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a b s t r a c t

We treat the problem of testing mutual independence of k high-dimensional random
vectors when the data are multivariate normal and k ≥ 2 is a fixed integer. For this
purpose, we focus on the vector correlation coefficient, ρV and propose an extension of
its classical estimator which is constructed to correct potential sources of inconsistency
related to the high dimensionality. Building on the proposed estimator of ρV , we derive
the new test statistic and study its limiting behavior in a general high-dimensional
asymptotic framework which allows the vector’s dimensionality arbitrarily exceed the
sample size. Specifically, we show that the asymptotic distribution of the test statistic
under the main hypothesis of independence is standard normal and that the proposed
test is size and power consistent. Using our statistics, we further construct the step-down
multiple comparison procedure based on the closed testing strategy for the simultaneous
test for independence. Accuracy of the proposed tests in finite samples is shown through
simulations for a variety of high-dimensional scenarios in combination with a number
of alternative dependence structures. Real data analysis is performed to illustrate the
utility of the test procedures.

© 2020 Published by Elsevier Inc.

1. Introduction

Testing independence of random variables is a standard task of statistical inference which naturally arises whenever
it is needed to handle the dependence structures in multivariate data. Test of independence based on the product–
moment correlation was initially explored in the classical seminar paper by Karl Pearson [19], followed by a substantial
amount of research literature regarding this topic and its variants. One specific problem which emerges in contemporary
applications is the test of independence of k p-dimensional random vectors, where k ≥ 2 is an integer representing the
number of underlying populations. In this study, we address this issue and propose the test of significance based on
the high-dimensional extension of the ρV vector correlation, initially introduced by Escoufier [6] for characterizing the
relationship of random vectors with a scalar measure of multivariate dependence. Based on the extended estimator of ρV
and its asymptotic theory, we further develop two types of tests of independence of k random vectors in arbitrarily high
dimensions, and show that both tests apply whether p ≥ n or p < n settings, where n denotes the sample size.
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1.1. Background and motivation

Extensive overview of the classical, large n and fixed p independence testing techniques is provided in the textbooks on
multivariate statistical analysis, see e.g., Mardia et al. [18], Anderson [2], Fang and Zhang [7], and references there in. But,
due to ever growing need of analyzing high- and ultra-high dimensional data, examples of applied areas include signal
processing, astronomy, functional genomics and proteomics, just a few to name, the development of high-dimensional
extensions of the classical testing procedures is of crucial importance. For instance, in functional genomics, multiple and
high-dimensional data sets are frequently generated on the same samples of the biological system. This naturally calls for
data fusion techniques which make it possible to extract the mutual information from all datasets simultaneously. The
first step of the fusion strategy is to accurately identify whether certain similarities of the configuration of the samples
(i.e., dependencies) occur between the datasets. Thus, it is necessary to develop novel testing methodologies suitable for
testing the independence between such pairs of high-dimensional data sets. Another example motivating the research of
this paper is discussed by Efron [5], who analyzed effects of the independence assumption for Cardio microarrays data
comprising n = 63 arrays and p = 20 426 genes. Starting with the presumption of independence across microarrays, which
underlies most of conventional statistical inferential procedures, Efron demonstrated that the presence of dependence can
invalidate the usual choice of a null hypothesis, leading to flawed assessments of significance. Hence, before conducting
further high-dimensional statistical analyses such as classification, testing hypothesis of equality of mean vectors and
covariance matrices, it is important to know when independence fails. For this purpose, testing procedures that are able
to cope with nowadays p ≫ n data must be designed.

Our focus in this paper is on testing mutual independence of multivariate components building on the high-
dimensional extension of ρV . As for the review of the existing literature on the subject of our study, we refer to Josse
et al. [15] who considered ρV -based independence testing and argued for the permutation test strategy to approximate
the distribution of the test statistic.

Further relevant approaches include Jiang et al. [13] who employed a high-dimensional correction of LRT to construct
the test of independence of two vectors. However, the asymptotic theory of these corrected LRT statistic, such as
its distribution under null hypothesis, is restricted to a bounded limiting ratio for both sub-vectors, i.e., to the high-
dimensional case where pk/n → ck ∈ (0, 1], k ∈ {1, 2}. Testing the independence of two normal sub-vectors based on
the structure of the covariance matrix was considered by Srivastava and Reid [21], and further generalized by Hyodo
et al. [12] to test the independence of k sub-vectors. Yang and Pan [23] presented the independence test based on the
sum of regularized sample canonical correlation coefficients. Testing of independence that does not require normality and
is based on the distance correlation are presented by Székely and Rizzo [22]. Non-parametric approaches to the problem
of testing independence can be found in e.g., Han and Liu [8] who treated the maxima of rank correlations measure,
such as Kendall’s tau, and Leung and Drton [16] who used the framework of U-statistics and propose a family of test
statistics which is based on sum of squares of sample rank correlations such as Kendall’s tau, Hoeffding’s D statistics and
a dominating term of Spearman’s ρ.

1.2. Preliminaries and notations

In what follows, we focus on the more precise problem statement, after some prefatory notations are in place.
Henceforth, for an integer k ≥ 2, we will denote by [k] the set {1, . . . , k}. Let x = (x⊤

1 , . . . , x⊤

k )
⊤ denote a (p × k)-

dimensional random vector, in which xg possesses a dimension p for each g ∈ [k]. Denote further by µg , by Σ gg , and by
Σ gh, the mean vector of the gth sub-vector of x, the covariance matrix of the gth sub-vector of x, and the cross-covariance
matrix of xg and xh, respectively, for g ̸= h ∈ [k]. Then µ = (µ⊤

1 , . . . ,µ⊤

k )
⊤ and Σ = (Σ gh), g, h ∈ [k] are the mean

vector and covariance matrix of x, respectively. We are interested in testing the following hypothesis

H : ∀g, h ∈ [k] xg and xh are independent vs. A : ¬H. (1)

To this end, we draw a sample of independent observations of x using the following sampling scheme. Without loss
of generality, we first assume that 1 ≤ n1 ≤ · · · ≤ nk and set n0 = 0. Further, ∀h ∈ [k] and ∀j ∈ {nh−1 + 1, . . . , nh}, we
denote p(k− h+ 1) dimensional vectors by x⟨h⟩j = (x⊤

hj, . . . , x
⊤

kj )
⊤ and µ⟨h⟩ = (µ⊤

h , . . . ,µ⊤

k )
⊤, respectively. By considering

a partition of Σ which is compatible with x⟨h⟩ and µ⟨h⟩, we introduce a (positive definite) matrix

Σ ⟨h⟩ =

⎛⎜⎝Σ hh · · · Σ hk
...

. . .
...

Σ hk · · · Σ kk

⎞⎟⎠ ,

and assume that x⟨h⟩j
i.i.d.
∼ Np(k−h+1)(µ⟨h⟩,Σ ⟨h⟩). In addition, x⟨1⟩1, . . . , x⟨1⟩n1 , . . . , x⟨k ⟩nk−1+1, . . . , x⟨k ⟩nk are assumed to be

mutually independent across k populations, constituting thereby a sample of independent observations of x to be used
for constructing the test procedure. A simple example of this sampling scheme is shown in Fig. 1.



M. Hyodo, T. Nishiyama and T. Pavlenko / Journal of Multivariate Analysis 178 (2020) 104627 3

Fig. 1. An example of independent observations for k = 3 is illustrated in this figure. The independent observations x⟨1⟩1, . . . , x⟨1⟩n1 , x⟨2⟩n1+1, . . . , x⟨2⟩n2 ,
x⟨3⟩n2+1, . . . , x⟨3⟩n3 are assumed to be mutually independent across 3 populations.

Observe that under the null hypothesis H of (1) stated in the multivariate normal setting, the population covariance
matrix Σ ⟨h⟩ has all the cross-covariance components Σ gh = O which explicitly represents the classical inferential
assumption of independence among k populations. To enhance the presentation, we use the notation

D⟨h⟩ = diag(Σ hh, . . . ,Σ kk) =

⎛⎜⎝Σ hh · · · O
...

. . .
...

O · · · Σ kk

⎞⎟⎠ ,

to denote the diagonal block matrix with blocks Σ hh, . . . ,Σ kk, i.e., all off-diagonal blocks of D⟨h⟩ are O. Here, Op×p will be
used to denote the p × p null matrix and will be abbreviated to O when the dimensionality will be clear from the context.
With the aid of these notations, the test of independence (1) can equivalently state as

H : Σ ⟨1⟩ = D⟨1⟩ vs. A : no restrictions on Σ ⟨1⟩. (2)

The natural approach is to design a test statistic that measures the dependence among the components of x based on
the sample, and reject H when its value is too large, where the critical value of rejection is set according to the asymptotic
distribution of the test statistic under the null. Our focus in this paper is on the use of ρV vector correlations in settings
where the dimension p is much larger than the sample size nk. The new statistic we propose for testing H is constructed as
a function of consistent estimators of the pairwise vector correlation coefficients and the corresponding asymptotic theory
is developed to obtain the limit null distribution of this statistic with p, n1 → ∞. The test statistic is presented in the next
section, beginning with the high-dimensional adjustment of the estimator of the vector correlation coefficient, followed
by the characterization of the test’s asymptotic behavior. A simultaneous test of independence is further constructed in
Section 3, where the proposed statistic is incorporated into the step-down multiple comparison algorithm. A finite sample
performance of the proposed tests is shown in Section 4 through a number of simulation scenarios and application. Finally,
we summarize the main results. More technical details and proofs are gathered in the appendix.

Throughout the paper, tr(M) and ∥M∥
2
F = tr(MM⊤) represent the trace of a square matrix M and its squared Frobenious

norm, respectively. The symbol ⇝ denotes convergence in distribution and ⊗ denotes Kronecker product.

2. Methodology and theory

Our proposed testing procedures will be studied under the high-dimensional or, as is frequently known as, (n, p)-
asymptotic regime where p = p(n1) grows as a function of n1 such that p also tends to infinity. Throughout, we denote
this asymptotic regime by p, n1 → ∞.

2.1. Vector correlation coefficient in high-dimensional setting

For any indices g ̸= h ∈ [k], let ρVgh denote the vector correlation coefficient between the two components of x, xg
and xh, defined as (see Escoufier [6])

ρVgh =
∥Σ gh∥

2
F

∥Σ gg∥F∥Σ hh∥F
.

It is immediately clear that Pearson’s product–moment correlation coefficient is a special case ρVgh when p = 1.
Furthermore, ρVgh = ρVhg , and ρVgh = 0 if and only if Σ gh = O. Let a be any constant, B be a p × p matrix such
that BB⊤

= Ip, and c be any p dimensional constant vector. If we set xh = aBxg + c, then ρVgh = 1.
In a view of this, if the joint distribution of xg and xh is normal, independence between xg and xh is equivalent to

asserting that the population vector correlations all vanish, i.e., ∀g ̸= h ∈ [k], ρVgh = 0. Thus, the summation of these
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measurements overall (g, h) pairs, subject to g < h, serves as an effective population measure of the overall dependency
among k parts of x and the natural criteria for testing H should be based on a suitable statistic for

∑
1≤g<h≤k ρVgh.

The sample counterpart of ρVhg can be obtained as

RVgh =
∥Sgh∥2

F

∥Sgg∥F∥Shh∥F
,

where the sample covariance matrix of xℓ and the cross-sample covariance matrix of xg and xh are constructed as

∀ℓ ∈ {g, h}, Sℓℓ =
1

nℓ − 1

nℓ∑
j=1

(xℓj − x̃ℓ)(xℓj − x̃ℓ)⊤, Sgh =
1

ng − 1

ng∑
j=1

(xgj − xg )(xhj − xh)⊤, Shg = S⊤

gh (3)

with xℓ = n−1
g
∑ng

j=1 xℓj and x̃ℓ = n−1
ℓ

∑nℓ

j=1 xℓj for ℓ ∈ {g, h}. It is important to note that the empirical measure of the vector
correlation, RVgh, is invariant to location, rotation, and overall scaling, and consistent for the classical case of the sample
size n1 tending to infinity and the dimension p remaining fixed. The invariance property of RVgh is of special advantage
because it allows to discuss the asymptotic behavior of the test statistic constructed from RVgh without knowing explicit
information of the population mean vector and covariance matrix. The invariance property of RVgh can be also confirmed
by Josse and Holmes [14].

As an estimator of the dependency measure, RVgh lacks consistency in the asymptotic regime when p tends to infinity
along with n1; this fact is justified by Lemma 1 and motivates us to search for appropriate alternatives to the ‘‘naive
plug-in’’ approach in high dimensions.

Lemma 1. Let RVgh be as already defined. Then, for any indices g ̸= h ∈ [k], the following representation holds as p, n1 → ∞:

RVgh =

(
ρVgh +

tr(Σ gg )tr(Σ hh)
ng∥Σ gg∥F∥Σ hh∥F

) ∏
ℓ∈{g,h}

(
1 +

{tr(Σ ℓℓ)}2

nℓ∥Σ ℓℓ∥
2
F

)−1/2

+ op(1). (4)

Proof. First, we evaluate expectation and variance of ∥Sℓℓ∥
2
F :

E(∥Sℓℓ∥
2
F ) =

nℓ∥Σ ℓℓ∥
2
F

nℓ − 1
+

{tr(Σ ℓℓ)}2

nℓ − 1
,

var
(
∥Sℓℓ∥

2
F

)
=

8{tr(Σ ℓℓ)}2∥Σ ℓℓ∥
2
F

(nℓ − 1)3
+

4nℓ∥Σ ℓℓ∥
4
F

(nℓ − 1)3
+

16nℓtr(Σ ℓℓ)tr(Σ 3
ℓℓ)

(nℓ − 1)3
+

4(2n2
ℓ + nℓ + 2)tr(Σ 4

ℓℓ)
(nℓ − 1)3

.

Thus, as p, n1 → ∞,

∥Sℓℓ∥
2
F

∥Σ ℓℓ∥
2
F

= 1 +
{tr(Σ ℓℓ)}2

nℓ∥Σ ℓℓ∥
2
F

+ Op(n
−1/2
ℓ ). (5)

Next, we evaluate expectation and variance of ∥Sgh∥2
F :

E(∥Sgh∥2
F ) =

ng∥Σ gh∥
2
F

ng − 1
+

tr(Σ gg )tr(Σ hh)
ng − 1

,

var
(
∥Sgh∥2

F

)
=

2[{tr(Σ gg )}2∥Σ hh∥
2
F + {tr(Σ hh)}2∥Σ gg∥

2
F + 2tr(Σ gg )tr(Σ hh)∥Σ gh∥

2
F ]

(ng − 1)3

+
2ng (∥Σ gh∥

4
F + ∥Σ gg∥

2
F∥Σ hh∥

2
F )

(ng − 1)3
+

8ng tr(Σ gg )tr(Σ hhΣ hgΣ gh)
(ng − 1)3

+
8ng tr(Σ hh)tr(Σ ggΣ ghΣ hg )

(ng − 1)3
+

4(n2
g + ng + 2)tr(Σ ggΣ ghΣ hhΣ hg )

(ng − 1)3
+

4n2
g∥Σ ghΣ hg∥

2
F

(ng − 1)3
.

Thus, as p, n1 → ∞,

∥Sgh∥2
F

∥Σ gg∥F∥Σ hh∥F
= ρVgh +

tr(Σ gg )tr(Σ hh)
ng∥Σ gg∥F∥Σ hh∥F

+ Op(n−1/2
g ). (6)

Combining (5) and (6), the result is established. □

To realize the essence of Lemma 1, observe that for Σ gg = Σ hh = Ip, Σ gh = O and ng = nh = o(p),

Rgh =

(
1 +

ng

p

)−1

+ op(1) = 1 + op(1),
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as p → ∞, indicating that the RVgh coefficient is not able to detect the absence of dependence i.e., the situation where
ρVgh = 0.

By these arguments, the crucial step in our construction of test statistic for testing (1) and (2) is to obtain an estimator
of ρVgh suitable for high-dimensional settings. We first consider the following unbiased estimators of ∥Σ gh∥

2
F and ∥Σ ℓℓ∥

2
F ,

(see Srivastava and Reid [21])

∀g < h ∈ [k], ˆ
∥Σ gh∥

2
F =

(ng − 1)2

(ng − 2)(ng + 1)

{
∥Sgh∥2

F −
tr(Sgg )tr(Shh)

ng − 1

}
, (7)

∀ℓ ∈ [k], ˆ
∥Σ ℓℓ∥

2
F =

(nℓ − 1)2

(nℓ − 2)(nℓ + 1)

[
∥Sℓℓ∥

2
F −

{tr(Sℓℓ)}2

nℓ − 1

]
, (8)

and then define the estimator of ρVgh with the high dimensionality adjustment as

HRVgh =

ˆ
∥Σ gh∥

2
F

ˆ∥Σ gg∥F ˆ∥Σ hh∥F

. (9)

The following lemma lists invariance properties of the proposed modification.

Lemma 2. HRVgh is invariant to location, rotation, and overall scaling.

Proof. Fix the sample sizes ng and nh for g ̸= h. For i ∈ [ng ] and j ∈ [nh], define random vectors ygi = aBxgi + c and
yhj = aBxhj + c, where a is any constant, B is a p × p matrix such that BB⊤

= Ip, and c is any p dimensional constant
vector. The key idea to prove the invariance is to show that the estimator of ρVgh, composed by ygi and yhj coincides with
that one composed by xgi and xhj for index sets i ∈ [ng ] and j ∈ [nh].

Precisely, let S̃ℓℓ and S̃gh denote the sample and cross-sample covariance matrices of yg and yh, constructed analogously
to (3). Then the following representations hold S̃ℓℓ = a2BSℓℓB⊤ for ℓ ∈ {g, h}, S̃gh = a2BSghB⊤. We further denote by
ˆ

∥Σ ℓℓ∥
2
F and ˆ

∥Σ gh∥
2
F the unbiased estimators of the covariance and cross-covariance matrices constructed by yg and yh in

the same way as (7) and (8), and notice that

∀ℓ ∈ {g, h}, ˜
∥Σ ℓℓ∥

2
F = a2 ˆ

∥Σ ℓℓ∥
2
F ,

˜
∥Σ gh∥

2
F = a2 ˆ

∥Σ gh∥
2
F . (10)

Let H̃RV gh denote the estimator of ρVgh constructed by ˜
∥Σ ℓℓ∥

2
F and ˜

∥Σ gh∥
2
F similarly to (9). Then from (10), we obtain

H̃RV gh =
a2 ˆ

∥Σ gh∥
2
F

(a ˆ∥Σ gg∥F )(a ˆ∥Σ hh∥F )
= HRVgh

which finishes the proof. □

Now, to proceed further with the test statistic construction, we need one more result. The following theorem shows
consistency of HRVgh in the high-dimensional regime.

Theorem 1. Let HRVgh be as already defined. Then, as p, n1 → ∞, for any indices g ̸= h ∈ [k], it holds that HRVgh =

ρVgh + op(1).

Proof. First, we evaluate the variance of ˆ
∥Σ gh∥

2
F , for which we obtain the following representation

var
(

ˆ
∥Σ gh∥

2
F

)
=

2(∥Σ gh∥
4
F + ∥Σ gg∥

2
F∥Σ hh∥

2
F )

(ng − 2)(ng + 1)
+

4(n2
g − 5)tr(Σ ggΣ ghΣ hhΣ hg )

(ng − 2)(ng − 1)(ng + 1)
+

4tr{(Σ ghΣ hg )2}
ng − 1

. (11)

From tr(Σ ggΣ ghΣ hhΣ hg ) ≤ ∥Σ gg∥F∥Σ hh∥F∥Σ gh∥
2
F , tr{(Σ ghΣ hg )2} ≤ ∥Σ gh∥

4
F and ρVgh < 1, we get

var( ˆ
∥Σ gh∥

2
F )

(∥Σ gg∥F∥Σ hh∥F )2
= O

(
n−1
g

)
.

Using Chebyshev’s inequality, we obtain

ˆ
∥Σ gh∥

2
F

∥Σ gg∥F∥Σ hh∥F
= ρVgh + op (1) . (12)

Next, we evaluate the variance of ˆ
∥Σ ℓℓ∥

2
F for ℓ ∈ {g, h} for which we obtain

var
(

ˆ
∥Σ ℓℓ∥

2
F

)
=

4∥Σ ℓℓ∥
4
F

(nℓ − 2)(nℓ + 1)
+

4(2n2
ℓ − nℓ − 7)∥Σ 2

ℓℓ∥
2
F

(nℓ − 2)(nℓ − 1)(nℓ + 1)
.
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From ∥Σ 2
ℓℓ∥

2
F ≤ ∥Σ ℓℓ∥

4
F , we get var( ˆ

∥Σ ℓℓ∥
2
F )/∥Σ ℓℓ∥

4
F = O

(
n−1

ℓ

)
. Thus, var

(
ˆ

∥Σ ℓℓ∥
2
F

)
/∥Σ ℓℓ∥

4
F = o(1) is established under

p fixed n1 → ∞ or p, n1 → ∞. Using Chebyshev’s inequality, we obtain

ˆ
∥Σ ℓℓ∥

2
F

∥Σ ℓℓ∥
2
F

= 1 + op (1) . (13)

Combining (12) and (13) gives the claim. □

Remark 1. Theorem 1 remains valid in the large sample asymptotic setting, i.e. with p fixed and n1 → ∞.

2.2. The proposed test statistic and its asymptotic properties

In order to construct the test statistic, we first observe that the tests (1) and (2) can be restated in terms of ρV
coefficient as

H : ∀g ̸= h ∈ [k] ρVgh = 0 vs. A : ρVgh > 0 for some g and h. (14)

Further, with the high-dimensional adjustment HRVgh at hand, we propose our test statistic for (1), (2) and (14), namely
the vector correlation type statistics,

T =

∑
1≤g<h≤k

HRVgh,

which consistently estimates the population measure of the overall dependency,
∑

1≤g<h≤k ρVgh in the joint distribution
of x1, . . . , xk, and sums all pairwise sample correlations for a ‘‘one-sided’’ test. Note that under the null hypothesis, all of
the population’s ρVgh should be zero corresponding to zero off-diagonal blocks Σ gh. Hence, as an immediate consequence
of Theorem 1, the asymptotic behavior of proposed test statistic under the null H and alternative A when n1, p → ∞ is
as follows

T =

{
op(1) under H,∑

1≤g<h≤k ρVgh + op(1) under A,

i.e., the large values of T indicate departures from H.
To state the size-α test of significance using T , we need to characterize its null asymptotic distribution. For this purpose,

the following property will be assumed for our null asymptotic results.
Viewing both ∥Σ gg∥F and ∥Σ 2

gg∥F as functions of p and using p as a driving asymptotic index, we assume that ∀g ∈ [k],

(A1) ∥Σ 2
gg∥

2
F/∥Σ gg∥

4
F = o(1) as p → ∞.

To exemplify a covariance model family satisfying (A1), we consider a matrix Σ gg which satisfy (A1) such that its rth
largest eigen value of Σ gg admits the representation

λr (Σ gg ) =

{
ηr(g)pθr(g) , r ∈ {1, . . . , tg},
ηr(g), r ∈ {tg + 1, . . . , p},

(15)

where ηr(g) > 0 and θr(g) > 0 are fixed constants and tg is a fixed positive integer. Now if θ1(g) < 1/2 the covariance
structure of Σ gg is called a non-strongly spiked eigenvalue model (NSSE-model). Accordingly, when these latter do not
hold the structure is called a strongly spiked eigenvalue (SSE-model).

In what follows, we show that NSSE-model (15) assumed for Σ gg is a sufficient condition for (A1). Indeed, assuming
that ∀g ∈ [k], Σ g satisfies (15), we obtain

tr{(Σ ggΣ hh)2} ≤ η4
maxp

4θmax , tr(Σ ggΣ hh) ≥ η2
minp,

where θmax = max{θ1(1), . . . , θ1(k)}, ηmax = max{η1(1), . . . , ηp(k)}, ηmin = min{η1(1), . . . , ηp(k)}. Since θmax < 1/2, the
NSSE-model (15) for Σ gg is the sufficient condition for (A1) to be fulfilled.

Now we are ready to state one of the main results of our study, the central limit theorem for T under H.

Theorem 2. Suppose that the null hypothesis H from (14) is true. Suppose further that (A1) is satisfied for all g ∈ [k] and
consider the asymptotic regime p, n1 → ∞. Then, after suitable rescaling, T is asymptotically normal, namely, σ−1T ⇝ N (0, 1)
with σ 2

= 2
∑k−1

g=1(k − g)n−2
g .

Proof. From (13), under p, n1 → ∞, ˆ∥Σ ℓℓ∥F = ∥Σ ℓℓ∥F {1 + op(1)} for ℓ ∈ {g, h}. Thus T = T̃ + op(1), where
T̃ =

∑
1≤g<h≤k

ˆ
∥Σ gh∥

2
F/(∥Σ gg∥F∥Σ hh∥F ). Therefore, it is sufficient to show the asymptotic normality of T̃ . From (11),

under H, the asymptotic variance of T̃ is obtained as σ 2
= 2

∑k−1
g=1(k − g)n−2

g .
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Under H, we have ∀g ∈ [k], j ∈ [nk] xgj = Σ 1/2
gg zgj + µg , where zgj ∼ Np(0, Ip) and zgj are mutually independent. We

define p×ℓ matrix, Zg(ℓ) = (zg1, . . . , zgℓ) for ℓ ≤ ng . Note that each component of Zg(ng ) independently N (0, 1) distributed.
For g < h, i.e., ng ≤ nh, under H,

ˆ
∥Σ gh∥

2
F =

tr(Σ ggZg(ng )Z⊤

h(ng )Σ hhZh(ng )Z⊤

g(ng ))

n2
g

−

tr(Σ ggZg(ng )Z⊤

g(ng ))tr(Σ hhZh(ng )Z⊤

h(ng ))

n3
g

+ op

(
∥Σ gg∥F∥Σ hh∥F

ng

)
.

Let Γ g be orthogonal matrix s.t. Γ⊤

g Σ ggΓ g = diag(λg1, . . . , λgp). For i ∈ [p], we set ugi = (e⊤

i Γ
⊤

g zg1, . . . , e⊤

i Γ
⊤

g zgng )⊤,
where ei denotes an ith unit vector which has all the elements equal to 0 except for one, namely its ith element which
is equal to 1. Then ugi ∼ Nng (0, Ing ) and e⊤

j ugi = z⊤

gjΓ gei are mutually independent whenever (g, i, j) are distinct indices.
Let ugi(ℓ) = (e⊤

i Γ
⊤

g zg1, . . . , e⊤

i Γ
⊤

g zgℓ)⊤. Then

Γ⊤

ggZg(ng ) = (ug1(ng ), . . . ,ugp(ng ))
⊤, Γ⊤

hhZh(ng ) = (uh1(ng ), . . . ,uhp(ng ))
⊤.

Using these variables, we rewrite

ˆ
∥Σ gh∥

2
F = n−2

g

p∑
i=1

p∑
j=1

λgiλhj(u⊤

gi(ng )uhj(ng ))
2
− n−3

g

p∑
i=1

p∑
j=1

λgiλhju⊤

gi(ng )ugj(ng )u
⊤

hi(ng )uhj(ng ) + op

(
∥Σ gg∥F∥Σ hh∥F

ng

)
,

yielding the representation T̃/σ =
∑p

i=1 εi + op(1), where

εi =

∑
1≤g<h≤k

1
σn2

g

[
λgiλhi

∥Σ gg∥F∥Σ hh∥F

{
(u⊤

gi(ng )uhi(ng ))
2
−

∥ugi(ng )∥
2
∥uhi(ng )∥

2

ng

}

+

i−1∑
j=0

λgiλhj

∥Σ gg∥F∥Σ hh∥F

{
(u⊤

gi(ng )uhj(ng ))
2
−

∥ugi(ng )∥
2
∥uhj(ng )∥

2

ng

}

+

i−1∑
j=0

λgjλhi

∥Σ gg∥F∥Σ hh∥F

{
(u⊤

gj(ng )uhi(ng ))
2
−

∥ugj(ng )∥
2
∥uhi(ng )∥

2

ng

}⎤⎦ .

Observe that for i = 1, both the second and third terms can be ignored being equal to zero. Define further F0 = {∅, Ω},
and let Fi for any natural number i be the σ -algebra generated by the random variables Ui−1, where

Ui−1 = (u11, . . . ,u1i−1, . . . ,uk1, . . . ,uki−1).

Then we find that F0 ⊆ · · · ⊆ F∞ and E(εi|Fi−1) = 0. Thus, {εi}
∞

i=1 is a martingale difference sequence. We show the
asymptotic normality of ε1 +· · ·+ εp by adapting the martingale difference central limit theorem; see, e.g., Shiryaev [20].
Let Ei−1 = E(ε2

i |Fi−1). Then

E

( p∑
i=1

Ei−1

)
= 1 + o(1), var

( p∑
i=1

Ei−1

)
= O(n−1

1 ).

Thus, (I) :
∑p

i=1 Ei−1 = 1 + op(1) as p, n1 → ∞. Also

p∑
i=1

E(ε4
i ) = O

⎛⎝ k∑
g=1

∥Σ 2
gg∥

2

∥Σ gg∥
4

⎞⎠ .

Thus, under (A1), (II) :
∑p

i=1 E(ε
4
i ) = o(1) as p, n1 → ∞. The above results (I) and (II) complete the proof. Note that (I)

holds but (II) does not hold under p fixed n1 → ∞ since
∑p

i=1 E(ε
4
i ) = O(1). □

Remark 2. Under H and (A1), var(T )/σ 2
= 1 + o(1) as p, n1 → ∞.

By Theorem 2, a critical value for the approximate size-α test can be calibrated based on the normal quantiles.
An alternative idea of how to express the test and show that we can control size is as follows. Using Theorem 2, our

proposed approximate size-α test of the null hypothesis H can be based on the statistic

Qα = 1

⎡⎣ ∑
1≤g<h≤k

HRVgh/σ ≥ z1−α

⎤⎦ ,

where 1(·) represents the indicator function and zα = Φ−1(α) denotes the upper α quantile of N (0, 1). The following
corollary states that the test Qα can efficiently control the size.
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Corollary 1. Suppose that the condition (A1) holds, then, as p, n1 → ∞,

Pr(Qα = 1| H) = α + o(1).

We further evaluate the power of T under a kind of local alternative. Consider the alternative hypothesis

A : xg and xh are dependent for some g, h ∈ [k]

satisfying condition (16) below. Draw ni samples from such alternatives xi following sampling scheme of Section 1 to
form the respective analogues of HRVgh and Qα and denote them by HRVA

gh and QA
α , respectively.

Theorem 3. In addition to the assumptions in Theorem 2 let

Θn1 = {Σ ⟨1⟩ : max
1≤g<h≤k

ρVgh ≥ n−δ
1 } (16)

be a set of alternatives Σ ⟨1⟩ such that max1≤g<h≤k ρVgh ≥ n−δ
1 , where 0 < δ < 1. Then, as p, n1 → ∞,

inf
Θn1

Pr(QA
α = 1 |A) = 1 + o(1).

Proof. From (13), the power of our proposed test at Σ ⟨1⟩ is Pr(QA
α = 1 |A) = Pr(̃T ≥ σ zα) + o(1) as p fixed n1 → ∞ or

p, n1 → ∞. Thus it is sufficient to show that Pr(̃T ≥ σ zα) = 1 + o(1) for any Σ ⟨1⟩ ∈ Θn1 .
We note that E(̃T ) =

∑
1≤g<h≤k ρVgh > 0 for any Σ ⟨1⟩ ∈ Θn1 , and

Pr
(̃
T ≥ σ zα

)
≥ 1 − Pr

(
|̃T − E(̃T ) − σ zα|≥ E(̃T )

)
.

Using Markov’s inequality and Cauchy–Schwarz inequality in the context of expectation, we obtain

Pr
(⏐⏐̃T − E(̃T ) − σ zα

⏐⏐ ≥ E(̃T )
)

≤ E
(⏐⏐̃T − E(̃T ) − σ zα

⏐⏐ /E(̃T )) ≤ E
(⏐⏐̃T − E(̃T ) − σ zα

⏐⏐2) /{E(̃T )}2.

Since E(|̃T − E(̃T ) − σ zα|
2) = var(̃T ) + σ 2z2α , we obtain

Pr(̃T ≥ σ zα) ≥ 1 −
var(̃T ) + σ 2z2α

{E(̃T )}2
. (17)

We further evaluate var(̃T ). For any g < h, g, h ∈ [k], we define Agh = H̃RV gh − ρVgh, where H̃RV gh =

ˆ
∥Σ gh∥

2
F/(∥Σ gg∥F∥Σ hh∥F ). Then

var(̃T )
{E(̃T )}2

=
E{(
∑

1≤g<h≤k Agh)2}

{E(̃T )}2
≤

k(k − 1)
∑

1≤g<h≤k E(A
2
gh)

2{E(̃T )}2
.

E(A2
gh) is obtained by

E(A2
gh) =

2(ρV 2
gh + 1)

(ng − 2)(ng + 1)
+

4(n2
g − 5)tr(Σ ggΣ ghΣ hhΣ hg )

(ng − 2)(ng − 1)(ng + 1)∥Σ gg∥
2
F∥Σ hh∥

2
F

+
4tr{(Σ ghΣ hg )2}

(ng − 1)∥Σ gg∥
2
F∥Σ hh∥

2
F
.

From tr(Σ ggΣ ghΣ hhΣ hg ) ≤ ∥Σ gg∥F∥Σ hh∥F∥Σ gh∥
2
F and tr{(Σ ghΣ hg )2} ≤ ∥Σ gh∥

4
F , we get

E(A2
gh)

{E(̃T )}2
= O

(
ρVgh + ρV 2

gh

(
∑

1≤g<h≤k ρVgh)2ng
+

ρV 2
gh + 1

(
∑

1≤g<h≤k ρVgh)2n2
g

)
.

Note that E(̃T ) =
∑

1≤g<h≤k ρVgh ≥ max1≤g<h≤k ρVgh ≥ n−δ
1 . Thus, for any Σ ⟨1⟩ ∈ Θn1 ,

E(A2
gh)

{E(̃T )}2
= O

(
1

n1−δ
1

+
1
n1

+
1
n2
1

)
.

Since k is fixed, we obtain

var(̃T )
{E(̃T )}2

= O

(
1

n1−δ
1

+
1
n1

+
1
n2
1

)
. (18)

Next, we evaluate σ 2/{E(̃T )}2. Since σ 2
= O(n−2

1 ) and {E(̃T )}2 ≥ (max1≤g<h≤k ρVgh)2 ≥ n−2δ
1 , we obtain

σ 2z2α
{E(̃T )}2

= O

(
1

n2(1−δ)
1

)
. (19)
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Substituting (18) and (19) to (17), for any Σ ⟨1⟩ ∈ Θn1 ,

Pr(̃T ≥ σ zα) = 1 + O

(
1

n1−δ
1

+
1

n2(1−δ)
1

+
1
n1

+
1
n2
1

)
.

Therefore, under p fixed n1 → ∞ or p, n1 → ∞, infΘn1
Pr(̃T ≥ σ zα) = 1 + o(1). □

Remark 3. Theorem 3 remains valid with p fixed and n1 → ∞.

3. Stepwise multiple significance test

In this section, we proceed to explore the proposed statistic T and construct the new step-down multiple comparison
significance test for simultaneous testing of independence.

Let Mq be the family of subsets with cardinal number q ≥ 2 of the set [k]. Also, let these subsets be denoted by
m = {ℓ1, . . . , ℓq} ∈ Mq where ℓ1 < · · · < ℓq and let Σ (q,m) be the following pq × pq matrix for these m:

Σ (q,m)
=

⎛⎜⎝ Σ ℓ1ℓ1 · · · Σ ℓ1ℓq
...

. . .
...

Σ ℓqℓ1 · · · Σ ℓqℓq

⎞⎟⎠ .

We wish to test the following hypothesis:

H{q,m}
: ∀g ̸= h ∈ {ℓ1, . . . , ℓq}, Σ gh = O vs. A{q,m}

: not H{q,m},

and for this, we obtain the test statistic T {q,m}/σ{q,m} based on results of Section 2, where T {q,m}
=
∑

1≤g<h≤ℓq
HRVgh and

g ̸= h ∈ m. Here, we consider the problem of testing family of hypotheses J = {H{2,m}
: Σ ℓ1ℓ2 = O,m ∈ M2}.

Let Gq be the set consisting of all hypothesis H{q,m} and let G = ∪
k
q=2Gq. Then the family G is closed. Hence, we can

derive a step-down multiple comparison procedure based on closed testing procedure for G. We define

αq =

{
1 − (1 − α)q/k, for q ∈ {2, . . . , k − 2},

α, for q ∈ {k − 1, k},

and let t{q,m}(α) be the upper α percentiles of the statistic T {q,m} under H{q,m}, that is, t{q,m}(α) satisfies Pr{T {q,m}
≥

t{q,m}(α)} = α. Then we carry out the following Tukey–Welsch type step-down multiple test for all hypotheses in G
by using the T {q,m}:

Step 1. We test the hypothesis H{k,m}
= H.

(C1) If T ≥ t(αk), we reject H and go to Step 2.
(C2) If T < t(αk), we retain all hypotheses in G and stop the test. Here, t(αk) satisfies Pr{T ≥ t(αk)} = αk under
H.

Step 2. We test all hypotheses H{k−1,m} in Gk−1.

(C1) If T {k−1,m}
≥ t{k−1,m}(αk−1), we reject H{k−1,m} and go to Step 3.

(C2) If T {k−1,m} < t{k−1,m}(αk−1), we retain H{k−1,m} and all hypotheses in ∪
k−2
q=2Gq implied by H{k−1,m}. We finish

the test.

Step 3. We test all hypotheses H{k−2,m} in Gk−2 which are not retained in Step 2.

(C1) If T {k−2,m}
≥ t{k−2,m}(αk−2), we reject H{k−2,m} and go to Step 4.

(C2) If T {k−2,m} < t{k−2,m}(αk−2), we retain H{k−2,m} and all hypotheses in ∪
k−3
q=2Gq implied by H{k−2,m}. We finish

the test.

We repeat similar judgments till Step k − 1 at the maximum.

Remark 4. From a principle of closed testing procedure, we note that the maximum type-I FWE (family-wise error rate)
of our proposed step-down multiple comparison procedure is not greater than α.

By the results of Theorem 2, the critical values t{q,m}(α) for an approximate α-size test can be set as σ{q,m}z1−α , where
σ{q,m}z1−α satisfies Pr{T {q,m}

≥ σ{q,m}z1−α} = α + o(1) under H{q,m} and assuming that (A1) holds.
A more detailed presentation of Tukey–Welsch step-downmultiple testing procedure can be found in work of Hochberg

and Tamhane [11]. Our suggested procedure will be demonstrated for k = 4 with real data analysis provided in Section 4.2.
We also prepare Fig. 3 to illustrate the procedure in the step-by-step fashion.
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Table 1
The empirical size of proposed test α̂T is listed in the column ρ = 0.0 for a variety of combinations of p
and n = (n1, n2, n3, n4, n5)⊤ . The data underlying the table are i.i.d. p×k-variate normal with k = 5 and
the covariance matrix having the following within-block structures Σ ⟨1⟩ = diag(Σ11, . . . ,Σ55), where
each Σ gg has an AR(1) structure, i.e., Σ gg = g(0.5|i−j|). For each combination of p and nnn, empirical size
of the test is calculated from ℓ = 100, 000 independently generated data sets. The empirical power
of proposed test β̂T is listed in the columns ρ = 0.4 and 0.6 for a variety of combinations of p and
n = (n1, n2, n3, n4, n5)⊤ . The data underlying the table are i.i.d. p× k-variate normal with k = 5 and the
covariance matrix having A1 and A2 . For each combination of p and nnn, empirical power of proposed
test is calculated from ℓ = 100, 000 independently generated data sets.
n⊤ p Size Power (A1) Power (A2)

ρ = 0.0 ρ = 0.4 ρ = 0.6 ρ = 0.4 ρ = 0.6

(20,20,20,20,20) 50 0.060 0.159 0.361 0.333 0.783
100 0.059 0.160 0.365 0.337 0.796
200 0.060 0.156 0.367 0.336 0.801
300 0.060 0.157 0.366 0.335 0.803

(10,15,20,25,30) 50 0.064 0.122 0.228 0.215 0.507
100 0.064 0.124 0.231 0.215 0.518
200 0.063 0.121 0.229 0.211 0.520
300 0.063 0.122 0.229 0.215 0.519

(40,40,40,40,40) 50 0.055 0.313 0.788 0.728 0.998
100 0.055 0.317 0.796 0.742 0.999
200 0.055 0.312 0.798 0.745 0.999
300 0.055 0.313 0.799 0.759 1.000

(20,30,40,50,60) 50 0.058 0.198 0.495 0.450 0.928
100 0.056 0.196 0.496 0.455 0.937
200 0.057 0.195 0.500 0.459 0.943
300 0.055 0.194 0.498 0.456 0.943

(60,60,60,60,60) 50 0.053 0.522 0.976 0.947 1.000
100 0.053 0.521 0.978 0.956 1.000
200 0.054 0.524 0.979 0.961 1.000
300 0.052 0.522 0.979 0.966 1.000

(40,50,60,70,80) 50 0.056 0.388 0.891 0.840 1.000
100 0.053 0.387 0.895 0.853 1.000
200 0.052 0.388 0.900 0.860 1.000
300 0.053 0.390 0.901 0.862 1.000

4. Numerical study

We present results from numerical studies which are designed to evaluate the performance of the proposed statistic
T for testing independence hypothesis H and for the multiple comparison procedure based on the simultaneous test of
independence. Our simulations explore the size of the tests when critical values are selected using asymptotic normality
of T and compare their power for a number of alternative scenarios. We also employ the proposed test to analyze data
from Electroencephalograph (EEG) experiment to illustrate the application of our results.

4.1. Simulation experiments

We first assess the accuracy of the proposed test statistic for its size control. The test compares a rescaled statistic T
to the limiting standard normal distribution from Theorem 2. Targeting the size of α = 0.05, the null hypothesis (2) is
rejected when the value of the rescaled statistic exceeds the 0.95th percentile of the standard normal distribution. With
ℓ replications of the data set generated under the null hypothesis H, we calculate the empirical size as

α̂T =
# {TH/σ ≥ zα}

ℓ
,

where TH represents the values of the test statistic T based on the data generated under the null hypothesis. The results
are summarized in Table 1. As expected, in general, the tests have their sizes converging to the nominal level 0.05 as
both p and nk increase together. For certain combinations of p and nk, the test sizes are not very satisfactory when nk are
very small, but they all become close to the nominal 0.05 level when nk get above 40–50, indicating that the asymptotic
properties of T described by Theorem 2 pitch in.

Next, we consider the power of the tests, as studied in Section 2. The empirical power is calculated as

β̂T =
# {TA/σ ≥ zα}

ℓ
,

where TA represents the values of the test statistic T based on the data generated under the alternative hypothesis. The
results are summarized in Table 1. For different combinations of n = (n1, . . . , nk) and p, we generate data as a set of
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Fig. 2. The empirical powers for the case (δ, c) = (0.3, 1.0) (•), for the case (δ, c) = (0.5, 1.5) (×), and for the case (δ, c) = (0.7, 2.0) (△).

independent draws from two p × k-variate normal distributions with different forms of alternatives of the covariance
structure of Σ [1]. These are

(i) A1 : Σ [1] = diag(Σ 11, . . . ,Σ 55) +

⎛⎜⎜⎜⎝
0 η 0 0 0
η 0 η 0 0
0 η 0 η 0
0 0 η 0 η

0 0 0 η 0

⎞⎟⎟⎟⎠⊗ Σ 11.

(ii) A2 : Σ [1] = diag(Σ 11, . . . ,Σ 55) +

⎛⎜⎜⎜⎝
0 η η η 0
η 0 η η η

η η 0 η η

η η η 0 η

0 η η η 0

⎞⎟⎟⎟⎠⊗ Σ 11.

Further, for each distribution, two levels of η’s are considered: 0.4 and 0.6. The power of the proposed test is largely
dependent on (i) the sample size ng , and (ii) the variation in η as it determines

∑
1≤g<h≤k ρVgh, the quantity which in

turn determines the asymptotic power of the test as shown in Theorem 3. Specifically, if A1 holds, then
∑

1≤g<h≤k ρVgh =

8η2/5, and if A2 holds, then
∑

1≤g<h≤k ρVgh = 67η2/20. Observe that the value
∑

1≤g<h≤k ρVgh does not depend on the
dimension p, hence the power is expected to be mainly related to the value of η and number of η entries in the covariance
structures under alternatives. In particular, the first alternative, A1, is designed to challenge the test procedure for some
near block-diagonal structures with sparsely distributed non-zero off-blocks entries, whereas the second alternative, A2
represents a dense alternative. We find the powers for the alternative A1 are less affected by the increased dimensionality
as compared to A2. Overall, the power of T under the second alternative increases systematically much faster than that
under the first alternative, as the sample sizes and the dimension are increased. Taking into account that the value of∑

1≤g<h≤k ρVgh is systematically larger under A2 as compared to A1, this is a natural trend. And when η increases from
0.4 to 0.6 the power gets larger under both alternatives since the increase of η contributes to the increase of each ρVgh,
which measures the departure from the null hypothesis. With η increased under the second alternative, many entries of
empirical powers of the test approach 1, which could be viewed as an empirical indication of the proposed test being
consistent.

Next, we investigate the behavior of test power when the alternative hypothesis depends on n1. According to
Theorem 3, the power converges to 1 when δ < 1. To reflect the conditions of Theorem 3, we further δ and c:

A3 : Σ ⟨1⟩ = diag(Σ 11, . . . ,Σ 55) + cn−δ/2
1

⎛⎜⎜⎜⎝
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞⎟⎟⎟⎠⊗ Σ 11.

We set (δ, c) ∈ {(0.3, 1.0), (0.5, 1.5), (0.7, 2.0)}, p = 5 × n1, n1 = · · · = n5, and n1 = 10 × i, where i ∈ {1, . . . , 20}. The
empirical powers of our proposed test are listed in Fig. 2. As the results in Fig. 2 show, T tends to have rather similar
power converging to 1 across the set of alternatives generated by (δ, c). This convergence becomes slower with larger
values of δ.
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Table 2
The probability of selecting the correct model with the proposed multiple comparison procedure. We
check whether the proposed procedure can correctly capture the covariance structure Σ ⟨1⟩ . That is, we
count the number of times that H{2,{1,3}} , H{2,{1,4}} and H{2,{2,4}} are retained by the procedure.
ρ 0.4 0.5 0.6

n⊤
\p 100 200 300 100 200 300 100 200 300

(40,40,40,40) 0.321 0.336 0.342 0.889 0.906 0.909 0.999 0.999 0.999
(30,35,45,50) 0.173 0.182 0.183 0.735 0.747 0.750 0.980 0.980 0.981
(50,50,50,50) 0.654 0.674 0.678 0.987 0.989 0.991 1.000 1.000 1.000
(40,45,55,60) 0.490 0.510 0.514 0.948 0.954 0.955 1.000 1.000 1.000
(60,60,60,60) 0.865 0.879 0.881 0.999 0.999 1.000 1.000 1.000 1.000
(50,55,65,70) 0.762 0.779 0.783 0.995 0.996 0.997 1.000 1.000 1.000
(70,70,70,70) 0.960 0.965 0.967 1.000 1.000 1.000 1.000 1.000 1.000
(60,65,75,80) 0.915 0.923 0.926 1.000 1.000 1.000 1.000 1.000 1.000

Fig. 3. Three steps of testing independence of the brain activity in four brain channels with EGG data. The symbol in a block of the resulting
structure indicates the presence of dependence between the corresponding channels.

Thirdly, we investigate the probability of selecting the correct model with the proposed multiple comparison procedure.
Let Σ ⟨1⟩ has the following structure

Σ ⟨1⟩ = diag(Σ 11, . . . ,Σ 44) +

⎛⎜⎜⎜⎜⎝
0

√
2η 0 0

√
2η 0

√
6η 0

0
√
6η 0 2

√
3η

0 0 2
√
3η 0

⎞⎟⎟⎟⎟⎠⊗ Σ 11.

The results are summarized in Table 2. As η is larger, the selection probability tends to be larger. Also, as the dimension
p increases, the selection probability slightly increases. When the total sample size is the same, the balance type has a
higher selection probability than the unbalanced type (see Table 2).

Finally, for comparison purpose, we consider the test based on the asymptotic distribution of the weighted sum of chi-
square random variables, that is asymptotic distribution of nRV , from Josse et al. [15]. The weighted sum of chi-squares
is approximated with Hall-Buckley-Eagleson approach and unknown parameters of the test statistics are replaced with
their large sample consistent counterparts. This method is fully described in Buckley and Eagleson [3]. As seen in Table 3,
the size of the tests given by our proposed statistic T is similar across different data-generating distributions, being just
slightly higher but stably very close to the nominal level. The stability of the size rendered by T points to our results on
the high-dimensional consistency of this statistic which is obtained by the high-dimensionality adjustment suggested by
Lemma 1. In contrast, the sizes of Josse-type asymptotic test are satisfactory only when the dimensionality p is small, by
they decrease significantly below the target size of 0.05 as the dimension increases. As expected, since the large sample
consistency of estimators of unknown parameters collapses in high dimensions, indicating that this type of asymptotic
tests is not well adapted for high-dimensional settings.
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Table 3
Size comparison of the proposed test and the test by Josse et al. [15] for the setting the nominal level
to 0.05, k = 2 and n1 = n2 . This table reports Monte-Carlo estimates of the finite-sample sizes for a
variety of combinations of n1 and p. The data underlying the table are i.i.d. p × 2-variate normal and
the covariance matrix having the following within-block structures Σ ⟨1⟩ = diag(Σ11,Σ22), where each
Σ gg has an AR(1) structure, i.e., Σ gg = g(0.5|i−j|). For each combination of p and n1 , empirical sizes of
the tests are calculated from ℓ = 100, 000 independently generated data sets.
p\n n = 50 n = 100 n = 200 n = 400

HNP AT HNP AT HNP AT HNP AT

p = 5 0.066 0.041 0.065 0.046 0.064 0.047 0.064 0.049
p = 50 0.055 0.006 0.052 0.019 0.052 0.032 0.053 0.040
p = 100 0.054 0.000 0.053 0.006 0.053 0.019 0.051 0.031
p = 200 0.051 0.000 0.052 0.000 0.050 0.006 0.052 0.018
p = 400 0.050 0.000 0.051 0.000 0.050 0.001 0.051 0.008

Table 4
The table shows step, q, m, the total HRV coefficient T {q,m} , standard deviation σ{q,m} , test
statistic T {q,m}/σ{q,m} , and critical value z1−αq for each hypothesis. If there is statistical
evidence at the 5% level of significance, we denote value of test statistic with ∗.
Step q m T {q,m} σ{q,m} T {q,m}/σ{q,m} z1−αq

1 4 {1, 2, 3, 4} 1.460 0.045 32.445∗ 1.645
2 3 {1, 2, 3} 1.418 0.032 44.562∗ 1.645

3 {1, 2, 4} 0.586 0.032 18.428∗ 1.645
3 {1, 3, 4} 0.507 0.032 15.941∗ 1.645
3 {2, 3, 4} 0.408 0.032 12.836∗ 1.645

3 2 {1, 2} 0.540 0.018 29.406∗ 1.955
2 {1, 3} 0.486 0.018 26.383∗ 1.955
2 {1, 4} 0.027 0.018 1.450 1.955
2 {2, 3} 0.393 0.018 21.394∗ 1.955
2 {2, 4} 0.020 0.018 1.063 1.955
2 {3, 4} −0.004 0.018 −0.224 1.955

4.2. Applications : An example

For illustration, we employ the step-down multiple comparison significance testing to analyze the Electroencephalog-
raphy (EEG) data publicly available at the University of California-Irvine Machine Learning Repository [1]. The data arose
from a large study to examine Electroencephalograph (EEG) correlates of genetic predisposition to alcoholism. Monitoring
of the brain electric activity is performed with 64 electrodes evenly distributed over subjects scalps and recording 256
measurements 1 s. The initial study involved two groups of subjects: alcoholics and controls. Each subject was exposed
to either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen from a picture set.
The outcome measurements are Event-Related Potentials (ERP) indicating the level of electrical activity in the region of
the brain where each of the electrodes is placed.

This data set has been analyzed by several statisticians for various purposes, see, e.g., Harrar and Kong [9] whose main
hypotheses of interest whether ERP profiles are similar between the alcoholic and control groups, and if different, to
identify for which electrode (which part of the brain) dissimilarity occurred.

In this paper, we conduct the analysis the for the single stimulus (S1) exposure in the alcoholic group. We are interested
in testing the independence of the level of electrical activity within the frontal regions of the brain. Specifically, the data
set we focus on, consists of four channels (electrodes) FC1, FCz, FC2 and Cz where each channel has names identifying the
location of the electrode on the scalp; F stands for frontal lobe, letter z (zero) is used for the mid-line and C identifies the
central location between the frontal and parietal lobes. Combinations of two letters indicate intermediate locations, for
example FC is in between frontal and central electrode locations (see Fig. 5 of Harrar and Kong [9] for illustration). In the
notations of the paper, this data set comprises k = 4 sub-vectors (FC1 (1), FCz (2), FC2 (3), Cz (4)), each of dimensionality
p = 256 with equal sample sizes, that is n1 = 77. The multiple comparison procedure proposed in Section 3 is applied
to clarify whether the levels of the brain activity at FC1, FCz, FC2 and Cz channels are mutually independent. Using the
significance level α = 0.05, the test results for each step are summarized in Table 4.

From Table 4, the hypothesesH{2,{1,2}},H{2,{1,3}},H{2,{2,3}} are rejected, whereasH{2,{1,4}},H{2,{2,4}},H{2,{3,4}} are retained.
Hence, with the results above we have strong evidence to believe that the three channels, FC1, FCz, and FC2 correlate
with each other, but there is no correlation between (FC1, FCz, FC2) and Cz. This suggests that the assumption on the
cross-channel independence in such empirical studies may not be appropriate. The four steps of the testing model for
this example are illustrated in Fig. 3.
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5. Summary

A test statistic for mutual independence of k random vectors coming for multivariate normal populations is developed
when the dimensionality is large, possibly much larger than the sample size. Such a test is usually carried out as a
preliminary test in large scale multivariate inference; examples include discriminant analysis or model-based clustering,
testing equality of mean vectors and covariance matrices where the ability to detect departures from independence is of
crucial importance. Zhu et al. [24] points out the limitations of the usual distance covariance to quantify independence
between two random vectors in the high-dimensional setup. Under the non-normal population, it seems there might be
some intrinsic difficulties to completely characterize independence between two random vectors in the high-dimensional
framework. This motivates us to develop the theory, which is based on the multivariate normality assumption, i.e., when
ρV completely characterizes independence between two random vectors. In the context of testing the hypothesis of
independence, the applicability of our proposed procedure can be checked first by applying a normality test for high-
dimensional data such those proposed by e.g. Himeno and Yamada [10] or non-parametric procedures, proposed by
e.g. Chen and Xia [4]. If normality does not hold, ρV simply represents a measure of correlation between two vectors
and the developed procedure can be used to test whether this correlation is significant.

The reliance on exact multivariate normality is limiting and one approach to handle this limitation in practical
applications is to exploit semi-parametric Gaussian copula developed in Liu et al. [17]. Specifically, the idea of this
approach is to replace the random variable x = (x1, . . . , xp) by the transformed variable f (x) = (f1(x1) . . . fp(xp)), and
assume that f (x) is multivariate normal. A set of univariate monotone functions {fi}

p
i=1 is estimated from the data and

being defined in this way, this semi-parametric copula results in a nonparametric extension of the normal distribution.
The results of Liu et al. [17] also indicate that the nonparanormal distribution can be used as a safe replacement for
normality-based estimators even if the data are truly normal.

With a view towards alternatives in which dependence is spread out over vector components, our proposed test
statistic is formed as a sum of consistent estimators of the pairwise vector correlation coefficients. The corresponding
asymptotic theory is then developed to derive the asymptotic normal limit of the proposed test when both sample size
and dimensionality go to infinity. A step-down multiple comparison procedure that allows to control the family-wise
error rate under independence is presented as a direct by-product.

Simulation results are used to demonstrate the finite sample performance of the test with respect to its size control and
power, for large samples, arbitrary dimensions and a variety of dependence structure models often used in multivariate
analysis. Our methodology is illustrated with the Electroencephalography (EEG) data where we applied the proposed
step-down procedure for assessment of independence of electrical activity over certain regions of the human brain. This
methodology is effective when the number of populations is relatively small, but problems arise when the number of
populations is very large. If the number of populations is large, the number of steps becomes enormous, resulting in
problems with computational complexity. These are one of the important issue for the future.
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