
GossiCrypt: Wireless Sensor Network Data
Confidentiality Against Parasitic Adversaries

Jun Luo?

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
Email: j7luo@engmail.uwaterloo.ca

Panagiotis Papadimitratos? Jean-Pierre Hubaux
School of Computer and Communication Sciences

EPFL (Swiss Federal Institute of Technology in Lausanne)
CH-1015, Lausanne, Switzerland

Emails: {panos.papadimitratos
jean-pierre.hubaux}@epfl.ch

Abstract—Resource and cost constraints remain a challenge
for wireless sensor network security. In this paper, we propose
a new approach to protect confidentiality against a parasitic
adversary, which seeks to exploit sensor networks by obtaining
measurements in an unauthorized way. Our low-complexity
solution, GossiCrypt, leverages on the large scale of sensor
networks to protect confidentiality efficiently and effectively.
GossiCrypt protects data by symmetric key encryption at their
source nodes and re-encryption at a randomly chosen subset
of nodes en route to the sink. Furthermore, it employs key
refreshing to mitigate the physical compromise of cryptographic
keys. We validate GossiCrypt analytically and with simulations,
showing it protects data confidentiality with probability almost
one. Moreover, compared with a system that uses public-key data
encryption, the energy consumption of GossiCrypt is one to three
orders of magnitude lower.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been an active field
of research over the last few years, with a number of technical
issues largely resolved. Onwards wider adoption, security be-
comes increasingly important and, eventually, security mech-
anisms a prerequisite [23]. Numerous significant efforts have
been made along this line, including public-key cryptography
(e.g., [27], [11]) as the means to digitally sign messages and
establish symmetric keys, as well as symmetric-key based
encryption and authentication for improved efficiency (e.g.,
[24], [16]). However, sensor data confidentiality has been
largely overlooked to this date. Ensuring that sensor-collected
data are accessed only by authorized entities has been viewed
mostly as a secondary concern.

Encrypting data at their source sensor node, with a symmet-
ric key shared with the sink, is a straightforward confidentiality
mechanism. However, it does not fully address the problem
at hand. An adversary can actively exploit the poor physical
protection of nodes, as it would be too costly and thus unreal-
istic to make them tamper-resistant. It is relatively easy for an
adversary to physically access the node memory contents [14],
and extract the symmetric key used for data encryption. Such
an attack is vastly simpler than a cryptanalytic one against the
key. In fact, the adversary could progressively compromise
keys of numerous nodes, and eventually be able to decrypt a
significant fraction of, if not all, data produced by the WSN.

? Jun Luo and Panagiotis Papadimitratos are equally contributing authors.

We are concerned with sensor data confidentiality in such
a setting, where cryptographic keys can be physically com-
promised. We focus on a novel type of adversary we term
parasitic: it seeks to exploit a WSN, e.g., deployed for
scientific measurements, industrial (mining, oil) field data,
or even patients’ health data collection, rather than disrupt,
degrade, or prevent the WSN operation. A parasitic adversary,
defined in detail in Sec. III, aims at obtaining measurements
with the least expenditure of own resources, and the least
disruption of the WSN it “attaches” itself to. Essentially, the
longer the symbiotic relation of the adversary with a fully
functioning WSN remains unnoticed, the more successful the
parasitic adversary will be.

One naive solution against (symmetric) key compromise
is to let sensors encrypt each outgoing measurement with
the public key of the sink. As long as the sink is not
compromised, it is the only one able to decrypt those message
and the parasitic adversary is thwarted. However, software
implementations of public-key operations, albeit computation-
ally feasible, consume energy approximately three orders
of magnitude higher than symmetric key encryption [25].
Hardware implementations of public key encryption (PKE)
can significantly reduce energy consumption, but they remain
accordingly costlier than symmetric key encryption (SKE)
hardware implementations (Sec. V-B).

Therefore, we are facing the challenge of protecting data
confidentiality against parasitic adversaries in an energy effi-
cient manner. To this end, we propose here GossiCrypt, whose
mechanisms are tailored to and leverage on the salient features
of WSNs. GossiCrypt comprises two building blocks: (i) a
probabilistic en route re-encryption scheme, with the source
node always encrypting the data and with relaying nodes en
route to the sink flipping a coin to “decide” whether to perform
re-encryption, and (ii) a key refreshing mechanism that installs
new sensor-sink shared symmetric keys to selected nodes.

Key refreshing is the immediate response to the compromise
of a cryptographic key, but it can mitigate such an attack only
to a certain extent: it is hard for the WSN operator to infer
which keys were compromised. Also, running a network-wide
key distribution protocol frequently can be very costly in an
energy-constrained environment. More important, within two
refreshing events, the adversary would still be fully capable

to decrypt data from nodes whose keys were compromised.
This is where the en route re-encryption complements our
(infrequent) key refreshing: data (or keys) can be decrypted
by the adversary only if all the keys used for source and en-
route encryption are compromised.

GossiCrypt has extremely simple key management require-
ments and very low complexity operation. Each sensor shares
one data encryption symmetric key with the network sink. In
addition, a single parameter drives probabilistically the partic-
ipation of each node in en-route encryptions. This simplicity
is inherent in gossiping protocols, with nodes flipping a coin
to determine, e.g., if they should synchronize their databases
or relay a message [8], [12]. This inspires the name of our
scheme, as the decision is on (re-)encrypting rather than on
relaying a packet. Key refreshing is also simple, as it is
performed with randomly chosen nodes. Overall, simplicity
renders GossiCrypt broadly applicable.

Our main contribution is an efficient and highly effective, as
our evaluation shows, scheme to ensure sensor data confiden-
tiality. The objectives of GossiCrypt are specified in Sec. IV.
We validate the effectiveness of our scheme analytically and
experimentally. Attacked by a parasitic adversary that con-
tinuously compromises new nodes to obtain their encryption
keys, GossiCrypt protects the confidentiality of data with
probability almost one. At the same time, the comparison
with PKE shows that the GossiCrypt energy expenditure is
significantly lower. Another contribution is the introduction of
the parasitic adversary, a realistic type of attacker for a wide
range of commodity and tactical WSNs. To the best of our
knowledge, this is a novel yet realistic and highly effective,
unless thwarted, type of adversary.

In the rest of the paper, we first provide the system and
adversary models. Then, we present an overview of our
scheme and present in detail its constituent protocols. In Sec. V
and VI, we analyze our scheme and provide an experimental
validation. Due to space limitation, literature survey is omitted;
a detailed discussion of related work can be found in [18]. We
discuss a number of issues related to our scheme in Sec. VII,
and conclude in Sec. VIII.

II. SYSTEM MODEL

The WSN comprises N sensor nodes, each with a unique
identity Si, and a network sink Θ performing data collection
and key refreshing. It is straightforward to consider multiple
sinks, even with distinct roles, yet we omit this for simplicity
in presentation. Each node Si shares a symmetric key, Ki,Θ,
with the sink, and knows the public key, PuKΘ, of the sink.
The sink is equipped with all Ki,Θ.

Beyond these end-to-end, sensor-to-sink, associations, nodes
may share symmetric keys with their neighbors, to enable link-
layer security primitives (e.g., TinySec [16]). However, such
security mechanisms are beyond the scope of this work and
they can clearly coexist with our scheme.

We describe the data of interest with the help of two
parameters, T and δ; the user seeks to collect data:
• From a fraction 0 < δ ≤ 1 of the WSN nodes,

• Over a period of T seconds, for each node Sj , for j =
1, . . . , dδNe.

The actual values of T and δ can vary. T can range from
a short period, t0, for a single sensor measurement, to a
sufficiently long period for a comprehensive measurement
collection. In general, T = kt0, with k > 0 an integer.
Similarly, δ = 1/N , i.e., targeting at a certain node, may be
meaningful, but in practice δ will be a significant fraction of
N .1 We do not dwell on the exact measurement extraction
method, which can be performed in many ways orthogonal to
our scheme.

We assume that N ranges from hundreds to thousands,
as, for example, in WSNs for commercial inventory, habitat
monitoring, industrial and mining field data, and geological
measurements. Experience from prior deployments, with node
placement sparser than the monitored physical system and
relatively long history of measurements necessary to capture
the studied phenomena, teaches that data sensed by each and
every node is significant. This implies that in-network data
aggregation is not an option in such deployments; we assume
this is the case in this work. We also assume WSNs enabling
applications that do not undergo development. Thus, the entire
operating system (apart from certain tunable parameters) is
stored in read-only memory (ROM). Finally, WSN nodes are
not tamper-resistant or store cryptographic keys in tamper-
resistant components, due to cost considerations.

III. ADVERSARY MODEL

We identify a new type of adversary we term parasitic. Its
objective is to exploit deployed wireless sensor networks, by
accessing in an unauthorized manner data collected by those
WSNs. More specifically, a parasitic adversary:

1. Seeks to obtain the WSN data collected according to the
parameters δ and T .

2. Can be physically present, at each point in time, only
at a much smaller fraction of the area covered by dδNe
sensor nodes.

3. Can physically access data stored at sensor nodes and
retrieve their cryptographic keys.

4. Can be mobile [20], i.e., compromise different sets of
nodes over different time intervals. “Mobile” tradition-
ally refers to virtual moves (in terms of compromising
system entities); here, it also represents physical moves
of the adversary.

5. Can compromise in the above-described manner at most
one sensor per τ seconds. We assume τ ¿ T .

The characteristics of the parasitic adversary reflect its real-
ism. Constrained presence (assumption 2) is meaningful, be-
cause, otherwise, the adversary could deploy its own WSN and
trivially obtain the data the WSN user collects (assumption 1).
It exploits obvious weaknesses of WSNs (assumption 3): poor
physical protection makes it relatively easy to obtain data

1WSNs deployed for (often one-time) event detection (e.g., forest fire or
bridge structural faults) would correspond to δ = 1, and T equal to the period
from the WSN deployment to the event/alarm occurrence.

.
.
.

node 1

node 2

node n

node 3

Time lines of data histories

(Virtual) mobility
of the adversary

Fig. 1. Mobility of the parasitic adversary.

encryption keys [14]. The parasitic adversary is unobtrusive,
that is, cannot modify the implemented protocols stored in
ROM (Sec. II). Furthermore, it can utilize its resources intel-
ligently. Mobility (assumption 4), illustrated in Fig. 1, shows
that the adversary can be in the proximity of different nodes
for periods of time during which it either compromises the
node, or obtains snapshots of their measurement histories, or
intercepts messages sent from nodes within its receiving range.

The strength of the adversary is evident from assumption 5:
the time needed to physically compromise a single node, albeit
significant if nodes are carefully designed, is much shorter than
T , the period over which data are to be collected. In other
words, the benefit of the adversary from compromising sensor
nodes is far reaching. The adversary could remain within
range of the compromised node and trivially intercept all its
transmissions. But such an attack would be self-defeating:
from assumption 2, the adversary would certainly capture
much less than dδNe measurements. From a different point
of view, assumption 2 captures the difficulty to deploy a
network of eavesdroppers within one hop of all previously
compromised nodes. The eavesdroppers’ transceivers would
need to be highly sensitive (and thus more expensive than
that of a sensor node) to cover a meaningful fraction of the
targeted WSN. Overall, leaving “sentry” nodes behind would
be comparable to deploying a WSN by the adversary.

We assume that the protocol design and implementation are
such that remote node compromise is prevented. For example,
the adversary cannot exploit arbitrary software weaknesses
and make a sensor node disclose its cryptographic keys.
Such robustness should be possible given the relatively simple
functionality of WSN node software, compared to that of
more complex systems (e.g., desktop or portable computers).
We also assume that the sink cannot be compromised by
the adversary. Readers are referred to [29] for the investi-
gations on compromise of low-end mobile sinks. Moreover,
denial-of-service (DoS) attacks, including jamming in various
protocol layers [28], Sybil/Node replication attacks [22], or
“wormhole” formation [21] are beyond the scope of this
work: countermeasures to those attacks can coexist with our
protocols. Neither do we consider physical destruction of WSN
nodes, which would not benefit the adversary.

IV. GOSSICRYPT

GossiCrypt aims at ensuring confidentiality, that is, prevent-
ing any unauthorized access to data collected by a WSN. It
does not seek to protect data coming from every single sensor,

Data reprot Data query

Fig. 2. Securing data collection with GossiCrypt and query authentication
(µTESLA [32] for example).

but rather intends to fulfill the following property, for some
protocol-specific constant 0 < ∆ < 1:
∆T−Confidentiality: Data collected from a WSN comprising
N nodes are ∆T−confidential if the adversary cannot obtain
all measurements performed by more than dN∆e sensor nodes
over a given time interval T .

This is a safety property, i.e., a property related to a system-
specific unwanted situation: obtaining measurements from a
given fraction of sensor nodes over a period of time, meaning-
ful with respect to the system and application, is prevented. In
Sec. V-A we will show that GossiCrypt satisfies this property
against parasitic adversaries with probability almost one.

We emphasize that GossiCrypt does not seek to provide
sensor data authenticity and integrity. The reason is that if a
key is compromised, an adversary (not necessarily a parasitic
one) can impersonate the corresponding sensor and inject
fabricated messages. Nonetheless, data that originate from
non-compromised nodes have their authenticity and integrity
protected. We also clarify that GossiCrypt does not seek to
hide the identities of sensor nodes, achieve data source un-
traceability, or satisfy any notion of anonymity, unlinkability,
or privacy. Clearly, confidentiality relates to privacy, but, again,
all GossiCrypt seeks to provide is the confidentiality of the data
provided by sensor nodes.

A. Data Encryption

We distinguish sensor nodes into two types, data sources
and relaying nodes, with each node assuming either role at
different points in time. We denote by GossiCryptE the data
encryption operation of GossiCrypt. As illustrated in Fig. 2,
it is executed by nodes on the path from a data source to a
sink (inclusive), with the outcome (i.e., re-encrypting or not)
at each relaying node being random (with probability q).

The path may be one hop, if the sink is within the transmis-
sion range of the sensor node, but this is not cost-effective; in
general, the sink is at a distance of multiple hops from data
source(s). The path discovery is orthogonal to GossiCryptE . It
can be determined by a (secure) routing protocol, for example,
forming an authenticated tree rooted at the sink [24], possibly
on-the-fly, as a result of the query sent out from a sink.
GossiCryptE can be employed on top of any path discovery
protocol and does not impose extra requirements. For the rest
of the discussion, we assume that, minimally, each Si knows
the next node towards Θ on a pathSi,Θ without the transmitted
packet carrying the routing information.

For a sensor measurement m, a symmetric key Ki,Θ shared
by Θ and Si, a message authentication code MAC(Ki,Θ, . . .),
and q ∈ (0, 1) the protocol-specific parameter governing the
en route re-encryption, GossiCryptE(Ki,Θ, pathSi,Θ, q, m)
is invoked by Si acting as a source:

1. Source node, Si:
1.a. Generate a nonce n for the communication with

sink Θ.
1.b. Calculate H = MAC(Ki,Θ,m, n, Si).
1.c. Encrypt m,n, H with Ki,Θ to obtain ciphertext

σi = {m,n, H}Ki,Θ .
1.d. Transmit packet pi = σi, Si to the first relaying

node Sj on pathSi,Θ.
2. Relaying node, Sj:

2.a. Upon receipt of a packet pi, generate a random
number x ∈ [0, 1]. If x > q, relay pi to the next
relaying node Sk on pathSi,Θ, or to Θ. Otherwise,

2.b. Generate ciphertext σj = {pi}Kj,Θ .
2.c. Append own identity Sj to σj .
2.d. Relay packet pj = σj , Sj to the next relaying node

Sk along pathSj ,Θ, or to Θ.
3. Sink Θ:

3.a. Upon receipt of a packet pk, retrieve Kk,Θ, the key
shared with Sk, and decrypt σk. If the source, Si,
cleartext m,n, H , is obtained, go to (c). Otherwise,

3.b. Obtain ciphertext σl and Sl. Decrypt σl with Kl,Θ.
Repeat successively for all Sl that re-encrypted the
packet, till obtaining the source clear-text m,n, H .

3.c. Determine if n was previously seen. If so, discard
the packet. Otherwise,

3.d. Compute H ′ = MAC (Ki,Θ, m, n, Si). Discard the
packet if H ′ 6= H . Otherwise, deliver m to the
WSN user.

B. Key Refreshing

To defend against the progressive compromise of an in-
creasing number of nodes, Ki,Θ keys should be refreshed, i.e.,
replaced with new K ′

i,Θ keys. The sink is typically unaware
of which nodes are already compromised. Thus, it selects
randomly an Si node to refresh, among a set of N ′ ≤ N nodes.
This selection is, in general, made among the data source
nodes of interest (the δ fraction of N as defined in Sec. II),
and all the intermediate nodes that connect those sources to
the sink. In other words, the refreshing effort focuses on the
same part of the network that is meaningful for the adversary
to target.

Given a particular system design for the nodes, it is not
very difficult to have an arguably pessimistic estimation of
the rate of physical node compromise, as per Sec. III. Then,
based on this estimate of τ−1, the key refreshing rate λr can
be selected accordingly by the sink, and conveyed to all nodes
via an authenticated control message. Confidentiality of λr is
not needed, as the adversary would, at best, compromise nodes
at its maximum possible rate τ−1. Authenticity, however, is

clearly required, to ensure that an active adversary does not
“slow down” the key refreshing.

Symmetric-key based key transport techniques, similar to
those in [1], are effective only if the adversary, having previ-
ously compromised Ki,Θ, cannot intercept the key refreshing
protocol messages. Moreover, an interactive key establishment
protocol, for example, initiated by the sink, would reveal
the identity of the node whose key is being refreshed. The
adversary could eavesdrop all messages sent and received from
the sink, and hence gain a significant advantage: that is, know
which nodes were refreshed and then re-compromise them.

To thwart these two vulnerabilities, we propose a key
refreshing protocol with two variants. This is essentially a key
transport protocol; but it leverages on (i) the GossiCryptE

operation, with optional public key encryption at the source
sensor node, and (ii) the integration of the key refreshing with
the data collection. As a result, the key refreshing protocol is
similar to the data encryption protocol, presented in Sec. IV-A.
There are two main differences: a random point process gen-
erator [6], RGen(λr), used to generate (key refreshing) events
with intensity λr, and a flag set to indicate to the sink that a
new key K ′

i,Θ is included in the message (which, otherwise,
externally appears identical to any measurement/data reporting
message). The protocol operates as follows:

1. Source node, Si:
1.a. Upon an event of RGen(λr), generate a new key

K ′
i,Θ; wait for the time till the next data report.

1.b. Upon a data report to be returned, delay the report
to be combined with the next one, and generate a
nonce n for the communication with sink Θ.

1.c. Calculate H = MAC(Ki,Θ,flag , K ′
i,Θ, n, Si).

1.d. Encrypt flag ,K ′
i,Θ, n, H with Ki,Θ, to obtain ci-

phertext σi = {flag ,K ′
i,Θ, n, H}Ki,Θ .

1.e. Transmit packet pi = σi, Si to the first relaying
node Sj on pathSi,Θ.

2. Relaying node, Sj:
Identical to the operation for GossiCryptE (Sec. IV-A).

3. Sink Θ:
3.a. Perform the steps (3).(a)-(b) as specified in

Sec. IV-A, to obtain the source, Si, cleartext
flag ,K ′

i,Θ, n, H .
3.b. Determine if n was previously seen. If so, discard

the packet. Otherwise,
3.c. Calculate H ′ = MAC(Ki,Θ,flag ,K ′

i,Θ, n, Si). If
H ′ 6= H , discard the packet. Otherwise, replace
Ki,Θ with K ′

i,Θ.
The protocol installs a new key even if the adversary inter-

cepts the message en route to the sink, unless the adversary is
physically within one hop from the previously compromised
and now to-be-refreshed Si. In the later case (which is rare
due to the constrained physical presence of an adversary), the
adversary can decrypt the message and obtain the key. To
prevent this, we propose the following variant of the above
key refreshing protocol:

1. Source node, Si: Identical to the above key refreshing

operation, with the additional step between (b) and (c),
and replacing K ′

i,Θ with σκi afterwards:
1.b+. Encrypt K ′

i,Θ with PuKΘ, the public key of
the sink, and obtain the ciphertext σκi =
{Si, K

′
i,Θ}PuKΘ .

2. Relaying node, Sj:
Identical to the operation for GossiCryptE (Sec. IV-A).

3. Sink Θ: Identical to the above key refreshing operation,
with the additional step:
3.d. Decrypt σκi with PrKΘ, the private key of the

sink, and check if the obtained node identity is Si.
If so, replace Ki,Θ with K ′

i,Θ.
This second variant’s use of PKE resembles mechanism 1 of

the ISS/IEC 11770-3 standard [2]. It ensures that even in the
unlikely event the adversary is within one hop of the refreshed
node, still, it cannot obtain the new K ′

i,Θ. The only option for
the adversary would be to re-compromise Si.

V. PROTOCOL ANALYSIS

We analyze the security level of GossiCrypt and also
compare its energy expenditure with a possible alternative in
this section. Our security analysis focuses only on the parasitic
adversary; further discussion on other adversaries is given
in Sec. VII and [18]. The security analysis applies to both
data encryption and key refreshing (with or without PKE)
protocols, as they follow the same principle.

A. Security Analysis

In this section, we describe a model of GossiCrypt and
evaluate it against the ∆T−Confidentiality property (Sec. IV)
and the parasitic adversary (Sec. III). Our analysis, accompa-
nied by simulation results in Sec. VI, shows that even with a
significant fraction of sensor nodes compromised, GossiCrypt
safeguards confidentiality with probability almost one.

Fundamental for the analysis is the fraction of correct, i.e.,
not compromised, nodes; this is determined by the behaviors
of the sink refreshing and the adversary compromising keys.
Therefore, we model the state of the system, the number of
correct nodes, as a stochastic process. Our security analysis on
GossiCrypt is based on the stationary regime of this process.

Since the sink cannot in general know which keys are
already compromised, a randomized strategy on selecting
which node to refresh is a reasonable choice. We assume that
the sink does so with an effective2 refresh rate λ. Recall that
the sink governs the selection procedure through setting the
parameter λr. The adversary, compromising nodes at rate τ−1,
is also modeled as selecting the next node to compromise (or
to test if the key was refreshed)3 arbitrarily. This is so, because

2The model covers the two options (with or without PKE) of the key
refreshing protocol described Sec. IV-B. Although the key refreshing without
PKE might allow the adversary to obtain the new key, it is still highly possible
that new keys are not exposed to the adversary, as the adversary cannot be
ubiquitously present (also pointed out in [3]). Thus, the model still applies
but with the refreshing rate λr discounted by a factor.

3A model that assumes the rate of testing differing from that of compro-
mising does not fundamentally change the stationary distribution.

the adversary is also in general unaware of which keys were
refreshed by the sink.4 Although an adversary physically close
to a source node Si, may detect a key-refreshing, its physical
presence is limited to a negligible fraction of the network.
Note that re-encryption deprives the adversary from this ability
elsewhere. The aforementioned assumptions suggest that both
the sink and the adversary follow Markov chains [6] in
choosing the next target. In particular, the adversary may
follow a deterministic trajectory, which is a special Markov
chain with deterministic transitions.

The system size depends on the behavior of the sink. If the
sink is static and the data collection paths change slowly, if
at all, over time, both the sink and the adversary could have
a clear view on which nodes they need to target: the source
sensor nodes of interest and the relaying nodes en-route to the
sink. Or better even, from the adversary’s point of view, the
slightly smaller subset of sources and relaying nodes en-route
to the point it intercepts the measurement packets. As a result,
the system is this known subset of nodes with size N ′ < N .
On the other hand, if a mobile sink is used [15], [26], [17], the
adversary cannot predict the data collection paths. This results
in a larger system size, which essentially can be all nodes,
offering higher robustness against the adversary at the expense
of complexity in operating the mobile sink. We emphasize
however that our analysis is applicable to both cases. All one
needs to do is to view N below as the effective system size.

We assume that the times of performing refreshing and
compromising can be modeled as two independent Poisson
processes with intensities λ and τ−1 respectively. We also
assume that, at each time point in the processes, either the sink
approaches a node and refreshes it or the adversary captures
a node and compromises it, no matter whether the node has
been compromised or not. The Poissonian and independence
assumptions are not essential. The easily drawn analogies
between our model and the teletraffic models [5] imply that the
stationary distribution is insensitive to all other characteristics
beyond the intensities.

Based on these assumptions, we describe the system states

4In a static sink network, the adversary might gradually, over a long
period of eavesdropping, infer (part of) the communication paths connecting
the sensor nodes to the sink. This could allow the adversary to launch
a deterministic attack (e.g., starting from the sink’s neighbors and then
moving outwards, compromising their upstream nodes). This might allow the
adversary to fight back against symmetric-key based refreshing if and only if
it has compromised the entire path connecting the refreshed node to the sink.
However, this attack would be completely ineffective against a public key
based refreshing (as described in Sec. IV-B). The only approach that could
allow the adversary to detect if some node Sk re-encrypted a message with a
new key (that does not allow the adversary to decrypt the message and then
can guide its re-compromise), would be to intercept the message before it is
received and after it is relayed by Sk . But this would imply physical presence
of the adversary along the entire path and eventually the source node(s).
This would contradict assumption 2. Therefore, the deterministic, targeted
compromise pattern would be essentially impossible and thus pointless, and
thus no more effective than a random one. We note that it is also possible that
the sink counters deterministic attack patterns with similarly structured refresh
patterns. However, investigation of those albeit interesting is not provided here
due to space limitations. For example, the efficiency of the scheme could
greatly enhanced if the public key refreshing protocol is run with nodes near
the sink, to “break” chains of fully compromised paths and make symmetric-
key refreshing effective even against this deterministic attack.

as a continuous Markov chain {X(t)}t≥0 driven by the
Poisson processes. Since such a chain is characterized by its
subordinated chain {X̂n}n≥0 [6], we focus on this discrete
Markov chain. A direct observation on the system is that
the more numerous the compromised nodes, the less the
efficiency of the adversary (thus the higher the efficiency
of the sink) is and vice versa. The reason is clear: when
many nodes are compromised, the probability of fruitlessly re-
compromising becomes high. This reminds us of the celebrated
model described by Paul and Tatiana Ehrenfest (sometimes
referred to as The Urn of Ehrenfest) [9] for understanding
the diffusion through a porous membrane.5 The system we
consider differs from the Urn of Ehrenfest in that the “self”
transition probability is non-zero (i.e., pii > 0) and also that
the transition probability depends on the rates λ and τ−1.

Therefore, the transition matrix of the subordinated chain
{X̂n}n≥0 is as follows:

P =

s0 ν0

µ1 s1 ν1

.
µi si νi

.
µN sN

where i is the number of correct nodes in the system,
µi = i

Nτ(λ+τ−1) and νi = (N−i)λ
N(λ+τ−1) represent the transitions

resulting from a compromising and a refreshing, respectively,
and si = N−i

Nτ(λ+τ−1) + iλ
N(λ+τ−1) expresses those fruitless

operations. One can easily see that this is a birth-and-death
process in continuous time with reflecting barriers at 0 and
N [6]. The chain {X̂n}n≥0 is irreducible (i.e., every state is
reachable from all other states) and positive recurrent (i.e., the
system does not freeze at some states). It has the following
stationary distribution (the detailed computation is omitted):

π0 =
{

1 +
ν0

µ1
+

ν0ν1

µ1µ2
+ · · ·+ ν0ν1 · · · νN−1

µ1µ2 · · ·µN

}−1

(1)

πi = π0
ν0ν1 · · · νi−1

µ1µ2 · · ·µi
(2)

Note that this is also the stationary distribution of {X(t)}t≥0.
It has the following properties:
• The system can rarely be free either of correct nodes

(X(t) = 0) or of compromised nodes (X(t) = N),
because both π0 and πN vanish with increasing N .

• The most likely state (i.e., arg maxi πi) lies between 0
and N ; it depends on the magnitude of λ and τ−1. The
larger the value of λτ (the ratio between the rate of
refreshing and that of compromising) is, the closer is this
state to N .

These two properties can be easily observed in Fig. 3. It

5The model can be briefly described as follows [6]: there are N particles
that can be either in compartment A and B. Suppose at time t, there are i
particles in A. The diffusion process behaves as if someone chooses a particle
at random and moves it to another compartment at time t + 1. Therefore,
the transition probability is pij = i

N
(j = i − 1), or N−i

N
(j = i +

1), or 0 (otherwise).

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

p

τ = 1

τ = 0.6

τ = 1.5

Fig. 3. Stationary distribution π with N = 100, λ = 1, and τ = 0.6, 1, 1.5.
The y-axis is the probability density corresponding to a certain number of
correct nodes. Since only the product λτ matters, we choose the values of λ
and τ arbitrarily without a dimension.

shows that even if the sink is more efficient than the adversary
(λτ = 1.5, the red curve), there are still approximately 40%
compromised nodes.

Now, we evaluate the probability of having at least one
correct node re-encrypting the data on a routing path of length
L from a source to the adversary. Let a random variable Y be
the number of correct nodes re-encrypting the data and hence

Y =
∑M

m=1 Ωm M ≤ L (3)

where M is the random variable representing the number of
nodes that re-encrypt the data and {Ωm} are i.i.d. Bernoulli
variables indicating the state of each of the M nodes (Ωm =
1 if correct and 0 otherwise). We want to calculate P{Y >
0} = 1−P{Y = 0}, the success probability (in the sense that
GossiCrypt successfully provides confidentiality). To this end,
we make use of the generating function gY (z) of Y , because
P{Y = 0} = gY (0) and, by the rule of random sum of i.i.d.
variables [6], gY (z) = gM (gΩ(z)). Therefore,

P{Y = 0} = gM (gΩ(0))
= EM [P{Ω0 = 0}m]

=
L∑

m=1

P{Ω0 = 0}m

(
L

m

)
qm(1− q)L−m (4)

Given the stationary distribution π of {X(t)}t≥0,

P{Ω0 = 0} =
N∑

i=0

P{Π, X(t) = i}

=
N∑

i=0

N − i

N
πi =

N − Eπ(X)
N

(5)

where Π is the event of picking a node within N − i compro-
mised ones. We illustrate the success probability P{Y > 0}
under different values of L and q in Table I, assuming
N = 100, λ = 1, and τ = 1.5. One might think the case
where P{Y > 0} = 0.8258 (for L = 5 and q = 0.5)

is an unfavorable bet for the legitimate user (because the
adversary is able to decrypt the data with probability 0.1742);
the adversary, however, gains nothing from this. To understand
this point, we refer again to Fig. 1. Since what the adversary
might decrypt (with probability 0.1742) is just a snapshot, the
probability of observing the whole data history goes to zero
(the probability of obtaining three snapshots is already very
low: 0.17423 = 0.0053). Note that we take for granted that the
events of decrypting two different snapshots are independent;
this is guaranteed by the coin flipping procedure even if two
snapshots are transmitted through the same routing path.

q 0.5 0.6 0.7 0.8 0.9
L

5 0.8258 0.8875 0.9303 0.9590 0.9773
6 0.8772 0.9273 0.9591 0.9783 0.9894
7 0.9134 0.9531 0.9760 0.9886 0.9950
8 0.9390 0.9697 0.9859 0.9940 0.9977
9 0.9570 0.9804 0.9917 0.9968 0.9989
10 0.9697 0.9873 0.9951 0.9983 0.9995
11 0.9786 0.9918 0.9871 0.9991 0.9998
12 0.9849 0.9947 0.9983 0.9995 0.9999

TABLE I
SUCCESS PROBABILITY P{Y > 0} UNDER DIFFERENT VALUES OF L

(PATH LENGTH) AND q (COIN FLIP PROBABILITY).

We analyzed to this point the system state process and
the per-message protection due to GossiCrypt given the path
length L. In general, L is a random variable. If we knew its
probability distribution P(L), the probability of breaking the
confidentiality of a single measurement (T = t0) from a given
node (∆ = 1/N) would be

Ft0, 1
N

= EL[1− P{Y > 0}] (6)

What we are interested though, as per our specification, is the
confidentiality with respect to any ∆ ≥ 1/N , and T = kt0
for integer k ≥ 1. Clearly, it depends on P(L) that is a
complicated consequence of the relative placement of the sink
and sources, as well as the patterns by which the adversary
compromises nodes and the sink refreshes them. As a result,
we proceed without making an assumption on P (L) and
describe the property of GossiCrypt in an asymptotical sense.
Claim: GossiCrypt guarantees the ∆T -Confidentiality prop-
erty for ∆ ≥ 1/N with probability P (with N being the system
size), and P → 1 when T À t0.

Proof: As it is at least as hard to breach the confi-
dentiality of two or more measurements as that of a single
one, it is clear that Ft0,∆ ≤ Ft0, 1

N
for any ∆ > 1

N . The
strict inequality holds if the events of compromising two or
more measurements are independent. Furthermore, we have
that FT,∆ = (Ft0,∆)k for T = kt0, k > 0. Therefore,
P = 1−FT,∆ ≥ 1−(Ft0, 1

N
)k → 1 if k →∞. In other words,

as k grows, the probability of safeguarding the confidentiality
of ∆ measurements over a period T goes to one. Literally,
if the data history to be captured is sufficiently long, there
is virtually no opportunity for the adversary to succeed in
breaking its confidentiality.

As shown in Fig. 3, it is always preferable to have λτ > 1
(although λτ < 1 can be compensated by aggressively setting
q). This is not hard to achieve because, whereas the adversary
obtains keys via its physical presence, the key refreshing is
performed automatically and remotely. A conservative way to
achieve this is to estimate τmin (the lower bound of τ) and to
set λ > τ−1

min. Estimating τ online can be preferable. We also
note the the convergence of P persists even if λτ < 1 but, of
course, with a lower speed.

B. Energy Expenditure

As we mentioned in Sec. I, applying PKE is an alternative
solution to thwart a parasitic adversary. We will show in this
section that, a sound in theory PKE-based solution is inferior
to GossiCrypt due to the much higher energy expenditure it
incurs.

For a quantitative comparison between PKE and Gos-
siCrypt, we make the following assumptions:

1. The network size N < 216, so node identity Si needs
at most 16 bits.

2. Each message has a length of 20 bytes.
3. GossiCrypt makes use of AES-128 encryption.
4. The PKE can either be RSA-1024 or ECC-160.6

5. The energy expenditure for transmission is 0.21 µJ/bit.
The transmission cost refers to MICA2 nodes, and so are
the computation delays for cryptographic operations, and the
related power dissipation, based on available experimental
results. Note that the fourth assumption strongly favors PKE,
with its 80-bit security compared with the AES 128-bit se-
curity level. The energy costs are taken from [25]. Although
hardware implementations could significantly reduce energy
consumption for all primitives [13], [4], [10], the order of
difference is maintained.

Table II compares GossiCrypt with two variants of PKE in
terms of computation7 and communication complexity.

GossiCrypt PKE-RSA PKE-ECC
Comp. 32.4 µJ/msg 14.1 mJ/msg 53.4 mJ/msg

An increase of 16q bits 1024 bits 320 bits
Comm. per message per hop per message per message

TABLE II
COMPARISON BETWEEN GOSSICRYPT AND PKES.

We have the following observation on Table II: First, the
energy expenditure in computation of GossiCrypt at a source
node is 2 to 3 orders of magnitude lower than the those of
PKEs. Second, the energy expenditure in communication of
GossiCrypt for each node en-route remains lower than those

6Rabin PKE, in theory, is more efficient than RSA (though the difference
can be as low as one modular multiplication for low RSA exponent operations)
[19]. However, we are not aware of sensor network software implementations
for Rabin PKE. Moreover, Rabin appears to be costlier than RSA certain
implementations in other platforms [7].

7The computational complexity is measured in different units for
symmetric-key and public-key encryption in [25]. So we need to fix the
message size in order to compare them.

of PKEs up to 10q−1 (for PKE-ECC) and 54q−1 (for PKE-
RSA) hops (note that q < 1).

It is clear that the communication cost of GossiCrypt is
lower than that of PKE-ECC below 10q−1 hops and that
of PKE-RSA below 54q−1 hops. We assume the scale of
the WSN meets these criteria and we only compare the
computation cost below. Note that assuming 20 bytes message
actually favors PKE-ECC, whose cost would be doubled if, for
example, the message were one byte longer.

The additional computation cost for GossiCrypt compared
with PKE stems from key refreshing; we denote it as crefresh.
Based on the analysis in Sec. V-A, let us assume refresh rate
equal to the adversary compromise rate (i.e., λτ = 1). For
T = kt0, let τ = T/k as per the definition of the parasitic
adversary, or in other words, the adversary compromises one
node per measurement period t0. Then, for a (sub-)network
of N nodes among which the sink picks randomly, each node
will be refreshed on the average once every N measurement
periods. The advantage for GossiCrypt per source node is ap-
proximately the ratio of N×cGC+crefresh

N×cPKE
≈ N+1

N
cGC
cPKE

without
public-key encryption (as cGC ≈ crefresh) or ≈ 1

N
crefresh
cPKE

with
public-key encryption (as cGC

cPKE
¿ 1), where cGC and cPKE are

the computation costs for GossiCrypt and PKEs, respectively,
given in Table II.

As the advantage of GossiCrypt over PKEs is tremendous
without public-key encryption, we only consider the key
refreshing with ECC-based public-key encryption. In this case,
the cost of refreshing is dominated by one ECC encryption,
thus crefresh

cPKE
≈ 1. Therefore, the ratio 1

N
crefresh
cPKE

decreases as
N grows, thus making GossiCrypt increasingly advantageous.
For example, if N = 100, GossiCrypt can be 100 times less
costly then PKE-ECC. For PKE-RSA, crefresh ≈ 3cPKE and
GossiCrypt is still 33 times less costly. However, the very high
communication cost of PKE-RSA is a significant disadvantage
that makes PKE-RSA infeasible.

The comparison above might seem unfair, as one could
argue that using PKE on a per-message basis is not neces-
sary; for example, PKE could be used only to “transport” a
symmetric key from each source sensor node to the sink. Then,
such end-to-end symmetric keys could be the only ones to be
used to encrypt once data measurements only at the source.
Clearly, such symmetric keys would be used for numerous
subsequent data messages, followed by a new key transport.
However, as we emphasized in Sec. I, such conventional
key refreshing does not fully thwart the parasitic adversary:
between two refreshing events, the adversary would still be
fully capable of compromising nodes and hence decrypting
their data. Therefore, to reach the security level achieved by
GossiCrypt, conventional key refreshing has to be performed
frequently for almost all nodes. Given our assumption that the
adversary compromises one node per measurement period t0,
without GossiCrypt all N (symmetric) keys would have to be
refreshed every t0. Since crefresh ≥ cPKE in general, it would
be more efficient to just use PKE on a per-message basis.

VI. EXPERIMENT RESULTS

We perform simulations in Matlab. We only simulate the
operations of GossiCrypt without taking the MAC/PHY effects
into account. We assume a grid network where nodes appear
on a

√
N ×√N square lattice. The movements8 of both the

sink and the adversary follow a 2D random walk: they take
identical probability 1/4 in choosing one direction out of four
possibilities. The intervals between two successive events of
moving follow exponential distributions with mean λ−1 and τ
for the sink and the adversary, respectively. We assume N =
100, λ = 1, and τ = 1.5. To remove the boundary effect,
we project the lattice on a torus, i.e., moving out of the one
side of the lattice leads to entering on the opposite side. We
illustrate these settings in Fig. 4.

1/4

t
-1

1/4

l
Q

A

Q ASink Adversary

Fig. 4. Simulation settings.

Since the stochastic process described above can be proved
to be aperiodic and positive recurrent, all the states are
ergodic [6]. Therefore, we can use statistics over time to char-
acterize the stationary distribution. We run each simulation for
11000 transitions and truncate the first 1000 points (which are
in transient phase), such that the results are measured in steady
state. Fig. 5 shows the comparison between four empirical
stationary distributions resulting from four simulation runs and
the analytical one obtained in Sec. V-A, It is clear that the
analytical results describe the stationary regime of the system
very well.

Based on these statistics, we can again verify the success
probability P{Y > 0} by randomly choosing routing paths be-
tween nodes and the adversary. For brevity, we only illustrate
the case with L = 6 in Fig. 6 (showing the medians and 95%
quantiles) and compare the results with the analytical ones
shown in Table I. The comparison shows that the analytical
results are a bit overoptimistic, but the differences with the
experiment results are negligible.

Finally, we verify our claim that GossiCrypt guarantees
the ∆T -Confidentiality property with probability almost one
when T = kt0 is sufficiently long. To this end, we randomly
pick two nodes on the grid and consider one as the source
and the other as the data collector. By applying GossiCrypt to
the shortest path between the two nodes, we can evaluate the

8We note that the sink may make a virtual movement by simply changing
the target of the key refreshing protocol, but the adversary has to always
physically move to a node to launch its attack.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

p
Analytical pdf
Empirical pdf 1
Empirical pdf 2
Empirical pdf 3
Empirical pdf 4

Fig. 5. Stationary distributions of the number of correct nodes.

0.5 0.6 0.7 0.8 0.9

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
(Y

>
0)

q

Simulation

Analysis

Fig. 6. Successful probability P{Y > 0} as function of the GossiCrypt
parameter q.

quantity Fkt0, 1
N

for different values of k. As shown in Fig. 7,
this probability converges very fast to zero with an increasing
k, according to both simulation and analytical results. This
corroborates our claim that P = 1−FT,∆ → 1.

To summarize our results in the analysis of Sec. V-A and the
experiments of this section: we showed that, for any protocol-
or application-specific objective ∆ ≥ 1/N , the confidentiality
of the sensed data can be safeguarded with probability almost
equal to one. Although this seems to require that a sufficiently
high number of measurements (or equivalently long period
T) are of interest, analytic and experimental values show that
even very short sequences (e.g., T = 5t0) of measurements
originating from a single source node can be protected with
probability fast approaching one. This is achieved thanks to
the GossiCrypt en-route encryption, resulting in particularly
robust operation even when approximately 40% of the nodes
are compromised by the adversary (as shown by Fig. 5).

VII. DISCUSSION

As described in Sec. IV-B, the key refreshing protocol
does not provide reliable communication. Hop-by-hop re-

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 F

k

Simulation

Analysis

Fig. 7. The probability of breaking the confidentiality of k measurements
from a given node Fkt0, 1

N
as function of k.

transmissions can remedy transient packet loss, but it may
still be possible that a key refreshing message sent from
a node Si to the sink Θ is lost. In that case, Θ would
be unable to decrypt messages Si encrypts with the new
(“refreshed”) symmetric key. A multi-round sensor node-sink
communication protocol, to confirm at both ends the key
refreshing was successful, would not be an option. This is so
as the sink response could single-handedly divulge the node
that performed the refreshing, and thus enable to adversary to
target the node and re-compromise it to obtain the new key.
As a result, we propose here a straightforward solution: to
add limited redundancy only for the infrequent key refreshing
messages. One option is to let Si repeat the same message a
few times; in the presence of benign faults the probability
of successful reception will be practically one with a few
repetitions. Depending on the underlying networking protocol,
if, for example, nodes form a directed acyclic graph rather
than a tree, each node could transmit key refreshing message
replicas to different neighbors and thus across different paths.
Of course, adding redundancy leads to higher overhead; for
example, instead of transmitting one key refreshing message
over N nodes per t0 seconds, r would be transmitted, but
GossiCrypt is still advantageous as r ¿ N .

The impact of active adversaries is discussed next. After
compromising a key, they can impersonate Si, and invoke a
fake key refreshing.9 The adversary could then establish a new
shared key with the sink. At first, the impersonating adversary
would be constrained in terms of where to invoke the fake
refreshing from, as the Si-to-Θ path is essentially accumulated
in the key refreshing message. Independently of that, however,
once the actual key refreshing occurs, Si will operate with
a different key from its impostor. The unobtrusive adversary
cannot prevent Si from launching a key refreshing protocol,
and it cannot upload its own “new” key to Si. As a result, even

9Public key cryptography (e.g., digital signatures generated by a source
node Si) would not be advantageous: the private key of Si can be obtained
by an adversary that physically compromises Si.

if the adversary controls the Si-to-Θ communication, it can at
most deny data collection from Si. But the active adversary
would fail to obtain the data Si reports encrypted with the
actual new key, unless it re-compromises physically Si.

As a follow-up work, we intend to consider specific in-
stantiations of WSNs, e.g., network sizes and topologies, data
extraction and key refreshing methods, and value ranges for
other system characteristics such as δ, T , and ∆, and τ and
λ. Extending our work in this way, through analytical and
experimental means, would allow us to investigate a number
of interesting questions. For example, postulate fine-grained
claims conditional on specific networks, revealing design
trade-offs due to the relative roles of ∆ and T . Or, identify the
right “mix” of symmetric- and public-key based key refreshing
techniques, as a function of the adversary presence, to evaluate
the trade-off of effectiveness for cost.

VIII. CONCLUSION

As security becomes an important requirement for WSNs,
the salient characteristics of WSNs clue the more relevant
threats and types of exploit to thwart with practical defense
mechanisms. With this consideration in mind, we identify here
a novel threat, a parasitic adversary, targeting exactly the most
valuable asset of a WSN, its measurements. The parasitic
adversary is a practical and realistic threat because of (i) its
well-aimed exploit, unauthorized access to WSN data, (ii) its
well-chosen methods, targeting at the weakest system point,
the low physical sensor node protection, and (iii) its resource
constraints and “low-profile” operation.

The second and main contribution of this paper is Gos-
siCrypt, a scheme to ensure WSN data confidentiality. Gos-
siCrypt’s two building blocks are a probabilistic en route
encryption of the data towards the sink and a key refreshing
mechanism, both leveraging on the scale of WSNs. The former
relies on very simple key management assumptions, it is
simple in operation. The latter reverses the impact of the
physical compromise of sensor nodes.

Our evaluation shows that GossiCrypt can prevent the
breach of WSN confidentiality in a wide range of settings.
Even though the adversary could obtain solitary or sparse mea-
surements, our analysis and simulations show that GossiCrypt
prevents the compromise of a meaningful set of measurements
over a period of time with probability going to one. The
most intriguing feature of GossiCrypt lies in its ability of
defending the WSN data confidentiality with simple and low-
cost mechanisms. We believe that such approaches that lever-
age on the WSN characteristics, rather than imitating iron-
clad approaches from other distributed computing paradigms,
can be effective in addressing security challenges for wireless
sensor networks.

REFERENCES

[1] ISO, Information Technology - Security Techniques - Key Management
- Part 2: Mechanisms Using Symmetric Techniques. In ISO/IEC 11770-
2, International Standard, 1996.

[2] ISO, Information Technology - Security Techniques - Key Management
- Part 3: Mechanisms Using Asymmetric Techniques. In ISO/IEC 11770-
3, International Standard, 1999.

[3] R. Anderson, H. Chan, and A. Perrig. Key infection: Smart trust for
smart dust. In Proc. of the 12th IEEE ICNP, 2004.

[4] G. Bertoni, L. Breveglieri, and M. Venturi. ECC Hardware Coprocessors
for 8-bit Systems and Power Consumption Considerations. In Proc. of
the 3rd IEEE ITNG, 2006.

[5] T. Bonald. The Erlang Model with Non-Poisson Call Arrivals. ACM
SIGMETRICS Perform. Eval. Rev., 34(1), 2006.

[6] P. Breḿaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, New York, 1999.

[7] Crypto++ library benchmarks, http://gd.tuwien.ac.at/privacy/crypto/
libs/cryptlib/benchmarks.html.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic
Algorithms for Replicated Database Maintenance. In Proc. of the 6th
ACM PODC, 1987.

[9] P. Ehrenfest and T. Ehrenfest. The Conceptual Foundations of the
Statistical Approach in Mechanics. Dover Publications, New York,
reprint edition, 1990.

[10] G. Gaubatz, J.-P. Kaps, and B. Sunar. Public key cryptography in sensor
networks – Revisited. In Proc. of the 1st ESAS, 2004.

[11] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S.C. Shantz. Sizzle: A Standards-Based End-to-End Security
Architecture for the Embedded Internet. Elsevier Pervasive and Mobile
Computing, 1(4):425–445, 2005.

[12] Z.J. Haas, J.Y. Halpern, and L. Li. Gossip-based Ad Hoc Routing. In
Proc. of the 21st IEEE INFOCOM, 2002.

[13] P. Hamalainen, T. Alho, M. Hamalainen, and T. Hamalainen. Design and
Implementation of Low-area and Low-power AES Encryption Hardware
Core. In Proc. of the 9th EUROMICRO DSD, 2006.

[14] C. Hartung, J. Balasalle, and R. Han. Node Compromise in Sensor
Networks: The Need for Secure Systems. Technical Report CU-CS-
990-05, University of Colorado at Boulder, 2005.

[15] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin.
Intelligent fluid infrastructure for embedded networks. In Proc. of the
ACM MobiSys’04, 2004.

[16] C. Karlof, N. Sastry, and D. Wagner. TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks. In Proc. of the 2nd ACM
SenSys, 2004.

[17] J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser, and J.-P. Hubaux.
MobiRoute: Routing towards a Mobile Sink for Improving Lifetime in
Sensor Networks. In Proc. of the 2nd IEEE/ACM DCOSS, 2006.

[18] J. Luo, P. Papadimitratos, and J.-P. Hubaux. GossiCrypt: Wireless Sensor
Network Data Confidentiality Against Parasitic Adversaries. Technical
Report LCA-REPORT-2007-002, EPFL, 2007.

[19] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[20] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.
In Proc. of the 10th ACM PODC, 1991.

[21] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin,
S. Capkun, and J.-P. Hubaux. Secure Neighborhood Discovery: A
Fundamental Element for Mobile Ad Hoc Networking. IEEE Com-
munications Magazine, 46(2):132–139, 2008.

[22] B. Parno, A. Perrig, and V. Gligor. Distributed Detection of Node
Replication Attacks in Sensor Networks. In Proc. of IEEE Symposium
on Security and Privacy, 2005.

[23] A. Perrig, J. Stankovic, and D. Wagner. Security in Wireless Sensor
Networks. Commun. ACM, 47(6):53–57, 2004.

[24] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Se-
curity Protocols for Sensor Networks. ACM/Kluwer Wireless Networks,
8(5):521–534, 2002.

[25] K. Piotrowski, P. Langendoerfer, and S. Peter. How Public Key
Cryptography Influences Wireless Sensor Node Lifetime. In Proc. of
the 4th ACM SASN, 2006.

[26] Y. Tirta, Z. Li, Y. Lu, and S. Bagchi. Efficient Collection of Sensor
Data in Remote Fields Using Mobile Collectors. In Proc. of the 13th
IEEE ICCCN, 2004.

[27] R. Watro, D. Kong. S. Cuti, C. Gardiner, C. Lynn1, and P. Kruus.
TinyPK: Securing Sensor Networks with Public Key Technology. In
Proc. of the 2nd ACM SASN, 2004.

[28] A. Wood and J. Stankovic. Denial of Service in Sensor Networks. IEEE
Computer, 35(10):54–62, 2003.

[29] W. Zhang, H. Song, S. Zhu, and G. Cao. Least Privilege and Privilege
Deprivation: Towards Tolerating Mobile Sink Compromises in Wireless
Sensor Networks. In Proc. of the 6th ACM MobiHoc, 2005.

