0 and H ′
1 : F > F0, respectively. Indeed, con-

sider, for instance, testing H0 : F = F0 versus H1 : F ̸= F0 and observe
that for any fixed alternative F ̸= F0 the statistic ∥(Fn − F0)/q(F0)∥∞ :=
sup0<F0(t)<1 |Fn(t)− F0(t)|/q(F0(t)) satisfies∥∥∥∥Fn − F0

q(F0)

∥∥∥∥
∞

>

∥∥∥∥F − F0

q(F0)

∥∥∥∥
∞

+ oP (1),

implying Tn(q)
P−→ ∞ whenever F ̸= F0. From this,

PH1(Tn(q) > tα(q)) → 1, n → ∞.

The case of the upper-tailed alternative is treated similarly.
It might be also of interest to consider the following generalization of the

CsCsHM statistics. For 0 6 a < b 6 1, denote I = (a, b) and define the
statistics

Tn(q, I) = sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))
,

T+
n (q, I) = sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))
,

which, for each n, under the null hypothesis, have the same distributions as
supu∈I

√
n|Un(u)− u|/q(u) and supu∈I

√
n(Un(u)− u)/q(u), respectively.

2.2. Asymptotic properties of test statistics with the SDP weight
function: connection to the higher criticism approach. The EDF-
based tests standardized by the SDP weight function δ(t) =

√
t(1− t) have

been extensively studied in the literature (see [1], [3], [13], [16], [21], [22],
etc.) A popular statistic of this kind is the higher criticism statistic, which
is defined as

HCn = sup
0<u<α0

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1. (2.7)
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The statistic HCn was introduced by Donoho and Jin [13] for multiple test-
ing situations where most of the component problems correspond to the null
hypothesis and there may be a small fraction of component problems that
correspond to non-null hypotheses. The situations of this kind, where there
are many independent null hypothesis H0i, i = 1, . . . , n, and we are interested
in rejecting the joint null hypothesis

⋂n
i=1H0i, are considered in Section 4.

Such a multiple testing problem is closely connected to the testing problem
for the Bayesian alternative studied by Ingster [18]; the latter problem is of
importance in various applications for multi-channel detection and communi-
cation systems. It also relates to the problem of optimal feature selection in
a high-dimensional classification framework, as studied in [14], where another
version of the higher criticism statistic has been discussed.

The test statistic HCn is derived from the random variable

max
0<α6α0

√
n(Mn/n− α)√

α(1− α)
,

where Mn is the number of hypotheses among H0i, i = 1, . . . , n, that are
rejected at level α, which measures the maximum deviation of the observed
proportion of rejections from what one would expect it to be purely by chance
as the Type I error level changes from zero to α0 (see [13] and Section 34.7
of [12] for details). Thus, the parameter α0 in (2.7) defines a range of signifi-
cance levels in multiple-comparison testing and therefore is a number like 0.1
or 0.2.

Below we will show that for all large enough n the distributional prop-
erties of HCn remain the same no matter what α0 is chosen. Therefore,
in this context, the interpretation of α0 as a significance level is somewhat
misleading.

The convergence properties of the statistic HCn are largely determined by
the behavior of

√
n(Un(u)− u)/

√
u(1− u) in the vicinity of zero and one:

the latter inflates when u is close to zero and one. The almost sure rate at
which HCn blows up is considered in Chapter 16 of [29].

To overcome this problem, Donoho and Jin [13] suggested to truncate the
range over which the supremum in (2.7) is taken to (1/n, α0); this resulted
in the test statistic

HC+
n = sup

1/n<u<α0

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1. (2.8)

A seemingly better modification of the higher criticism statistic HCn has the
form (see, e.g., [22])

HC∗
n = sup

U(1)<u<U([α0n])

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1. (2.9)
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Unfortunately, truncating the range as in (2.8) and (2.9) does not elimi-
nate the problem. Indeed, all three statistics, HCn, HC+

n , and HC∗
n, when

normalized as in [16] and [21], under the null hypothesis will have an ex-
treme value distribution as n → ∞. The precise statement, due to Eicker
and Jaeschke, is as follows (see [16, Theorem 2], and [21, p. 109]): for any
x ∈ R,

lim
n→∞

P

(
an sup

0<u<1

√
n(Un(u)− u)√

u(1− u)
− bn 6 x

)
= lim

n→∞
P

(
an sup

U(1)<u<U(n)

√
n(Un(u)− u)√

u(1− u)
− bn 6 x

)
= E(x), (2.10)

where
an =

√
2 ln lnn, bn = 2 ln lnn+

1

2
ln ln lnn− 1

2
lnπ,

and E(x) = exp(− exp(−x)) is the extreme value CDF. It is clear (see
also [21, Corollary 2, p. 110]) that the above convergence remains valid when
the supremum is taken over (1/n, 1 − 1/n). We note in passing that Jager
and Wellner [22] also study appropriately normalized version of (1/2)(HC∗

n)
2

with HC∗
n as in (2.9) in terms of an extreme value distribution, cf. their The-

orem 3.1. Furthermore, the following result holds true (compare to the claim
in Section 3 of [13]).

Proposition 2.1. For any 0 < α0 < 1 and any x ∈ R,

lim
n→∞

P

(
an sup

0<u<α0

√
n(Un(u)− u)√

u(1− u)
−bn 6 x

)
= exp

(
−1

2
exp(−x)

)
, (2.11)

where an and bn are as in (2.10).

Remark 2.1. A similar result holds for the supremum of
√
n|Un(u)−u|√

u(1−u)
.

Namely, with an and bn as above, for any 0 < α0 < 1 and any x ∈ R,

lim
n→∞

P

(
an sup

0<u<α0

√
n|Un(u)− u|√

u(1− u)
− bn 6 x

)
= exp

(
− exp(−x)

)
.

Based on the result of Darling and Erdős [11], the proof of this statement
exploits the same route as that of Proposition 2.1.

The message from Proposition 2.1 is that, regardless of a particular value
of 0 < α0 < 1, one always has the same extreme value distribution on the
right side of (2.11). Furthermore, as readily seen from the proof of Propo-
sition 2.1, on the left side of (2.11) either one of the intervals (1/n, α0)
and (U(1), U([α0n])) can be taken in place of (0, α0). Together with (2.10)
this implies that, in the sup-norm scenario, when normalizing the process√
n(Un(u)− u) by

√
u(1− u), one arrives at the situation where «all the



366 Stepanova N., Pavlenko T.

action takes place on the tails but, unfortunately, near infinity». This phe-
nomenon seems to be well known to the experts. However, the proof (if any)
of statement (2.11) is not easily accessible. Therefore, we shall prove it here
in Section 7.

2.3. Motivation. In a number of recent studies that utilize the higher
criticism strategy (see, for example, [4], [13], [14], [23]) the existence of the
extreme value approximation to the properly normalized higher criticism
statistics HCn, HC+

n , and HC∗
n has, in fact, never been used. This could be

possibly explained by the fact that the convergence in distribution in (2.10)
and (2.11) is in general slow (see [21] for details and references). At the same
time, without using the extreme value approximation, one immediately faces
the problem of how to choose critical values.

Further, as follows from Proposition 2.1, in the limit, the parameter 0 <
α0 < 1 that enters the higher criticism statistics HCn, HC+

n , and HC∗
n as

the maximum significance level loses its role. Furthermore, when using the
higher criticism statistics in practice, one has to eliminate the influence of
the end-point zero by arbitrarily truncating the interval (0, α0) over which
the supremum in (2.7) is taken.

Thus, the application of the higher criticism statistic HC+
n in practice in

such a way that its good asymptotic properties, including optimal adaptiv-
ity (see, e.g., Theorem 1.2 in [13]), are preserved is not straightforward. As
noticed in remark in [12, subsection 34.8], «It is not clear for what n the
asymptotics start to give reasonably accurate description of the actual fi-
nite sample performance and actual finite sample comparison. . . Simulations
would be informative and even necessary. But the range in which n has to
be in order that the procedure work well when the distance between the null
hypothesis and alternative so small would make the necessary simulations
time consuming».

All this has motivated us to search for a better weighted analog of the
higher criticism statistic, for which the «action is shifted somewhat to the
middle, while properly regulated on the tails». With this focus in mind, we
propose a different approach, based on the result of Csörgő, Csörgő, Horváth,
and Mason on the convergence in distribution of the uniform empirical pro-
cess in weighed sup-norm (see Theorem 4.2.3 in [6]). The test procedures
proposed in this paper do not require an unrealistically large sample size of
n = 106 and work well even for n = 102.

3. Asymptotic distribution theory under the null hypothesis. To
control the probability of Type I Error, one typically chooses a test statistic
in such a way that its distribution under the null hypothesis is known, at
least, in the limit. In this section, we present the null limit distributions
of Tn(q) and T+

n (q) and their modifications.
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3.1. Limit distributions of the CsCsHM-type test statistics under
the null hypothesis. The limit distributions of the statistics Tn(q) and
T+
n (q) under the null hypothesis are easily accessible. To clarify this claim,

we shall need two facts.
Fact 1 (see [6, Theorem 4.2.3]). Let q be a strictly positive function on

the interval (0, 1) such that it is nondecreasing in a neighborhood of zero
and nonincreasing in a neighborhood of one. The sequence of random vari-
ables sup0<u<1

√
n|Un(u) − u|/q(u) converges in distribution to a nonde-

generate random variable if and only if q is an EFKP upper-class func-
tion. The latter nondegenerate random variable must be the random variable
sup0<u<1 |B(u)|/q(u).

Fact 2 (see [6, Lemma 4.2.2]). Whenever q is an EFKP upper-class func-
tion, then for each −∞ < x < ∞ and any Brownian bridge B

P

(
sup

1/n6u61−1/n

|B(u)|
q(u)

6 x

)
→ P

(
sup

0<u<1

|B(u)|
q(u)

6 x

)
, n → ∞.

It now follows from Facts 1 and 2 that, if H0 is true, then as n → ∞

Tn(q) = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|

q(F0(t))

D−→ sup
0<u<1

|B(u)|
q(u)

, (3.1)

T+
n (q) = sup

0<F0(t)<1

√
n(Fn(t)− F0(t))

q(F0(t))

D−→ sup
0<u<1

B(u)

q(u)
. (3.2)

Indeed, in view of (2.6), the first statement (3.1) is just Fact 1 cited
above. Further, by positivity of the random variable sup0<u<1B(u)/q(u),
Fact 2 continues to hold with B(u)/q(u) in place of |B(u)|/q(u). Therefore,
having this modification of Fact 2, one of the key elements in the proof of
Fact 1, we immediately arrive at the second statement (3.2). Furthermore,
the inspection of the proof of Fact 1 yields that both statements can be
generalized by admitting subintervals. Namely, the following result holds
true.

Proposition 3.1. Let q be an EFKP upper-class function of a Brownian
bridge. Then, under H0 , for any numbers 0 6 a < b 6 1, as n → ∞,

sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))

D−→ sup
a<u<b

|B(u)|
q(u)

,

sup
a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))

D−→ sup
a<u<b

B(u)

q(u)
.

For the intervals (a, b), where one of the end-points is either zero or one,
with the above mentioned modification of Fact 2 in mind, both statements
are proved exactly along the lines of the proof of Theorem 4.2.3 in [6]. For
the interval (a, b) with 0 < a < b < 1, the proof is even easier, as Fact 2 is
not needed anymore. Therefore, the proof of Proposition 3.1 is omitted.
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Remark 3.1. Define the statistics

T̂n(q)= sup
0<F0(t)<1

√
n|Fn(t)−F0(t)|

q(Fn(t))
, T̂+

n (q)= sup
0<F0(t)<1

√
n(Fn(t)−F0(t))

q(Fn(t))
,

(3.3)
where we set

√
n|Fn(t)− F0(t)|/q(Fn(t)) = 0 for Fn(t) ∈ {0, 1}. With a bit of

technical work based on the Glivenko–Cantelli theorem and Slutsky’s lemma,
one can show that for any continuous EFKP upper-class function q on (0, 1),
including the function q as in (2.3), the statement of Proposition 3.1 remains
valid with T̂n(q) and T̂+

n (q) in place of Tn(q) and T+
n (q), respectively. The

latter fact will be used to construct a nonparametric confidence band in
Section 3.2.

It follows from Proposition 2.1 that the distribution of the empirical pro-
cess in weighted sup-norms under consideration depends on the interval over
which the supremum is taken, as all the action now takes place in the mid-
dle. The same observation applies to the two-sided statistic Tn(q). Therefore,
now, when dealing with the statistic

T+
n (q, (0, α0)) = sup

0<F0(t)<α0

√
n(Fn(t)− F0(t))

q(F0(t))
, 0 < α0 < 1, (3.4)

we may indeed think of the interval (0, α0) as the range over which signifi-
cance levels vary in a multiple testing problem, as suggested by Donoho and
Jin [13].

For the normalized empirical process
√
n(Fn(t)−F0(t))/

√
F0(t)(1−F0(t))

the situation is different. In this case, all the action takes place in the tails,
and for any 0 < α0 6 1/2 (see Corollary 3 in [21])

an sup
α0<u<1−α0

√
n(Un(u)− u)√

u(1− u)
− bn

P−→ −∞,

where an and bn are as in (2.10).
The convergence results (3.1) and (3.2) suggest the following test proce-

dures of asymptotic level α. Set

T (q) := sup
0<u<1

|B(u)|
q(u)

, T+(q) := sup
0<u<1

B(u)

q(u)
.

Then, one would reject H0 in favor of H1 when Tn(q) > tα(q), where the
critical point tα(q) is chosen to have P(T (q) > tα(q)) = α; and one would
reject H0 in favour of H ′

1 whenever T+
n (q) > t+α (q), where t+α (q) is determined

by P(T+(q) > t+α (q)) = α.
The main advantage of using the family of test statistics as in (2.6) is

the identification of the limit distribution under the null hypothesis. This
distribution is tabulated in Appendix. Although no analytical results on the
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convergence rates in (2.10) and (3.2) seem to exist, the confidence bands
obtained in Section 3.2 confirm better convergence properties of (3.2) as
compared to (2.10). Heuristically, the situation is as follows. The renormal-
ization of the sup-functional of the standardized uniform empirical process
{
√
n(Un(u)− u)/

√
u(1− u), 0 < u < 1} in Proposition 2.1 is to pull it back

from disappearing to −∞ via obtaining an extreme value distribution by
bounding it away from zero, cf. (7.3). The obtained extreme value distribu-
tion, however, appears to be less concentrated «in the middle» as compared
to that of the CsCsHM statistic; the confidence bounds for the former tend to
be wider «in the middle» than those for the latter. On the tails, they appear
to be doing a similar job, with the Eicker–Jaeschke bounds seemingly better
there (see Fig. 1, p. 372). We note in passing that the Eicker and Jaeschke
solution amounts to renormalization as compared to n1/2, while the Csörgő,
Csörgő, Horváth, and Mason approach is reweighing the standardized uni-
form empirical process as compared to (u(1− u))−1/2.

3.2. Confidence bands. In this subsection, we compare numerically
a new family of confidence bands derived from (3.1) with those of Kolmogorov
and Smirnov, and Eicker and Jaeschke. As before, suppose that X1, X2, . . .
is a sequence of i.i.d. random variables with a common continuous CDF F (t),
and let Fn(t) = n−1

∑n
i=1 I(Xi 6 t) be the EDF. For the purpose of con-

structing a confidence band for F , we choose the weight function q on (0, 1)
to be

q(u) =

√
u(1− u) ln ln

1

u(1− u)
.

By Remark 3.1, as n → ∞,

sup
0<F (t)<1

√
n|Fn(t)− F (t)|

q(Fn(t))

D−→ sup
0<u<1

|B(u)|
q(u)

.

By Remark 4.2.3 in [6], the CDF H(t) = P
(
sup0<u<1 |B(u)|/q(u) 6 t

)
is

continuous on (−∞,
√
2)∪ (

√
2,∞), with H(t) = 0 for t <

√
2 and H(t) > 0

for t >
√
2, having a jump at t =

√
2. Therefore, denoting by cα the (1−α)th

quantile of H, we obtain

1− α = lim
n→∞

PF

(
sup

0<F (t)<1

√
n|Fn(t)− F (t)|

q(Fn(t))
6 cα

)
= lim

n→∞
PF

(
Fn(t)−

cα√
n
q(Fn(t)) 6 F (t)

6 Fn(t) +
cα√
n
q(Fn(t)) ∀ t ∈ [X(1), X(n))

)
.
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Since F (t) takes on its values in [0, 1], it now follows that

lim
n→∞

PF

(
max

{
0,Fn(t)−

cα√
n
q(Fn(t))

}
6 F (t)

6 min

{
1,Fn(t) +

cα√
n
q(Fn(t))

}
∀ t ∈ [X(1), X(n))

)
= 1− α.

This fact gives us an asymptotically correct 100(1 − α)% confidence band
[Ln(t), Un(t)] for F (t) on the interval t ∈ [X(1), X(n)), where

Ln(t) = max

{
0,Fn(t)−

cα√
n
q(Fn(t))

}
,

Un(t) = min

{
1,Fn(t) +

cα√
n
q(Fn(t))

}
,

and, given α ∈ (0, 1), the value of cα is found from Table III in [26]. For
instance, c0.05 = 4.57.

Now we compare numerically the confidence band obtained with the
100(1−α)% confidence band [Ln,KS(t), Un,KS(t)] for F (t) based on the two-
sided Kolmogorov–Smirnov statistic. We know that

PF

(√
n sup

−∞<t<∞
|Fn(t)− F (t)| 6 x

)
→ K(x), x ∈ R,

where K(x) =
∑∞

k=−∞(−1)ke−2k2x2 for x > 0, and zero otherwise, is the
Kolmogorov function which is tabulated in many textbooks on mathematical
statistics. Then, the corresponding lower and upper bounds are given by

Ln,KS(t) = max

{
0,Fn(t)−

kα√
n

}
, Un,KS(t) = min

{
1,Fn(t) +

kα√
n

}
.

Here kα is the (1 − α)th quantile of the Kolmogorov function K(x). For
instance, k0.05 = 1.35.

For all n large enough, we can confine the region where the Kolmogorov–
Smirnov confidence band is constructed to the interval [X(1), X(n)). Indeed,
setting

D(1)
n =

√
n sup

−∞<t<X(1)

|Fn(t)− F (t)|,

D(2)
n =

√
n sup

X(1)6t<X(n)

|Fn(t)− F (t)|,

D(3)
n =

√
n sup

X(n)6t<∞
|Fn(t)− F (t)|,

we can write
√
n sup−∞<t<∞ |Fn(t) − F (t)| = max(D

(1)
n , D

(2)
n , D

(3)
n , where

D
(1)
n

D
=

√
nU(1) and D

(3)
n

D
=

√
n(1− U(n)). Since nU(1) and n(1− U(n)) have
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exponential limit distributions, it follows that D(1)
n and D

(3)
n converge in prob-

ability to zero, and hence the limit distribution of
√
n sup−∞<t<∞ |Fn(t) −

F (t)| coincides with that of D(2)
n .

Further, in order to obtain the Eicker–Jaeschke confidence band, consider
the random variable

T̂n = sup
0<F (t)<1

√
n |Fn(t)− F (t)|√
Fn(t)(1− Fn(t))

,

with the said convention that
√
n |Fn(t) − F (t)|/

√
Fn(t)(1− Fn(t)) = 0 for

Fn(t) ∈ {0, 1}. The extreme value approximation (see [16] and [21])

lim
n→∞

PF

(
anT̂n − bn 6 x

)
= exp

(
−2 exp(−x)

)
, x ∈ R,

where an and bn are as in (2.10), yields the Eicker–Jaeschke confidence band
[L̃n(t), Ũn(t)] for F (t) on the interval t ∈ [X(1), X(n)) with the lower and
upper bounds given by

L̃n(t) = max

{
0,Fn(t)− a−1

n (bn + xα)

√
Fn(t)(1− Fn(t))

n

}
,

Ũn(t) = min

{
1,Fn(t) + a−1

n (bn + xα)

√
Fn(t)(1− Fn(t))

n

}
,

and xα = − ln(− ln(1− α)/2).
Numerical simulations show that, even for moderate sample sizes, when

compared to the Kolmogorov–Smirnov confidence band, the CsCsHM con-
fidence band is of the same length «in the middle» and is shorter on the
tails. The new CsCsHM confidence band outperforms the Eicker–Jaeschke
confidence band «in the middle» and does a similar job on the tails (see
Fig. 1).

It is known that, as n → ∞ (see [2] and [17]),

sup
−∞<x<∞

∣∣∣PF

(√
n sup

−∞<t<∞
|Fn(t)− F (t)| 6 x

)
−PF

(
sup

0<F (t)<1
|B(F (t)| 6 x

)∣∣∣ = O(n−1/2), (3.5)

where {B(u), 0 6 u 6 1} is a Brownian bridge. That is, under H0, the CDF
of the two-sided Kolmogorov–Smirnov statistic converges to the Kolmogorov
CDF K(x), uniformly in x ∈ R, at the rate of O(n−1/2). The results of
numerical experiments suggest that the rate of convergence of the CDF’s of
Tn(q) and T+

n (q) to their respective limit CDF’s may be comparable to that
in (3.5). A theoretical justification of this claim is an open problem.
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Fig. 1. Confidence bands for simulated data. The solid line is the
true CDF. The solid lines above and below the middle line are a 95%
Csörgő–Csörgő–Horváth–Mason confidence band. The dashed lines
are a 95% Kolmogorov–Smirnov confidence band. The dotted lines
are a 95% Eicker–Jaeschke confidence band.
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4. Attainment of the Ingster optimal detection boundary. An im-
portant particular case of a goodness-of-fit testing problem is that of detect-
ing sparse and weak heterogeneous mixtures. The latter problem has been
extensively studied after the publications of [18], [19]. As in [18] (see also [13]
and [24]), we first consider testing the null hypothesis

H0 : X1, . . . , Xn
i.i.d.∼ N(0, 1),

i.e., F0 in (2.1) is the standard normal CDF, against a sequence of alternatives

H1,n : X1, . . . , Xn
i.i.d.∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn = n−β for some sparsity index β ∈ (1/2, 1) and µn =
√
2r lnn with

0 < r < 1. The parameters β and r are assumed unknown, and n → ∞.
The parameter µn may be thought of as a signal strength. In [20] a similar
mixture model emerged in connection with a high-dimensional classification
problem.

One well-known property of a normal distribution says that if ξ1, ξ2, . . . is
a sequence of i.i.d. standard normal random variables, then

P
(
max
16i6n

|ξi| >
√
2 lnn

)
→ 0, n → ∞.

This property explains the choice of the nonzero mean µn in the sparse
heterogeneous normal mixture specified by the alternative H1,n: such a choice
makes the problem very hard but yet solvable.

In this section, we show that if the parameter r exceeds the detection
boundary ρ(β) obtained by Ingster (see [18, Section 2.6]; see also [13, Sec-
tion 1.1]), which is defined by

ρ(β) =


β − 1

2
,

1

2
< β <

3

4
,

(1−
√
1− β)2,

3

4
6 β < 1,

then the test procedure based on T+
n (q) distinguishes between H0 and H1,n

(see Theorem 4.1). Since T+
n (q) does not require the knowledge of β and r,

following [13], we will call such a test procedure optimally adaptive.
Another model of interest, which was found to be useful in various classi-

fication problems (see, for example, [28] and [30]), has the form

H ′
0 : X1, . . . , Xn

i.i.d.∼ χ2
ν(0),

H ′
1,n : X1, . . . , Xn

i.i.d.∼ (1− εn)χ
2
ν(0) + εnχ

2
ν(δn),

where χ2
ν(δ) denotes the noncentral chi-square distribution with ν degrees of

freedom and noncentrality parameter δ, εn = n−β for some β ∈ (1/2, 1), and
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δn = 2r lnn for some 0 < r < 1. For ν = 2 this model is connected to the
problem of detecting covert communications (see [13, Section 1.7]).

In order to apply the previously developed theory to the problem of testing
H0 (H ′

0) versus H1,n (H ′
1,n), we need to transform the initial observations.

Namely, let Yi = 1− Φ(Xi) and let G (u) denote a common CDF of the Yi’s
taking values in [0, 1]. Then the problem of testing H0 versus H1,n transforms
to testing

H0 : G (u) = F0(u), the uniform U(0, 1) CDF

against a sequence of upper-tailed alternatives

H1,n : G (u) = F0(u) + εn
(
(1− u)− Φ(Φ−1(1− u)− µn)

)
> F0(u).

The test statistic takes the form

T+
n (q) = sup

0<u<1

√
n(Gn(u)− u)

q(u)
,

where Gn(u) = n−1
∑n

i=1 I(Yi 6 u) is the EDF based on the transforms
variables Yi’s.

In a chi-square mixture model, let Si = 1 − Hν,0(Xi), where Hν,δ is the
CDF of a χ2

ν(δ) distribution, and let H (u) denote a common CDF of the
Si’s. Then the problem of testing H ′

0 versus H ′
1,n transforms to testing

H ′
0 : H (u) = F0(u), the uniform U(0, 1) CDF

against a sequence of upper-tailed alternatives

H ′
1,n : H (u) = F0(u) + εn

(
(1− u)−Hν,δn

(
H−1

ν,0 (1− u)
))

> F0(u).

The test statistic becomes

T+
n (q) = sup

0<u<1

√
n(Hn(u)− u)

q(u)
,

where Hn(u) = n−1
∑n

i=1 I(Si 6 u) is the EDF based on the Si’s.
In both (normal and chi-square) settings, where we have data which are

«sparsely non-null», our statistic T+
n (q) will be shown to be optimally adap-

tive (see Theorems 4.1 and 4.2 in what follows).
In connection with testing H0 versus H1,n using the test statistic T+

n (q)
with an EFKP upper-class function q we have the following result.

Theorem 4.1. For a function q as in (2.3), consider the test of asymp-
totic level α that rejects H0 when

T+
n (q) > t+α (q),

where the critical value t+α (q) is chosen to have P(sup0<u<1B(u)/q(u) >
t+α (q)) = α. For every alternative H1,n with r exceeding the detection bound-
ary ρ(β), the asymptotic level α test based on T+

n (q) has a full power, that is,

PH1,n

(
T+
n (q) > t+α (q)

)
→ 1, n → ∞.
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In connection with testing H ′
0 versus H ′

1,n using the test statistic T+
n (q)

with an EFKP upper-class function q, we have the following result.
Theorem 4.2. For a function q as in (2.3), consider the test of asymp-

totic level α that rejects H ′
0 when

T+
n (q) > t+α (q),

where the critical value t+α (q) is as in Theorem 4.1. For every alterna-
tive H ′

1,n with r exceeding the detection boundary ρ(β), the asymptotic level α
test based on T+

n (q) has a full power, that is,

PH ′
1,n

(
T+
n (q) > t+α (q)

)
→ 1, n → ∞.

Theorems 4.1 and 4.2 say that if r > ρ(β), then asymptotically our test
procedure based on T+

n (q) distinguishes between H0 and H1,n, as well as
between H ′

0 and H ′
1,n. The proofs of both results are given in Section 7.

Remark 4.1. In view of Proposition 3.1, results similar to Theorems 4.1
and 4.2 hold true for the whole class of statistics T+

n (q, I) indexed by a subin-
terval I = (a, b) ⊆ (0, 1), in which case the critical region takes the form

T+
n (q, I) > t+α (q, I),

where t+α (q, I) is determined by P(supa<u<bB(u)/q(u) > t+α (q, I)) = α. In
particular, this observation applies to the statistic T+

n (q, (0, α0)) as in (3.4).
Remark 4.2. Theorems 4.1 and 4.2 remain valid when the weight function

q defined as in (2.3) is replaced by the Chibisov–O’Reilly function

q(u) = (u(1− u))1/2
(
ln ln

1

u(1− u)

)1/2+σ

, σ > 0.

The statement follows from the proof of Theorem 4.1 in Section 7, with Wn(s)
in (7.5) replaced by

Wn(s) =
Vn(s)

(ln ln(1/(pn,s(1− pn,s))))1/2+σ
,

and the subsequent derivations adjusted accordingly.
5. Further remarks and comments. In recent years, some of the re-

searchers, who have begun to focus on detecting sparse heterogeneous mix-
tures, have strongly advocated the use of the higher criticism statistic HC+

n

as in (2.8) and its modifications (see, for example, [4], [13], and [12, Sec-
tion 34.7]). In all these studies, attempts to numerically justify theoretical
properties of HC+

n have resulted in sample sizes like n = 106 and greater.
We wish to note, however, that this is due to the fact that, under H0, the
statistics HCn, HC+

n , and HC∗
n tend to ∞ in probability (see [16] and [21]),
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as well as almost surely (see [29, Chapter 16] and references therein). This
property of the higher criticism statistic complicates its use in practice.

As noticed in the literature, one disadvantage of using HC+
n is that one

has no clear recipe for the choice of its critical value. Indeed, the test based
on HC+

n prescribes to reject H0 in favour of H1,n when

HC+
n > h(n, αn),

where h(n, αn) =
√
2 ln lnn(1 + o(1)) and the level αn → 0 slowly enough.

The problem of determining a critical value is unavoidable because, as men-
tioned just above, HC+

n tends almost surely to ∞ under H0. Unfortunately,
this is not the only problem with applying the higher criticism in practice
(see Section 2.3 for details).

We must emphasize that our test procedure based on T+
n (q) is of a different

kind. This is due to the proper choice of the weight function q(u) such
as defined in (2.3), which for all large enough n makes the value of the
sup-functional sup0<u<1

√
d(Ud(u)− u)/q(u) finite almost surely (see (2.2)

and (3.2)). Specifically, our test procedure rejects the null hypothesis at
asymptotic level α when

T+
n (q) > t+α (q),

where the critical value t+α (q) satisfies P(sup0<u<1B(u)/q(u)> t+α (q))=α,
and the distribution of sup0<u<1B(u)/q(u) is tabulated in Table 1.

By proposing to use T+
n (q) or, more generally, a class of the CsCsHM-type

test statistics T+
n (q, I), I = (a, b) ⊆ (0, 1), instead of the higher criticism

statistic, we are aiming at two goals. First, by using such a class, we obtain
test statistics that are sensitive to the choice of α0. This gives a correct
implementation of the initial idea of Donoho and Jin [13] that originates
from the Tukey’s concept of second-level significance testing in a multiple
hypothesis testing setup. Second, with the class of CsCsHM-type test statis-
tics available, we have an analytical solution to the «end-points problem»,
which eliminates the need of arbitrarily truncating the interval (0, α0), over
which the supremum in (2.7) is taken. Moreover, in various signal detec-
tion problems involving unknown parameters, the tests based on T+

n (q, I),
I = (a, b) ⊆ (0, 1), are found to be optimally adaptive.

The main results of this paper, Propositions 2.1 and 3.1 and Theorems 4.1
and 4.2, show that, in the sup-norm scenario, when normalizing the empir-
ical process

√
n|Un(u) − u| by an EFKP upper-class function q(u), we do

exactly the right job. Our conjecture therefore is that, in case of some other
non-Gaussian heterogeneous mixtures, including those studied in Section 5
of [13], similar results on the distinguishability of the null and alternative hy-
potheses by means of the test statistics T+

n (q, I), I = (a, b) ⊆ (0, 1), remain
valid.
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Table 1. The limit distribution of sup0<u<1

√
n(Un(u)−u)√

u(1−u) ln ln(1/u(1−u))
.

x G(x) x G(x) x G(x)

0.74 0.01 1.81 0.34 2.57 0.67
0.87 0.02 1.83 0.35 2.60 0.68
0.95 0.03 1.85 0.36 2.63 0.69
1.02 0.04 1.87 0.37 2.66 0.70
1.07 0.05 1.89 0.38 2.69 0.71
1.11 0.06 1.91 0.39 2.72 0.72
1.16 0.07 1.93 0.40 2.76 0.73
1.19 0.08 1.95 0.41 2.79 0.74
1.23 0.09 1.97 0.42 2.83 0.75
1.26 0.10 1.99 0.43 2.87 0.76
1.29 0.11 2.01 0.44 2.91 0.77
1.32 0.12 2.03 0.45 2.95 0.78
1.35 0.13 2.05 0.46 2.99 0.79
1.37 0.14 2.07 0.47 3.03 0.80
1.40 0.15 2.09 0.48 3.08 0.81
1.42 0.16 2.12 0.49 3.13 0.82
1.45 0.17 2.14 0.50 3.18 0.83
1.47 0.18 2.16 0.51 3.23 0.84
1.49 0.19 2.18 0.52 3.29 0.85
1.51 0.20 2.20 0.53 3.35 0.86
1.54 0.21 2.22 0.54 3.42 0.87
1.56 0.22 2.25 0.55 3.48 0.88
1.58 0.23 2.27 0.56 3.55 0.89
1.60 0.24 2.30 0.57 3.62 0.90
1.63 0.25 2.32 0.58 3.70 0.91
1.65 0.26 2.35 0.59 3.79 0.92
1.67 0.27 2.37 0.60 3.89 0.93
1.69 0.28 2.40 0.61 4.00 0.94
1.71 0.29 2.43 0.62 4.14 0.95
1.73 0.30 2.46 0.63 4.30 0.96
1.75 0.31 2.49 0.64 4.48 0.97
1.77 0.32 2.51 0.65 4.73 0.98
1.79 0.33 2.54 0.66 5.16 0.99
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6. Tabulation of cumulative distribution functions. It follows from
the analysis of the previous sections that the CsCsHM test statistics with
EFKP weight functions have a number of attractive features that could be
very useful in practical applications. In particular, the limit distributions of
these statistics under the null hypothesis are easily tabulated.

In this section, we assume that

q(u) =

√
u(1− u) ln ln

1

u(1− u)
, 0 < u < 1.

The distribution of the random variable sup0<u<1 |B(u)|/q(u) has been tab-
ulated in [15] and, using a somewhat different approach, in [26]. In this
section, the tabulation of the distribution of sup0<u<1B(u)/q(u) follows the
approach of [26]. Namely, we shall use the following algorithm.

1. Choose a large positive integer n. Generate n independent normal
N(0, 1) random variables X1, . . . , Xn.

2. Choose a large positive integer M . Repeat step 1 M times, and for
m = 1, . . . ,M , let X

(m)
1 , . . . , X

(m)
n denote the data obtained on the m-th

iteration.
3. For each m = 1, . . . ,M , calculate the partial sums S

(m)
k =

∑k
i=1X

(m)
i ,

k = 1, . . . , n.
4. For each m = 1, . . . ,M , find the value of

T (m)
n = max

16k6n−1

S
(m)
k − (k/n)S

(m)
n

q(k/n)n1/2
.

5. For x ∈ R, use the function Gn,M (x) = M−1
∑M

m=1 I(T
(m)
n 6 x) to

approximate the limit CDF G(x) = P
(
sup0<u<1B(u)/q(u) 6 x

)
.

Remark 6.1. In step 1 of the algorithm, X1, . . . , Xn could be a random
sample from any distribution with E(X2

1 ) < ∞. Then, one would have to
standardize T

(m)
n in step 4 by putting σ =

√
Var(X1) into the denominator.

The finiteness of E(X2
1 ) makes it possible to apply part (ii) of Theorem 2.1.1

in [9], which, together with the Glivenko–Cantelli theorem, guaranties the
closeness of Gn,M (x) and G(x) for all large enough n and M .

Remark 6.2. Using arguments that are similar to those in Remark 4.2.3
of [6], it can be shown that the CDF G(x) = P

(
sup0<u<1B(u)/q(u) 6 x

)
is

continuous on R.
Step 5 of the algorithm is based on the following result of [9] that is similar

to the result in Fact 1. Namely, let X1, . . . , Xn be a random sample from
a distribution with E(X2

1 ) < ∞. Consider the normalized tied-down partial
sums process

Zn(u) =


(
S[(n+1)u] − [(n+ 1)u]

Sn

n

)
(n1/2σ)−1, 0 6 u < 1,

0, u = 1,
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where σ2 = Var(X1). Then, by part (ii) of Theorem 2.1.1 in [9] (see also
part (b) of Corollary 2.1 in [7]),

sup
0<u<1

Zn(u)

q(u)

D−→ sup
0<u<1

B(u)

q(u)
, n → ∞, (6.1)

and
sup

0<u<1

|Zn(u)|
q(u)

D−→ sup
0<u<1

|B(u)|
q(u)

, n → ∞,

if and only if q is an EFKP upper-class function. An obvious modification of
this result, with the supremum over an arbitrary interval (a, b), 06 a< b6 1,
also holds true.

Now, for the random sample X1, . . . , Xn generated in step 1, define the
function

Gn(x) = P

(
max

16k6n−1

Sk − (k/n)Sn

q(k/n)n1/2
6 x

)
, x ∈ R,

where Sk =
∑k

i=1Xi, and observe that by the triangle inequality, for every
x ∈ R,

|G(x)−Gn,M (x)| 6 |G(x)−Gn(x)|+ |Gn(x)−Gn,M (x)|. (6.2)

It follows from the Glivenko–Cantelli theorem that for all n > 2,

lim
M→∞

sup
x∈R

|Gn(x)−Gn,M (x)| a.s.= 0. (6.3)

Further, by means of (6.1), as n → ∞

max
16k6n−1

Sk − (k/n)Sn

q(k/n)n1/2

D−→ sup
0<u<1

B(u)

q(u)
.

From this, using the fact that G(x) is a continuous function,

lim
n→∞

sup
x∈R

|G(x)−Gn(x)| = 0. (6.4)

It now follows from (6.2)–(6.4) that

lim
n→∞
M→∞

sup
x∈R

|G(x)−Gn,M (x)| a.s.= 0.

Table 1 contains percentage points of the distribution function G(x). For
tabulating G(x) the above algorithm with n = M = 50000 has been applied.
From Table 1, the upper 1%, 5%, and 10% percentage points are 5.16, 4.14,
and 3.62, respectively. Note that Table 1 supports the analytical finding of
Proposition 3.1, according to which the tails have been tamed. The modi-
fication of this algorithm to the case of test statistic T+

n (q, I) depending on
a subinterval I ⊆ (0, 1) is obvious.
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7. Proofs. This section contains the proofs of Proposition 2.1 and Theo-
rems 4.1 and 4.2 from the previous sections.

Proof of Proposition 2.1. The proof of this result goes long the lines of
Section 4.4 in [6]. We show that statement (2.11) follows from the result of
Darling and Erdős [11] cited below.

Fact 3 (see [10, Theorem 1.9.1] and [11]). Let {U(t),−∞ < t < ∞} be
the Ornstein–Uhlenbeck process, and let

a(y, T )=

(
y + 2 lnT +

1

2
ln lnT − 1

2
lnπ

)
(2 lnT )−1/2, y ∈ R, T > 1.

Then

lim
T→∞

P
(

sup
06t6T

U(t) 6 a(y, T )
)
= exp

(
− exp(−y)

)
,

lim
T→∞

P
(

sup
06t6T

|U(t)| 6 a(y, T )
)
= exp

(
−2 exp(−y)

)
.

Before using Fact 3, observe that

{U(t), −∞ < t < ∞} D
=

{
(1 + e2t)e−tB

(
e2t

1 + e2t

)
, −∞ < t < ∞

}
,

where {B(u), 0 6 u 6 1} is a Brownian bridge. Then, using the stationarity
of the Ornstein–Uhlenbeck process U(t), we have for any decreasing sequence
of numbers εn → 0, any number α0 ∈ (0, 1), and any y ∈ R,

lim
n→∞

P

{
sup

εn<u<α0

B(u)√
u(1− u)

6 a

(
y,

1

2
ln

α0(1− εn)

εn(1− α0)

)}
= lim

n→∞
P

{
sup

1
2
ln εn

1−εn
<t< 1

2
ln

α0
1−α0

U(t) 6 a

(
y,

1

2
ln

α0(1− εn)

εn(1− α0)

)}

= lim
n→∞

P

{
sup

0<t< 1
2
ln

α0(1−εn)
εn(1−α0)

U(t) 6 a

(
y,

1

2
ln

α0(1− εn)

εn(1− α0)

)}
.

Then, by Fact 3, cf. Lemma 4.4.1 in [6],

lim
n→∞

P

{
sup

εn<u<α0

B(u)√
u(1− u)

6 a

(
y,

1

2
ln

α0(1− εn)

εn(1− α0)

)}
= exp(− exp(−y)).

(7.1)
Further, choose

εn =
(lnn)3

n

and observe that for any 0 < α0 < 1 and any y ∈ R, as n → ∞

a

(
y,

1

2
ln

α0(1− εn)

εn(1− α0)

)
= a

(
y,

lnn

2
(1 + o(1))

)
= a

(
y,

lnn

2

)
(1 + o(1)),
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where

a

(
y,

lnn

2

)
=

y + 2 ln((lnn)/2) + (1/2) ln ln((lnn)/2)− (1/2) lnπ√
2 ln((lnn)/2)

=
y + 2 ln lnn+ (1/2) ln ln lnn− (1/2) lnπ + o(1)√

(2 ln lnn)(1 + o(1))

=
y − ln 2 + bn + o(1)

an(1 + o(1))
,

with an and bn as in (2.10). From this, introducing in (7.1) a new variable x
by the formula x = y − ln 2, we can write

lim
n→∞

P

{
an sup

εn<u<α0

B(u)√
u(1− u)

− bn 6 x

}
= exp

(
−1

2
exp(−x)

)
. (7.2)

Now define

Vn = an sup
0<u<α0

√
n(Un(u)− u)√

u(1− u)
− bn,

V (1)
n = an sup

0<u6εn

√
n(Un(u)− u)√

u(1− u)
− bn,

V (2)
n = an sup

εn<u<α0

√
n(Un(u)− u)√

u(1− u)
− bn.

Then
Vn = max(V (1)

n , V (2)
n ),

where by (4.4.22) in [6]
V (1)
n

P−→ −∞. (7.3)

Hence the limit distribution of Vn coincides with that of V (2)
n .

Now observe that the probability space on which the random variable
Ui’s are defined can be extended in such a way that on the new (extended)
probability space we can construct a sequence of Brownian bridges {Bn(u),
0 6 u 6 1}, n = 1, 2, . . . , such that for any 0 < α0 < 1 and any 0 < ν < 1/4,
as n → ∞ (see formula (4.2.5b) in Corollary 4.2.2 of [6])

nν sup
0<u<α0

|
√
n (Un(u)− u)−Bn(u)|

(u(1− u))1/2−ν
= OP (1), (7.4)

where

Bn(u) =

Bn(u),
1

n
6 u 6 1− 1

n
,

0, elsewhere.
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Further, for each n,∣∣∣∣V (2)
n −

(
an sup

εn<u<α0

Bn(u)√
u(1− u)

− bn

)∣∣∣∣
6 an sup

εn<u<α0

|
√
n (Un(u)− u)−Bn(u)|√

u(1− u)

6
2ann

ν

(lnn)3ν
sup

1/n<u<α0

|
√
n (Un(u)− u)−Bn(u)|

(u(1− u))1/2−ν
,

which together with (7.4) yields as n → ∞∣∣∣∣V (2)
n −

(
an sup

εn6u<α0

Bn(u)√
u(1− u)

− bn

)∣∣∣∣ = OP

(
an

(lnn)3ν

)
= oP (1).

Therefore, the limit distribution of V (2)
n (and hence of Vn) coincides with that

of Kn(Bn) := an supεn6u<α0

Bn(u)√
u(1−u)

− bn. Note that, for each n, {Bn(u),

0 6 u 6 1} D
= {B(u), 0 6 u 6 1} and hence Kn(Bn)

D
= Kn(B). From this

we get via relation (7.2) that for every x ∈ R,

lim
n→∞

P

(
an sup

0<u<α0

√
n (Un(u)− u)√

u(1− u)
− bn 6 x

)
= exp

(
−1

2
exp(−x)

)
.

The proof is now complete.
Proof Theorem 4.1. The proof of this theorem goes along the lines of that

of Theorem 1.2 in [13]. We need to show that

lim
n→∞

PH1,n

(
T+
n (q) 6 t+α (q)

)
= 0.

Let 0 < s 6 1 and introduce the following notation:

pn,s = PH0

(
Yi 6 Φ

(
−
√
2s lnn

))
,

p′n,s = PH1,n

(
Yi 6 Φ

(
−
√
2s lnn

))
,

Nn(s) = #
{
i : Yi 6 Φ

(
−
√
2s lnn

)}
,

Vn(s) =
Nn(s)− npn,s√
npn,s(1− pn,s)

,

Wn(s) =
Nn(s)− npn,s√

npn,s(1− pn,s) ln ln(1/(pn,s(1− pn,s)))

=
Vn(s)√

ln ln(1/(pn,s(1− pn,s)))
. (7.5)

Since

T+
n (q) > sup

0<s61
Wn(s) > Wn(1)

D
=

Vn(1)√
ln ln(1/(pn,1(1− pn,1)))

,



Goodness-of-fit tests 383

it follows that

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 PH1,n

(
Wn(1) 6 t+α (q)

)
= PH1,n

(
Vn(1) 6 t+α (q)

√
ln ln

1

pn,1(1− pn,1)

)

= PH1,n

(
Nn(1) 6 npn,1 + t+α (q)

√
npn,1

√
ln ln

1

pn,1(1− pn,1)

)
,

where, under H1,n, Nn(1) is the sum of i.i.d. Bernoulli random variables Yi,n,
i = 1, . . . , n, with parameter p′n,1. Noting that

pn,s = P
(
N(0, 1) >

√
2s lnn

)
,

p′n,s = P
(
(1− εn)N(0, 1) + εnN(µn, 1) >

√
2s lnn

)
,

and using the fact

P
(
N(0, 1) > x

)
∼ e−x2/2

x
√
2π

, x → ∞,

one can find that

pn,1 = O
(
n−1 ln−1/2 n

)
, p′n,1 = O

(
n−β−(1−

√
r)2 ln−1/2 n

)
. (7.6)

Case 1. Assume that either (a) 3/4 6 β < 1 and r > ρ(β) =
(
1−

√
1− β

)2
or (b) 1/2 < β < 3/4 and r > 1/4. Then, from the above

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 PH1,n

(
Nn(1) 6 npn,1 + t+α (q)

√
npn,1

√
ln ln

1

pn,1(1− pn,1)

)

6 P

( n∑
i=1

(Yi,n − p′n,1) 6 −
[
np′n,1 − npn,1 − t+α (q)

√
npn,1

×

√
ln ln

1

pn,1(1− pn,1)

])
,

where Y1,n, . . . , Yn,n are i.i.d. Bernoulli random variables with parameter p′n,1
and (see (7.6))

an := np′n,1 − npn,1 − t+α (q)
√
npn,1

√
ln ln

1

pn,1(1− pn,1)

= O
(
n1−β−(1−

√
r)2 ln−1/2 n

)
.
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Since, under our assumptions on β and r, the exponent 1− β − (1−
√
r)2 is

strictly positive, one has an → ∞ and also an/
√
np′n,1 → ∞. Therefore, by

using Chebyshev’s inequality, we obtain

lim
n→∞

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 lim

n→∞
P

( n∑
i=1

(Yi,n − p′n,1) 6 −an

)
6 lim

n→∞

np′n,1
a2n

= 0.

Case 2. Assume that 1/2 < β < 3/4 and β − 1/2 = ρ(β) < r < 1/4.
Notice that in this case β + r < 1. Similar to Case 1, we can write

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 PH1,n

(
sup

0<s61
Wn(s) 6 t+α (q)

)
6 PH1,n

(
Wn(4r) 6 t+α (q)

)
= PH1,n

(
Vn(4r) 6 t+α (q)

√
ln ln

1

pn,4r(1− pn,4r)

)

= PH1,n

(
Nn(4r) 6 npn,4r + t+α (q)

√
npn,4r

√
ln ln

1

pn,4r(1− pn,4r)

)
,

where, under H1,n, the random variable Nn(4r) is the sum of i.i.d. Bernoulli
random variables Y ′

1,n, . . . , Y
′
n,n with parameter p′n,4r. It is easily seen that

pn,4r = O(n−4r ln−1/2 n), p′n,4r = pn,4r +O(n−(β+r) ln−1/2 n).

Therefore,

lim
n→∞

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 lim

n→∞
P

( n∑
i=1

(Y ′
i,n − p′n,4r) 6 −a′n

)
,

where a′n := n(p′n,4r−pn,4r)−t+α (q)
√
npn,4r

√
ln ln(1/(pn,4r(1− pn,4r))). Since

a′n ≍ n1−(β+r) ln−1/2 n, n → ∞,

it follows that

a′n√
np′n,4r

≍

{
nr−(β−1/2) ln−1/4 n, β > 3r,

n1/2(1−(β+r)) ln−1/4 n, β 6 3r.
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From this, under the above assumptions on the range of r and β, we obtain
a′n → ∞ and a′n/

√
np′n,4r → ∞. By Chebyshev’s inequality, this implies

lim
n→∞

PH1,n

(
T+
n (q) 6 t+α (q)

)
6 lim

n→∞
P

( n∑
i=1

(Y ′
i,n − p′n,4r) 6 −a′n

)
6 lim

n→∞

np′n,4r
(a′n)

2
= 0.

This concludes the proof of Theorem 4.1.
Proof of Theorem 4.2. With the noncentrality parameter δn chosen as

δn = 2r lnn, 0 < r < 1, one has the same tail behavior as in the normal case.
Namely (see [13, Section 5] for details),

P(χ2
ν(0) > 2s lnn) = O(n−s ln−1/2 n), 0 < s 6 1,

P(χ2
ν(δn) > 2s lnn) = O(n−(

√
s−

√
r)2 ln−1/2 n), 0 < r < s 6 1.

With these relations available, one immediately gets the analog of (7.6) for
the model in hand, and the analysis proceeds exactly as in the normal case.

8. Concluding remarks. In this paper we study a new family of good-
ness-of-fit test statistics that are of the form of the empirical process in
weighted sup-norm metrics with EKFP weight functions q. We call these
EDF-based statistics the Csörgő–Csörgő–Horváth–Mason (CsCsHM) statis-
tics, after M. Csörgő, S. Csörgő, Horváth, and Mason whose beautiful results
in [6] were a starting point of the current study. Taking q as in (2.3), we
compare the corresponding one-sided statistic to the higher criticism statis-
tic HC+

n which is normalized by the SDP weight function q(u) =
√

u(1− u).
Since, under H0, the statistic HC+

n tends to ∞ in probability, and even al-
most surely, the problem of determining the critical value of the correspond-
ing test procedure is unavoidable. A resolution of this problem was guessed
in Section 3 of [13] via the Eicker–Jaeschke limit theorem for an accordingly
normalized HC+

n sequence of statistics as in (2.7). A correct version along
these lines obtained in our Proposition 2.1, concludes, regardless of a partic-
ular value of 0 < α0 < 1, an extreme value distribution that does not depend
on the parameter α0 at all. Consequently, it does not provide an appropriate
limit distribution for any use of the HC+

n statistics, theoretical and practical
alike.

In this paper, we have resolved this problem by using an entirely different
strategy based on the theory of weighted empirical processes. In particu-
lar, we have shown that, as long as one deals with sup-norm functionals
of weighted empirical processes, the most natural family of weights consists
of the EFKP upper-class functions of a Brownian bridge. An immediate
advantage of our approach is the appropriate identification of the limit dis-
tributions of the test statistics in hand under the null hypothesis. By using
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the algorithm in Section 6, these limit distributions are tabulated. Numerical
comparison of the CsCsHM confidence bands obtained in Section 3.2 with
the corresponding Kolmogorov–Smirnov confidence bands suggests that the
CDF’s of the CsCsHM statistics may converge to their respective limit CDF’s
at the rate of O(n−1/2), the same rate as that in (3.5). In addition, we have
shown that, like the higher criticism procedure, the whole class of test statis-
tics T+

n (q, I), I = (a, b) ⊆ (0, 1), has the optimal adaptivity property (see
Theorems 4.1, 4.2, and Remark 4.1).

We also note that, when compared to the higher criticism statistic HC+
n ,

the CsCsHM test statistic (3.4) provides a right solution in the sense that it
does correctly the job that the former was intended to do without requiring
a large sample size like n = 106 that, in case of the former, only indicated
explosion to infinity instead of slow convergence. Therefore, in practical
applications, rather than using the higher criticism statistic as in (2.8), or as
in (2.9), we recommend to use the test statistic (3.4) whose critical values
are easily obtained by using the algorithm as in Section 6.
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9. M. Csörgő, L. Horváth, Limit theorems in change-point analysis, Wiley Ser.
Probab. Stat., John Wiley & Sons, Ltd., Chichester, 1997, xvi+414 pp.
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