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Security, Privacy, and Incentive Provision for
Mobile Crowd Sensing Systems

Stylianos Gisdakis, Thanassis Giannetsos, and Panagiotis Papadimitratos

Abstract—Recent advances in sensing, computing, and net-
working have paved the way for the emerging paradigm of
mobile crowd sensing (MCS). The openness of such systems
and the richness of data MCS users are expected to contribute
to them raise significant concerns for their security, privacy-
preservation and resilience. Prior works addressed different
aspects of the problem. But in order to reap the benefits of
this new sensing paradigm, we need a holistic solution. That
is, a secure and accountable MCS system that preserves user
privacy, and enables the provision of incentives to the partic-
ipants. At the same time, we are after an MCS architecture
that is resilient to abusive users and guarantees privacy pro-
tection even against multiple misbehaving and intelligent MCS
entities (servers). In this paper, we meet these challenges and
propose a comprehensive security and privacy-preserving archi-
tecture. With a full blown implementation, on real mobile devices,
and experimental evaluation we demonstrate our system’s effi-
ciency, practicality, and scalability. Last but not least, we formally
assess the achieved security and privacy properties. Overall,
our system offers strong security and privacy-preservation guar-
antees, thus, facilitating the deployment of trustworthy MCS
applications.

Index Terms—Incentive mechanisms, mobile crowd
sensing (MCS), privacy, security.

I. INTRODUCTION

MOBILE crowd sensing (MCS) [1] has emerged as
a novel paradigm for data collection and collective

knowledge formation practically about anything, from any-
where and at anytime. This new trend leverages the prolif-
eration of modern sensing-capable devices in order to offer a
better understanding of people’s activities and surroundings.
Emerging applications range from environmental monitor-
ing [2] to intelligent transportation [3], [4] and assistive
healthcare [5].

MCS users are expected to contribute sensed data tagged
with spatiotemporal information which, if misused, could
reveal sensitive user-specific information such as their where-
abouts and their health condition. Even worse, data contri-
butions are strongly correlated with the current user context
(e.g., whether they are at home or at work, walking or driv-
ing, etc.); there is a significant risk of indirectly inferring daily
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routines or habits of users participating in MCS applications.
By inferring user context, one can obtain deeper insights into
individual behavior, thus, enabling accurate user profiling [6].
As recent experience shows, assuming that users can simply
trust the MCS system they contribute sensitive data to, is no
longer a viable option. Therefore, it becomes imperative to
ensure user privacy in MCS scenarios.

Furthermore, although privacy protection will facilitate user
participation it cannot, per se, ensure it. This is critical since
if users do not engage in great numbers, thus, providing
a sufficient influx of contributions, MCS systems will not
succeed. In the absence of intrinsic motivation, providing
incentives becomes vital [7]. Indeed, the research community
has identified various forms of incentives based on mone-
tary rewards [8], social or gaming-related mechanisms [9]
along with methods for incorporating them in MCS sys-
tems [10], [11]. In particular, micropayments have been shown
effective in encouraging user participation and increasing their
productivity.

However, the common challenge is providing incentives in
a privacy-preserving manner; users should be gratified without
associating themselves with the data they contribute. One pos-
sible solution the literature has proposed is the use of reverse
auctions, among anonymous data providers and requesters [8].
Such schemes necessitate user participation throughout the
whole duration of a task. However, MCS users may join and
leave sensing campaigns at any time, thus, making the imple-
mentation of such auction-based mechanisms impractical [12].
Moreover, the employed incentive provision methods must be
fair: (selfish) users should not be able to exploit them and gain
inordinate, to their contributions, utilities.

At the same time, aiming for the participation of any user
possessing a sensing-capable device is a double-edged sword:
participants can be adversarial seeking to manipulate (or even
dictate) the MCS system output by polluting the data collection
process. Even worse, detecting offending users and sifting their
malicious contributions is hindered by the desired (for privacy-
protection) user anonymity. What we need is mechanisms that
can hold offending users accountable, but without necessarily
disclosing their identity.

A. Motivation and Contributions

To reap the benefits of this new community sensing
paradigm we must work toward three directions: 1) incen-
tivizing user participation; 2) protecting the users from the
system (i.e., ensuring their privacy); and at the same time,

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:gisdakis@kth.se
mailto:giannetsos@kth.se
mailto:papadim@kth.se
http://www.ieee.org/publications_standards/publications/rights/index.html


840 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

3) protecting the system from malicious users (i.e., hold-
ing them accountable of possible system-offending actions).
Despite the plethora of existing research efforts, the state-
of-the-art in the area of secure and privacy-preserving MCS
systems still lacks comprehensive solutions; most works either
focus solely on user privacy without considering account-
ability or they facilitate incentive provision in a nonprivacy-
preserving manner (i.e., by linking users to their contribu-
tions). Therefore, the design of secure and privacy-preserving
MCS systems, capable of insentivizing large-scale user partic-
ipation, is the main challenge ahead.

To meet this challenge, we extend SPPEAR [13], the state-
of-the-art security and privacy architecture for MCS systems
focusing on: 1) security; 2) privacy; 3) accountability; and
4) incentive provision. More specifically, although SPPEAR
offers broadened security and privacy protection under weak
trust assumptions (where even system entities might try to
harm user privacy), it does not capture the complete land-
scape of all possible privacy repercussions that such attacks
entail. We also extend SPPEAR’s simplistic receipt-based
rewarding mechanism into a solution that fairly remunerates
participating users while supporting different incentive mecha-
nisms including, but not limited to, micropayements. Overall,
the suggested architecture provides high user-privacy assur-
ance, while facilitating the ample participation of extrinsically
motivated users.

We provide an implementation of our system on real mobile
devices and extensively assess its efficiency and practicality.
Furthermore, we present a formal analysis of the achieved
security and privacy properties in the presence of strong adver-
saries. To better examine the privacy implications of such a
broadened adversarial model, we also provide the first, to the
best of our knowledge, instantiation of inference attacks (in
the domain of MCS) that “honest-but-curious” system entities
can launch against user privacy. More specifically, we show
how such entities can extract sensitive user information (i.e.,
whereabouts and activities) by leveraging machine learning
techniques and we discuss possible mitigation strategies.

This paper is organized as follows: Section II presents the
related work in the area of secure and privacy-preserving MCS
systems. We, then, describe the system and adversarial models
for our scheme (Section III) and discuss the envisioned MCS
security and privacy requirements (Section IV). In Section V,
we provide an overview of the system and the services it offers
followed by a detailed presentation of all implemented com-
ponents and protocols (Section VI). Section VII presents a
rigorous formal assessment of the achieved properties. The
experimental setup, used to evaluate our system, along with
the performance results are presented in Section VIII, before
we conclude this paper in Section IX.

II. RELATED WORK

The security and the privacy of MCS have attracted the
attention of the research community [14], [15]. Several works
try to protect user privacy by anonymizing user contributed
data [16], [17] and obfuscating location information [18].
Additionally, other research efforts employ generalization [19]

or perturbation [20] of user contributions; i.e., deliberately
reducing the quality and the quantity of the information users
submit to the MCS system. Nevertheless, although such tech-
niques can enhance user privacy they do not capture the full
scope of privacy-protection; knowing that a user participates
in sensing campaigns monitoring, for example, noise pollution
during early morning hours already reveals sensitive informa-
tion such as the coarse-grained location of her home [21].
Moreover, strong privacy-protection must hold even in the
case that MCS system entities cannot be trusted: i.e., they
are curious to learn and infer private user information.

AnonySense [16] is a general-purpose framework for secure
and privacy-preserving tasking and reporting. Reports are sub-
mitted through wireless access points, while leveraging Mix
Networks to deassociate the submitted data from their sources.
However, the way it employs group signatures (i.e., [22]),
for the cryptographic protection of submitted reports, ren-
ders it vulnerable to Sybil attacks (Section VII). Although
AnonySense can evict malicious users, filtering out their faulty
contributions requires the deanonymization of benign reports1;
besides being costly, this process violates the anonymity of
legitimate participants. Misbehavior detection may occur even
at the end of the sensing task when all contributions are avail-
able. On the contrary, our system shuns out offending users
and sifts their malicious input through an efficient revocation
mechanism (Section VI-D) that does not erode the privacy of
benign users.

Group signature schemes can prevent anonymity abuse by
limiting the rate of user authentications (and, thus, of the
samples they submit), to a predefined threshold (k) for a
given time interval [23]. Exceeding this threshold is considered
misbehavior and results in deanonymization and revocation.
Nonetheless, this technique cannot capture other types of
misbehavior, i.e., when malicious users pollute the collected
data by submitting (k − 1) faulty samples within a time
interval. In contrast, our scheme is misbehavior-agnostic and
prevents such anonymity abuse by leveraging authorization
tokens and pseudonyms with nonoverlapping validity periods
(Section VII).

PEPSI [17] prevents unauthorized entities from querying
the results of sensing tasks with provable security. It lever-
ages a centralized solution that focuses on the privacy of data
queries; i.e., entities interested in sensing information without
considering accountability and privacy-preserving incentive
mechanisms. PEPPeR [24] protects the privacy of the infor-
mation querying nodes (and, thus, not of the information
contributing nodes), by decoupling the process of node dis-
covery from the access control mechanisms used to query
these nodes. PRISM [25] focuses on the secure deployment
of sensing applications and does not consider privacy.

In PoolView, mobile clients perturb private measurements
before sharing them. To thwart inference attacks, leveraging
the correlation of user data, Ganti et al. [26] proposed an
obfuscation model. The novelty of this scheme is based on
the fact that although private user data cannot be obtained,

1Submitted by users that belong to the same cryptographic group as the
revoked ones.
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statistics over them can be accurately computed. PoolView
considers only privacy of data streams and, thus, does not
consider on accountability for misbehaving users.

Yao et al. [27] proposed a privacy-preserving data reporting
mechanism for MCS applications. The intuition behind this
paper is that user privacy is protected by breaking the link
between the data and the participants. Nonetheless, opposite
to this paper, the proposed scheme solely focuses on pri-
vacy and, thus, does not consider incentive mechanisms and
accountability for misbehaving users.

Addressing aspects beyond the scope of this paper,
Christin et al. [28] proposed a reputation-based mechanism
for assessing the data-trustworthiness of user contributed data.
Similarly, SHIELD [29] leverages machine learning techniques
to detect and sift faulty data originating from adversarial users
seeking to pollute the data collection process. In this paper, we
assume the existence of such a scheme capable of assessing
the overall contributions made by anonymous users.

A significant body of work in the area of MCS focuses
on the provision of incentives to stimulate user participa-
tion [8], [10], [30]. These works leverage mechanisms such as
auctions, dynamic pricing, monetary coupons, service quotas,
and reputation accuracy. However, they do not consider user
privacy and, thus, can leak sensitive information by linking the
identity of users with the data they contribute. The approach
presented in [31] tries to enhance user privacy by remunerat-
ing users according to their privacy exposure: as the privacy
exposure of users increases, better services (e.g., QoS-wise)
and rewards are offered to them as compensation.

III. SYSTEM AND THREAT MODEL

A. System Model

We consider generic MCS systems comprising the following
entities.

1) Task Initiators, (Information Consumers): Organizations
or individuals initiating data collection campaigns by recruit-
ing users and distributing sensing tasks to them. The task
initiators (TIs) initiates sensing tasks and campaigns. Each task
is essentially a specification of the sensors users must employ,
the area of interest, and the lifetime of the task. The area of
interest is the locality within which participating users must
contribute data and it can be defined either explicitly (e.g.,
coordinates forming polygons on maps) or implicitly (through
annotated geographic areas, e.g., Stockholm). In any case, it
is divided into regions that can correspond to, for example,
smaller administrative areas (e.g., municipalities) comprising
the area of interest.

2) Users (Information Producers): Operators of sensing-
capable mobile devices (e.g., smart-phones and tablets), and
navigation modules (e.g., GPS). Devices possess transceivers
allowing them to communicate over wireless local area (i.e.,
802.11a/b/g/n) and (or) cellular networks (3G and long term
evolution).

3) Back-End Infrastructure: System entities responsible
for supporting the life-cycle of sensing tasks: they register
and authenticate users, collect and aggregate user-contributed

reports and, finally, disseminate the results (in various forms)
to all interested stake-holders.

B. Threat Model

MCS can be abused both by external and internal adver-
saries. The former are entities without any established asso-
ciation with the system; thus, their disruptive capabilities are
limited. They can eavesdrop communications in an attempt to
gather information on user activities. They might also manip-
ulate the data collection process by contributing unauthorized
samples or replaying the ones of benign users. Nonetheless,
such attacks can be easily mitigated by employing simple
encryption and access control mechanisms. External adver-
saries may also target the availability of the system by
launching, for example, jamming and distributed denial of
service attacks. However, such clogging attacks are beyond
the scope of this paper and, therefore, we rely on the net-
work operators [e.g., Internet service provider (ISPs)] for their
mitigation.

Internal adversaries are legitimate participants of the system
that exhibit malicious behavior. We do not refer only to human
operators with malevolent intentions but, more generally, to
compromised devices (clients), e.g., running a rogue version
of the MCS application. Such adversaries, can submit faulty,
yet authenticated, reports during the data collection process.
Their aim is to distort the system’s perception of the sensed
phenomenon, and thus, degrade the usefulness of the sensing
task. For instance, in the context of traffic monitoring cam-
paigns [3], malicious users might contribute false information
(e.g., low velocities) to impose a false perception of the con-
gestion levels of the road network. Such data pollution attacks
can have far graver implications if malicious users imperson-
ate other entities or pose with multiple identities (i.e., acting
as a Sybil entity).

Internal adversaries may also have a strong motive to
manipulate the incentive provision mechanism. For instance,
leveraging their (for privacy protection) anonymity, they could
try to increase their utility (e.g., coupons and receipts) without
offering the required contributions.

At the same time, internal attacks can target user pri-
vacy, i.e., seek to identify, trace, and profile users, notably
through MCS-specific actions.2 This is especially in the case
of honest-but-curious and information-sharing infrastructure
components; i.e., entities (Section V) that execute the protocols
correctly but are curious to infer private user data by (possibly)
colluding with other entities in the system (Section VII-B).

IV. SECURITY AND PRIVACY REQUIREMENTS

In this paper, we aim for accountable yet privacy-preserving
MCS architectures that can integrate advanced incentive mech-
anisms. Definitions of the expected security and privacy
requirements are as follows.

• R1—Privacy Preserving Participation: Privacy preserva-
tion in the context of MCS mandates that user participa-
tion is anonymous and unobservable. More specifically,

2For instance, user deanonymization by examining the content of the reports
they submit [16].
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Fig. 1. System overview.

users should contribute to sensing tasks without reveal-
ing their identity. Identities are both user (e.g., name and
email address) and device-specific; e.g., device identifiers
such as the international mobile subscriber identity and
the international mobile station equipment identity.

Furthermore, external (e.g., cellular providers) or internal
(i.e., MCS infrastructure entities or users) observers should not
be able to infer that anonymous users have (or will) contribute
to specific sensing tasks. Inferring that a user will participate in
a task that measures noise pollution during night hours within
an area A could leak sensitive user information such as home
location and personal activities (among others).

User-contributed data should be unlinkable: no entity having
access to user reports (i.e., information users contribute to the
MCS system) should be able to link reports to the users from
which they originated or to infer whether two or more reports
were contributed by the same user.

• R2—Privacy-Preserving and Fair Incentive Mechanisms:
Users should be rewarded for their participation with-
out associating themselves to the data they contribute.
Furthermore, incentive mechanisms must be resilient;
misbehaving or selfish users should not be able to exploit
them for increasing their utility without making the
necessary contributions.

• R3—Communication Integrity, Confidentiality, and
Authentication: All system entities should be authen-
ticated and their communications should be protected
from any alteration by and disclosure to unauthorized
parties.

• R4—Authorization and Access Control: Participating
users should act according to the policies specified by
the sensing task. To enforce such policies, access control,
and authorization mechanisms must be in place.

• R5—Accountability: Offending users should be held
accountable for any disruptive or system-harming actions.

• R6—Data Verification: MCS systems must provide the
necessary means to identify and sift faulty data originat-
ing from, potentially, misbehaving users.

V. SYSTEM ENTITIES

In this section, we begin with an overview of the system
entities (Fig. 1) comprising our architecture and we, then,

move on explaining how trust relations are established among
them.

A. Mobile Client

Users download a mobile client on their devices. This appli-
cation collects and delivers sensed information by interacting
with the rest of the infrastructure.

B. Group Manager

It is responsible for registering user devices to sensing
tasks, issuing them anonymous credentials. The group man-
ager (GM) authorizes the participation of devices (in tasks) in
an oblivious manner, using authorization tokens.

C. Identity Provider

This entity authenticates user devices and mediates their
participation to sensing tasks.

D. Pseudonym Certification Authority

It provides anonymized ephemeral credentials (digital cer-
tificates), termed pseudonyms, to the users (mobile clients).
Pseudonyms (i.e., the corresponding private/public keys) can
cryptographically protect (i.e., ensure the integrity and the
authenticity) information that clients submit. For unlinkabil-
ity purposes, devices can obtain multiple pseudonyms from
the pseudonym certification authority (PCA).

E. Reporting Service

Mobile clients submit samples to this entity responsible for
storing and processing the collected data. Although privacy-
preserving data processing could be employed, we neither
assume nor require such mechanisms; this is orthogonal to this
paper and largely depends on the task/application. The report-
ing service (RS) issues receipts to participants later used for
redeeming rewards.

F. Revocation Authority

This entity is responsible for revoking the anonymity of
offending devices (e.g., devices that disrupt the system or
pollute the data collection process).

Our goal is to separate functions across different entities,
according to the separation-of-duties principle [32]: each entity
is given the minimum information required to execute the
desired task. This is to meet the requirements (Section IV)
under weakened assumptions on system trustworthiness; in
particular we achieve strong privacy protection even in the
case of “honest-but-curious” infrastructure. Section VII further
discusses these aspects.

G. Trust Establishment

To establish trust between system entities (Fig. 1), we lever-
age security assertion markup language (SAML) assertions
that represent authentication and authorization claims, pro-
duced by one entity for another. To establish trust between the
identity provider (IdP) and the PCA, a Web Service-Metadata
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TABLE I
ABBREVIATIONS AND NOTATIONS

exchange takes place. Metadata are XML-based entity descrip-
tors containing information including authentication require-
ments, entity uniform resource identifiers, protocol bindings,
and digital certificates. The metadata published by the IdP
contain the X.509 certificates the PCA must use to verify
the signatures of the assertions produced by the IdP. The
PCA publishes metadata that contain its digital identifier and
certificates.

To verify authorization tokens (Section VI-A), the IdP pos-
sesses the digital certificate of the GM. The pseudonyms issued
to user devices are signed with the PCA private key. New tasks
are signed by the TIs and verified by the GM. Finally, the RS
possess the digital certificate of the PCA.

The confidentiality and the integrity of the communica-
tion is guaranteed by end-to-end authenticated transport layer
security (TLS) channels established between the devices and
the MCS entities (i.e., IdP, PCA, and RS). Furthermore, to
prevent deanonymization on the basis of network identifiers,
mobile clients can interact with system entities via the TOR
anonymization network [33].

VI. PRELIMINARIES AND SYSTEM PROTOCOLS

As depicted in Fig. 1, the TI creates and signs task
requests (tr) with a private key (PRTI) of an elliptic curve
digital signature algorithm (ECDSA) key-pair and sends them
to the GM (for a complete list of abbreviations and notations
see Table I). The public key (PKTI) is certified and known to
the GM.

Upon reception of a tr, the GM challenges the TI with a
random nonce to verify that it is actually the holder of the
corresponding PRTI . Then, the GM instantiates a group signa-
ture scheme that allows each participant (Pi) to anonymously
authenticate herself with a private group signing (gski). The
GM pushes the group public key (gpk) to the IdP that is
responsible for authenticating users.

Group signatures fall into two categories: 1) static (fixed
number of group members) and 2) dynamic (dynamic addi-
tion of group participants). Selecting the appropriate scheme
depends on the sensing task. For instance, sensing campaigns
requiring the participation of only “premium” users can be
accommodated by static group signature schemes since the

Algorithm 1 Authorization Token Acquisition
Initialization Phase(GM) Transfer Phase(GM & DV)
Data: N generated authentication tokens Data: Computed token commitments Yi,j

Begin Begin
1. GM � S:[

√
N,

√
N] 1. GM � {rR, rC}

2. GM � 2
√

N random keys 2. Randomize row & column keys:

(R1, . . . , R√
N ), (C1, . . . , C√

N ), (R1 · rR, , . . . , R√
N · rR)

for each Row & Column (C1 · rC , . . . , C√
N · rC)

3. for every Xi,j in S do 3. If device wishes Xi,j
GM � {Ki,j, Yi,j}, where then

Ki,j = gRiCj , where OT
√

N
1 [GM, DV]

Pick−−−→ Ri · rR

{Gg, g} DDH−−−→ {Grp, Genr} OT
√

N
1 [GM, DV]

Pick−−−→ Cj · rC
Yi,j = commitKi,j (Xi,j) end

end 4. GM sends g
1

rRrC

3. GM sends to the device 5. Device reconstructs

Y1,1, . . . , Y
√

N,
√

N Ki,j = g
( 1

rRrC
Ri)·rRCj·rC

6. Obtain Xi,j by opening Yi,j with Ki,j
End End

number of participants is known. Otherwise, dynamic group
signatures are necessary. Our system supports, but is not lim-
ited to, two schemes; short group signatures [22] (static) and
the Camenisch–Groth scheme [34] (dynamic).

Clients receive task descriptions (tr) through a
Publish/Subscribe announcement channel. They can automati-
cally connect (i.e., subscribe) and receive all task descriptors,
tr, immediately after they are published by the GM. Each
client can employ task filtering based on the device’s current
location so that users are presented with only those tasks for
which they can accommodate the specified area of interest.
If a user is willing to participate in a task, she authorizes
her device to obtain the group credentials (i.e., gski) and
an authorization token from the GM (Section VI-A). Then,
the device initiates the authentication protocol with the IdP
and obtains pseudonyms from the PCA (Section VI-B). With
these pseudonyms the device can (anonymously) authenticate
the samples it submits to the task channel and receive the
corresponding payment receipts (Section VI-C).

A. Registration and Authorization Token Acquisition

To participate in a sensing task, the mobile client registers
with GM to obtain the private group key gski by initiating an
interactive JOIN protocol with the GM.3 This protocol guar-
antees exculpability: no entity can forge signatures besides the
intended holder of the key (gski) [35].

Subsequently, the GM generates an authorization token dis-
penser, Dauth. Each token of the dispenser binds the client
identity with the identifier of each active task. This bind-
ing is done with secure and salted cryptographic hashes.
Tokens are also signed by the GM to ensure their authen-
ticity. More specifically, the dispenser is a vector of tokens,
Dauth = [t1, t2, . . . , tN], where each token, ti, has the form

ti = {tid, h(userid‖taski‖n), taski}σGM

where N is the number of currently active sensing tasks, n is
a nonce, and tid is the token identifier.

To participate in a task, the device must pick the correspond-
ing token. Nevertheless, merely requesting a token would

3Due to space limitations, we refer the reader to [22] and [34].



844 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

compromise users’ privacy; besides knowing real user iden-
tity, the GM would learn the task she wishes to contribute
to. For instance, knowing a user participates in a sensing task
measuring noise pollution during night hours within an area
“A,” can help the GM deduce the user home location [36].

To mitigate this, we leverage private information
retrieval (PIR) techniques. Currently, our system supports the
“oblivious transfer with adaptive queries” protocol [37]. The
scheme has two phases (see Algorithm 1): the initialization
phase, performed by the GM, and the token acquisition phase
involving both the device and the GM. For the former, the GM
generates and arranges the N authorization tokens in a 2-D
array, S, with

√
N rows and

√
N columns. Then, it computes

2
√

N random keys, (R1, R2, . . . , R√
N), (C1, C2, . . . , C√

N),
and a commitment, Yi,j, for each element of the array. These
commitments are sent to the device.

During the token acquisition phase, the GM randomizes the
2
√

N keys with two elements rR and rC. Then, the device
initiates two Oblivious Transfer sessions to obtain the desired
token, Xi,j; one for the row key, Ri · rR, and another for the
column key, Cj · rC. After receiving g(1/rRrC), from the GM,
and with the acquired keys, the device can now obtain Xi,j by
opening the already received commitment, Yi,j.

The security of this scheme relies on the Decisions Diffie–
Helman assumption [37]. As the token acquisition protocol
leverages oblivious transfer, the GM does not know which
token was obtained and, thus, cannot deduce the task the user
wishes to contribute to. In Section VIII we present a detailed
performance analysis of the PIR scheme.

B. Device Authentication

Having the signing key, gski, and the authorization token,
ti, the device can now authenticate itself to the IdP and receive
pseudonyms from the PCA. Pseudonyms are X.509 certificates
binding anonymous identities to public keys. Fig. 2 illustrates
the protocol phases.

1) Phase 1: The mobile client generates the desired amount
of key-pairs and creates the same number of CSRs (step 1).

2) Phase 2: The client then submits the generated CSRs to
the PCA to obtain pseudonyms (step 2). Since the device is
not yet authenticated, the PCA issues an SAML authentication
request (step 3) to the IdP, signed with its private key and
encrypted with the public key of the IdP. SAML requires that
requests contain a random transient identifier (transientid) for
managing the session during further execution of the protocol.
The request is then relayed by the device to the IdP (step 4),
according to the protocol bindings agreed between the PCA
and the IdP during the metadata exchange (Section V).

3) Phase 3: The IdP decodes and decrypts the authenti-
cation request, verifies the XML signature of the PCA and
initiates the authentication process. As aforementioned, our
authentication is based on group signatures. In particular, the
IdP sends a challenge (in the form of a timestamp/nonce) to the
device (step 5). The device, then, produces a group signature
on the challenge with its signing key gski. It also submits the
token, ti, obtained by the GM (step 6). The IdP verifies the
challenge with the use of the gpk (obtained from the GM).

Fig. 2. Authentication protocol.

Upon successful authentication (step 7), the IdP generates
an SAML authentication response signed with its private key
and encrypted with the public key of the PCA. The response
contains the transientid and an authentication statement (i.e.,
assertion): this asserts that the device was successfully authen-
ticated (anonymously) through a group signature scheme and
it includes the authorization token and the access rights of the
device. Finally, the SAML response is encoded and sent back
to the device (step 8).

4) Phase 4: The device delivers the SAML assertion to the
PCA (step 9), which decrypts it and verifies its signature and
fields (step 10). Once the transaction is completed, the device
is authenticated and it receives valid pseudonyms (step 11).

Each pseudonym has a time validity that specifies the period
(i.e., the pseudonym life time) for which it can be used. The
PCA issues pseudonyms with nonoverlapping life times (i.e.,
pseudonyms are not valid during the same time interval).
Otherwise, malicious users could expose multiple identities
simultaneously, i.e., launch Sybil attacks.

C. Sample Submission and Incentives Support

With the acquired pseudonyms, the device can now partic-
ipate in the sensing task by signing the samples it contributes
and attaching the corresponding pseudonym. More specifically,
each sample, si, is

si = {
v‖t‖(loc)

∥∥σPrvKey
∥∥Ci

}

where v is the value of the sensed phenomenon, t is a time-
stamp and σPrvKey is the digital signature, over all the sample
fields, generated with the private key whose public key is
included in the pseudonym Ci. The loc field contains the cur-
rent location coordinates of the device. In Section VII-C, we
analyze the privacy implications due to device location in sam-
ples. Upon reception of a sample, the RS verifies its signature
and time-stamp, against the time validity of the pseudonym.
If the sample is deemed authentic, the RS prepares a receipt,
ri, for the device

ri = {
receiptid

∥∥regioni

∥∥taskid‖time‖σRS
}
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σRS is the digital signature of the RS. regioni is the region
(Section III) including the loc specified in the submission si.
The device stores all receipts until the end of the task.

D. Pseudonym Revocation

If required, our system provides efficient means for shun-
ning out offending users. Assume a device whose (anony-
mously) submitted samples significantly deviate from the rest.
This could be an indication of misbehavior; e.g., an effort to
pollute the results of the task. We refrain from discussing the
details of such a misbehavior detection mechanism and we
refer the reader to SHIELD [29], the state-of-the-art data ver-
ification framework for MCS systems. Misbehaving devices
should be prevented from further contributing to the task. On
the other hand, it could also be the case that the devices
equipped with problematic sensors must be removed from the
sensing task. To address the above scenarios, we design two
grained revocation protocols, suitable for different levels of
escalating misbehavior.

1) Total Revocation: The resolution authority (RA) coor-
dinates this protocol based on a (set of) pseudonym(s)
PSi (Fig. 3). Upon completion, the device owning the
pseudonym is evicted from the system.

a) Phase 1: The RA provides the PCA with the PSi

(step 1). The PCA, then, responds with the authorization token,
ti, included in the SAML assertion that authorized the gener-
ation of pseudonym PSi (step 2). This token is then passed by
the RA to the GM (step 3).

b) Phase 2: Based on the received ti, the GM retrieves
the whole token dispenser, Dauth, that included ti. This dis-
penser is sent to the IdP (step 4) that blacklists all its tokens
and sends back a confirmation to the GM (steps 5 and 6).
From this point on, the device can no longer get authenticated
because all of its tokens were invalidated.

c) Phase 3: To revoke the already issued pseudonyms,
the GM sends the dispenser, Dauth, to the PCA that determines
which of these tokens it has issued pseudonyms for. It, then,
updates its CRL with all the not yet expired pseudonyms of the
device (steps 7 and 8), forbidding it essentially from (further)
submitting any samples to the RS.

2) Partial Revocation: This protocol evicts a device from
a specific sensing task. The RA sends the pseudonym, PSi,
to the PCA, which retrieves the token, ti, from the SAML
assertion that authorized the issuance of PSi. Consequently,
the PCA revokes all the pseudonyms that were issued for ti.
As a device is issued only one token per task, and this is now
revoked, the device can no longer participate in this specific
task. The partial revocation protocol does not involve the GM
and, thus, it does not revoke anonymity of devices.

Overall, in order for the RA to revoke the credentials
of a device, the synergy between multiple system entities
is required; i.e., the PCA, the GM, and the IdP. As men-
tioned above, this is due to the separation-of-duties principle
as each entity is given the minimum information to execute
the desired task. The increased trustworthiness of our sys-
tem, i.e., its resilience in the presence of honest-but-curious

Fig. 3. Pseudonym revocation.

system entities, comes at the price of a moderate over-
head due to communication involving multiple entities of the
infrastructure.

E. Task Finalization and User Remuneration

Upon completion of the sensing task, our system remu-
nerates users for their contribution. In case the remuneration
mechanism mandates, for example, micropayments, each task
description (i.e., the corresponding tr) specifies the amount of
remuneration, B, that users will share.

This process is initiated when the completion of the task
is announced to the publish/subscribe channel (Section VI).
Upon reception of this finalization message, participants pro-
vide the TI with all the receipts they collected for their data
submissions (Section VI-C). The TI must then decide on a fair
allocation of the tasks’ remuneration amount (to the partici-
pating users) based on the level of contribution (i.e., number
of submitted data samples) that each individual user had. To
do this, we use Shapley value [38], an intuitive concept from
coalitional game theory that characterizes fair credit sharing
among involved players (i.e., users). This metric allows us to
fairly quantify the remuneration of each user. Each user will
be remunerated with an amount equal to φi · B. To compute
φi the TI works as follows.

1) Shapley Value: Let N be the total number of participat-
ing users. For each subset of users (coalition) S ⊂ N, let v(S)

be a value describing the importance of the subset of users S.
For a value function v the Shapley value is a unique vector

φ = [φ1(v), φ2(v), . . . , φN(v)] computed as follows:

φi(v) = 1

|N|!
∑

�

[
v
(
P�

i ∪ i
) − v

(
P�

i

)]
(1)

where the sum is computed over all |N|! possible orders (i.e.,
permutations) of users and P�

i is the set of users preceding
user i in the order �. Simply put, the Shapley value of each
user is the average of her marginal contributions.

Computing the Shapley value for tasks with a large number
of participants is computationally inefficient due to the com-
binatorial nature of the calculation. Nonetheless, an unbiased
estimator of the Shapley value is the following [38]:

φ̂i(v) = 1

k

∑

�

[
v
(
P�

i ∪ i
) − v

(
P�

i

)]
(2)
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where k is the number of randomly selected user subsets (coali-
tions) to be considered; it essentially determines the error
between the real value and its estimate.

2) Defining the Value Function v: Our goal is to remunerate
users based not only on the number of their data submis-
sions but also on the spatial dispersion of their contributions.
Intuitively, this mechanism should favor reports submitted
for regions where the system perception of the sensed phe-
nomenon is low (i.e., less received data samples). On the other
hand, the value accredited to similar, or possibly replayed (i.e.,
the same measurement for the same region), samples should
be diminished.

To achieve this, we devise the value function, v, as follows:
let R = [R1, R2, . . . , RN] be the number of receipts the TI
receives from each user. The value v(S) of a coalition S is
computed as

v(S) = H(RS) ·
∑

i∈S

Ri. (3)

RS is the vector defining the number of samples this coali-
tion has contributed for each region. For instance, let us
assume a task for which the area of interest is divided into four
regions [regα, regβ, regγ , regδ]. Moreover, let S2 be a coali-
tion of two users each of which has submitted one sample to
each of the regions. In this case, RS = [2, 2, 2, 2]. H(RS) is
Shannon’s entropy

H(RS) = −
∑

pi · log(pi) (4)

where pi is the proportion of samples, conditional on coali-
tion S, in region i. H(RS) is equal to 1 when all regions have
received the same number of samples. In this case, the value
of a coalition, v(S), is the sum of samples that participating
users contributed to the task. If a coalition is heavily biased
toward some regions, then H tends to 0 and, thus, v(S) will
be equal to some (small) fraction of the sum of samples.

The above described remuneration protocol must be exe-
cuted on top of a data verification mechanism, such as [29],
that can detect and sift untrustworthy user contributions and,
in combination with the revocation protocol (Section VI-D),
evict malicious users without gratifying them.

VII. SECURITY AND PRIVACY ANALYSIS

We begin with a discussion of the security and privacy of our
system with respect to the requirements defined in Section IV.
We then proceed with a formal security and privacy analysis.

Communications take place over secure channels (TLS).
This ensures communication confidentiality and integrity.
Furthermore, each system entity possesses an authenticating
digital certificate (R3).

In our scheme, the GM is the policy decision point, which
issues authorization decisions with respect to the eligibility
of a device for a specific sensing task. The IdP is the pol-
icy enforcement point which authorizes the participation of a
device on the basis of authorization tokens (R4).

Malicious devices can inject faulty reports to pollute the data
collection process. For instance, consider a traffic monitoring
task in which real-time traffic maps (of road networks) are

TABLE II
SECRECY ANALYSIS FOR DOLEV-YAO ADVERSARIES

built based on user submitted location and velocity reports. By
abusing their anonymity or, if possible, by launching a Sybil
attack, misbehaving users can impose a false perception over
the congestion levels of the road network. Schemes (see [16])
relying on group signatures for authenticating user reports are
vulnerable to abuse: detecting if two reports were generated
by the same device mandates the opening of the signatures of
all reports, irrespectively of the device that generated them.
Besides being costly,4 this approach violates the privacy of
legitimate users.

We overcome this challenge with the use of authorization
tokens: they indicate that the device was authenticated, for a
given task, and that it received pseudonyms with nonover-
lapping lifetimes. This way, the PCA can corroborate the
time validity of the previously issued pseudonyms and, if
requested by the device, provide it with new pseudonyms that
do not overlap the previously issued ones. Thus, adversarial
devices cannot exhibit Sybil behavior since they cannot use
multiple pseudonyms simultaneously. Nevertheless, reusing
pseudonyms for cryptographically protecting multiple reports,
trades-off privacy (linkability) for overhead (Section VII-C).

The employed PIR scheme prevents a curious GM from
deducing which task a user wishes to participate in. Moreover,
devices get authenticated to the IdP without revealing their
identity (i.e., group-signatures). Finally, pseudonyms allow
devices to anonymously, and without being linked, prove the
authenticity of the samples they submit. By using multiple
pseudonyms (ideally one per report) and by interacting with
the RS via TOR, devices can achieve enhanced report unlinka-
bility. Furthermore, TOR prevents system entities and cellular
ISPs from deanonymizing devices based on network identifiers
(R1). Essentially, with end-to end encryption and TOR, our
system prevents ISPs from gaining any additional information
from the participation to a sensing task.

The first two columns of Table II present the information
each system entity possesses. Our approach, based on the
separation of duties principle, prevents single infrastructure
entities from accessing all user-sensitive pieces of information
(colluding system entities are discussed in Section VII-B).

The employed cryptographic primitives ensure that offend-
ing users cannot deny their actions. More specifically, the
interactive protocols, executed during the registration phase
(Section VI-A), guarantees that gski is known only to
the device and as a result, exculpability is ensured [22].
Furthermore, digital signatures are generated with keys known
only to the device and thus, nonrepudiation is achieved.

4Due to space limitations we refer the reader to [22].
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Our system can shun out offending devices (Section VI-D)
without, necessarily, disclosing their identity (R1, R5). To
achieve permanent eviction of misbehaving mobile clients
the registration phase can be enhanced with authentication
methods that entail network operators (e.g., generic bootstrap-
ping architecture [3]). However, we leave this as a future
direction.

We consider operation in semi-trusted environments. In par-
ticular, a PCA can be compromised and issue certificates for
devices not authenticated by the IdP. If so, the PCA does not
possess any SAML assertion for the issued pseudonyms, and
thus, it can be held culpable for misbehavior. Moreover, the
IdP cannot falsely authenticate nonregistered devices: it cannot
forge the authorization tokens included in the SAML asser-
tions (Section VI-B). As a result, the PCA will refuse issuing
pseudonyms and, thus, the IdP will be held accountable.
Moreover, SAML authentication responses (Section VI-B) are
digitally signed by the IdP and thus cannot be forged or tam-
pered by malicious devices. Overall, in our system, one entity
can serve as a witness of the actions performed by another;
this way we establish a strong chain-of-custody (R5).

A special case of misbehavior is when a malicious RS
seeks to exploit the total revocation protocol (Section VI-D) to
deanonymize users. To mitigate this, we mandate that strong
indications of misbehavior are presented to the RA before the
resolution and revocation protocols is initiated. Nonetheless,
such aspects are beyond the scope of this paper.

Malicious users cannot forge receipts since they are signed
by the RS. Furthermore, they are bound to specific tasks
and thus they cannot be used to earn rewards from other
tasks. Colluding malicious users might exchange receipts.
Nevertheless, all receipts are invalidated, by the TI, upon
submission and, thus, they cannot be “double-spent” (R2).

Receipts, generated by the RS, are validated by the TI, nei-
ther of which knows the long-term identity of the user. As a
result, the incentive mechanism protects user anonymity.

Finally, although our system does not assess the trustwor-
thiness of user contributed data (i.e., R6) it can seamlessly
integrate data verification schemes, such as [29].

For the correctness of the employed cryptographic prim-
itives (i.e., group signature and PIR schemes) we refer
to [22], [34], and [37]. In what follows, we focus on
the secrecy and strong-secrecy properties of our system in
the presence of external adversaries and information-sharing
honest-but-curious system entities.

A. Secrecy Against Dolev-Yao Adversaries

We use ProVerif [39] to model our system in π -calculus.
System entities and clients are modeled as processes and
protocols (i.e., authentication, Section VI-B, sample sub-
mission, Section VI-C, and revocation, Section VI-D) are
parallel composition of multiple copies of processes. ProVerif
requires sets of names and variables along with a finite
signature, 
, comprising all the function symbols accompa-
nied by their arity. The basic cryptographic primitives are
modeled as symbolic operations over bit-strings representing
messages encoded with the use of constructors and destructors.

Constructors generate messages whereas destructors decode
messages.

ProVerif verifies protocols in the presence of Dolev–Yao
adversaries [40]: they can eavesdrop, modify and forge mes-
sages according to the cryptographic keys they possess. To
protect communications, every emulated MCS entity in the
analysis maintains its own private keys/credentials. This model
cannot capture the case of curious and information-sharing
MCS system entities (discussed in Section VII-B).

In ProVerif, the attacker’s knowledge on a piece of infor-
mation i, is queried with the use of the predicate attacker(i).
This initiates a resolution algorithm whose input is a set of
Horn clauses that describe the protocol. If i can be obtained
by the attacker, the algorithm outputs true (along with a
counter-example) or false otherwise. ProVerif can also prove
strong-secrecy properties; adversaries cannot infer changes of
secret values. To examine if strong-secrecy properties hold
for a datum i, the predicate noninterf is used. We evaluate the
properties of all specific to our system data. Table II summa-
rizes our findings: our system guarantees not only the secrecy
but also the strong-secrecy of all critical pieces of information
and, thus, it preserves user privacy.

Since Dolev-Yao adversaries cannot infer changes over the
aforementioned data. For instance, adversaries cannot relate
two tokens, t1 and t2, belonging to the same user; the same
holds for the other protocol-specific data (e.g., samples and
receipts).

B. Honest-but-Curious System Entities

We consider the case of colluding (i.e., information-sharing)
honest-but-curious system entities aiming to infer private user
information. We model such behavior in ProVerif by using
a spy channel, accessible by the adversary, where a curious
authority publishes its state and private keys. To emulate col-
luding infrastructure entities, we assume multiple spy channels
for each of them. We set the adversary to passive: she can only
read messages from accessible channels but not inject any mes-
sage. For this analysis we additionally define the following
functions in ProVerif:

MAP(x, y) = MAP(y, x)

LINK(MAP(x, a), MAP(a, y)) = MAP(x, y).

The first is a constructor stating that the function
MAP is symmetric. The second is a destructor stat-
ing that MAP is transitive. For example, whenever the
device submits an authorization token to the IdP it holds
that MAP(ANON_USERα, tokenx) (i.e., an anonymous user,
α, wants to authenticate for task x). Of course, the
GM (and, thus, the adversary listening to the spy chan-
nel in case the GM is honest-but-curious) also knows
MAP(tokenx, USERα). In case these two entities collude,
querying MAP(ANON_USERα, USERα) yields true; these
colluding entities know that a user, with a known identity, par-
ticipates in a task. Similarly we can issue other queries [e.g.,
(MAP(USERα, PSEUDONYMy), MAP(USERα, REPORTy)].
Table III presents the pieces of information that is known
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TABLE III
HONEST-BUT-CURIOUS ENTITIES WITH PROVERIF

or can be inferred (along with their semantics) for various
combinations of honest-but-curious colluding entities.

Single system entities cannot deanonymize users as
they have limited access to user information (Table II).
Furthermore, our system is privacy-preserving even when two
authorities collude. To completely deanonymize users and their
actions, it is required that the GM, the PCA and the RS collab-
orate. Of course, if these entities are deployed within different
administrative domains, their collusion is rather improba-
ble. Nonetheless, if they are within the same administrative
domain, the separation-of-duties requirement no longer holds;
thus, user privacy cannot be guaranteed.5

C. Pseudonyms and Protection

To evaluate the unlinkability achieved by pseudonyms, we
consider the following MCS application: drivers, with the use
of their smart-phones, report their current location and veloc-
ity to the RS. We assume that the RS is not trusted: it performs
no aggregation or obfuscation of the submitted data but rather
tries to create detailed location profiles for each vehicle, by
linking successive location samples submitted under the same
or different pseudonyms. Various techniques leveraging loca-
tion information and mobility can simulate such attacks. Here
we emulate such adversarial behavior with a Kalman filter
tracker. We consider 250 vehicles and a geographic area of
105 urban road links in the city of Stockholm. We generate
mobility traces with the SUMO [3] microscopic road traffic
simulator. Our aim is to understand the privacy implications
of varying pseudonym utilization policies. In Fig. 4(a), we
plot the fraction of vehicles that our tracker tracked for more
than 50% of their trip, as a function of the report submission
frequency (from 10 s to 5 min period interval) for differ-
ent pseudonym (re)usage policies, i.e., the number of reports
signed under the same pseudonym.

The tracker tracks 37% of the vehicles6 for a reporting
frequency of 10 s and a use of one pseudonym per report
(maximum unlinkability). Nonetheless, its success decreases
for more realistic reporting frequencies: the tracker receives
less corrections and, thus, produces worse predictions. On the
other hand, using the same pseudonym for multiple samples

5Please note that any distributed architecture would fail to preserve privacy
in this scenario.

6Please note that the regularity of vehicular movement works in favor of
the tracker.

trades-off privacy for overhead (but not significantly). For a
sampling frequency of 1 report/min, we observe that approx-
imately 5% of the vehicles are tracked for more than 50% of
their trips. Similarly, by reusing the same pseudonym for five
samples, 27% of the vehicles are tracked for more than 50%
of their trips. Overall, the effect of pseudonym reuse weakens
as the sampling frequency decreases to frequencies relevant to
the MCS context, i.e., 1 report/30 s.

In Fig. 4(b), we show that as the number of users increases,
so does the overall privacy offered by pseudonyms. For
instance, for 100 simulated vehicles, with a sampling rate of
10 s, and changing pseudonyms every ten samples, we see that
almost 100% of all vehicles can be tracked for more than 50%
of their trips. Nonetheless, as the population of participating
vehicles grows, the tracker’s accuracy deteriorates because the
RS receives more location samples and, thus, the probability
of erroneously linking two successive samples also increases.
Simply put, users can better hide inside large crowds.

D. Inferring User Context From Sensor Readings

For this analysis we assume the worst case scenario in terms
of privacy: we assume that user samples are linked and this
linking is facilitated by the limited user mobility (e.g., being
at home) and by the fact that they submit multiple samples
under the same pseudonym. The honest-but-curious RS might
attempt to infer the user context (i.e., activities: walking, driv-
ing, and sleeping) from those linked sensor readings [6], [41].
The rest of this section discusses instantiations of such privacy
attacks and evaluates the effectiveness of different mitigation
strategies.

1) Adversarial Instantiation: We leverage machine learning
mechanisms for predicting the user context. More specifically,
we assume that an honest-but-curious RS has a statistical
model of possible sensor values characterizing different user
contexts. Such knowledge can be obtained by, e.g., user(s)
cooperating with the RS. What the RS essentially needs
is labeled training sets: values from various sensors (e.g.,
accelerometer) mapped to specific contexts or activities.

After obtaining training sets, the honest-but-curious RS
instantiates an ensemble of classifiers to predict the context
of the participating users. For the purpose of this investiga-
tion, we use random forests: collections of decision trees, each
trained over a different bootstrap sample. A decision tree is
a classification model created during the exploration of the
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(a) (b)

Fig. 4. Privacy evaluation for mobility: impact of (a) sampling rate and (b) population.

Fig. 5. Inferring user context: (a) and (b) classification accuracy and (c) sensor evaluation.

training set. The interior nodes of the tree correspond to pos-
sible values of the input data. For instance, an interior node
could describe the values of a sensor s1. Nodes can have other
nodes as children, thus, creating decision paths (e.g., s1 > α

and s2 < β). Tree leafs mark decisions (i.e., classifications)
of all training data described by the path from the root to the
leaf. For example, samples for which sensors s1 and s2 take
the values s1 > α, s2 < β describe the walking activity. After
training, the RS can classify user contexts based on the sensor
values sent by their mobile clients.

2) Attack Evaluation and Mitigation Strategies: For the
analysis, we employ the PAMAP7 dataset which contains
sensor readings (i.e., accelerometer, gyroscope, and magne-
tometer) from 17 subjects performing 14 different activities
(e.g., walking, cycling, laying, ironing, and computer work).
We consider only a subset of the included sensor types focus-
ing on those that are already available in current smart-phones:
temperature (Samsung Galaxy S4 has a dedicated temper-
ature sensor), accelerometer, gyroscope, and magnetometer.
For each evaluation scenario, we select one subject (at ran-
dom) for training the classifier ensemble and, then, examine
its accuracy for the rest of the dataset subjects. We addition-
ally consider two of the most well-know mitigation strategies
against such inference attacks, and assess their effective-
ness: 1) suppressing sensor readings (i.e., contributing samples
according to some probability) and 2) introducing noise to the
submitted measurements.

As shown in Fig. 5(a), the overall ensemble classifica-
tion accuracy (for different user contexts) is above 50%. This
serves as an indication that an honest-but-curious RS can effec-
tively target user contextual privacy. Fig. 5(b) illustrates the
classification accuracy when one of the previously described

7[Online]. Available: http://www.pamap.org/demo.html

mitigation strategies is employed. In particular, we assume
that users can either introduce some kind of error to their
submitted measurements or decide, according to some proba-
bility (i.e., suppression threshold), whether to submit a sample
or not. What we see is that when the suppression probability
increases, the accuracy of the classifier decreases. This is to be
expected because the classifier receives less samples and, thus,
produces worse predictions. Moreover, as the figure shows,
introducing noise in the data samples can also improve user
privacy.

Not submitting enough samples results in the accumulation
of fewer receipts by the client (Section VI-C): simply put,
this strategy trades-off rewards and credits for better privacy
protection. At the same time, anomaly detection mechanisms
can flag samples to which an error has been deliberately
introduced. Overall, although orthogonal to this paper, the fine-
tuning of these (or similar) mitigation strategies merits further
investigation.

Fig. 5(c) presents the informativeness of the employed sen-
sor types with respect to user contexts. We express “sensor
importance” as the (normalized) total reduction of uncertainty
brought by that feature (i.e., the Gini importance [42]). As
it can be seen, magnetometers and gyroscopes are the most
intrusive sensors as they reveal the most about a user’s con-
text. By leveraging such knowledge, participating users can
have an estimation on their (possible) privacy exposure prior
to their participation in a sensing task; simply by examining
the types of sensors the task requires.

VIII. SYSTEM PERFORMANCE EVALUATION

A. System Setup

The IdP, GM, PCA, and RA are deployed, for testing pur-
poses, on separate virtual machines (VMs) with dual-core

http://www.pamap.org/demo.html
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Fig. 6. Authentication protocol.

Fig. 7. Token acquisition time.

2.0 GHz CPUs. We distribute the services provided by PCA
over two VMs for our dependability evaluation (the same can
be applied to the other entities, but we omit the discussion due
to space limitations). We use the OpenSSL library for the cryp-
tographic operations, i.e., the ECDSA and TLS, and the JPBC
library for implementing the group signature schemes. We
deployed the sensing application on different Android smart-
phones with 4-cores/1 GB RAM and 2-cores/1 GB RAM. For
the evaluation of Section VIII-C we employ Jmeter to emulate
multiple devices accessing the infrastructure concurrently.

For sample submission and verification, we employ the
ECDSA with keys computed over 224 bit prime fields
(secp224k1 curve), thus, achieving a 112 bit security [43].

B. User-Side Evaluation

Fig. 6 illustrates the performance of the authentication and
pseudonym acquisition protocol (Section VI-B) on the two
mobile devices. For this evaluation, devices request one autho-
rization token from a set of ten (i.e., ten active tasks). We
present the time needed to execute the different steps of the
algorithm (i.e., pseudonym generation, acquisition time, and
authentication at the IdP), averaged over 50 observations. For
the dual-core phone, the time needed to get authenticated and
obtain ten pseudonyms is around 8 s. This increases linearly
as the device requests more pseudonyms: for 50 pseudonyms,
the authentication protocol is executed in 22 s. On the IdP
site, authentication (based on group signatures) requires 4 s.
For the quad-core device, the protocol requires significantly
less time (11 s for 50 pseudonyms). When using TOR, we
experience additional network latency. Due to space limi-
tations, we present here the results only for the quad-core
device. TOR introduces a latency of approximately 10 s, thus
raising the authentication time to 23 s for 50 pseudonyms.
Even for substantial reporting (task) periods such a number of
pseudonyms provides adequate privacy (Section VII-C).

We also compare the efficiency of EC-based digital signa-
tures with group-signature schemes. This comparison yields

Fig. 8. CPU consumption.

Fig. 9. System reliability in real-world scenario.

Fig. 10. Device revocation.

that ECDSA with SHA512 is approximately ten times faster
(on the quad-core device) compared to group signature
schemes (i.e., BBS scheme [22]) with the same security
level. This serves as a comparison of our system with
AnonySense [16] that relies on group signatures: as devices are
expected to submit a considerable amount of digitally signed
samples, it is critical, from the energy consumption point of
view, that the process is as efficient as possible.

Fig. 7 evaluates the implemented PIR scheme: we show the
time needed to obtain an authorization token (for one task) on
the quad-core device, as a function of the number of active
tasks. This delay increases mildly with the number of active
tasks in the system. Even for a set of 100 active tasks, the PIR
protocol is executed in approximately 3.5 s.

We measure CPU utilization for the authentication proto-
col on the two mobile devices (Fig. 8). For the dual-core
device, the amount of CPU consumed ranges from 36%, for
10 pseudonyms, to approximately 50% for 50 pseudonyms.
For the quad-core phone, the CPU consumption significantly
drops, ranging from 20%, for 10 pseudonyms, to 23% for
50 pseudonyms. For comparison purposes, we measured the
CPU consumption of the Facebook application on the quad-
core device. On average the Facebook client consumes 18%
of the CPU, which is close to the CPU consumption of our
client on the same device (for 50 pseudonyms).



GISDAKIS et al.: SECURITY, PRIVACY, AND INCENTIVE PROVISION FOR MCS SYSTEMS 851

C. Infrastructure-Side Evaluation

We assess the performance of our infrastructure under
stressful, yet realistic, scenarios assuming a traffic monitoring
sensing task: the mobile devices of drivers get authenticated
to our system and receive pseudonyms to protect and sub-
mit data with respect to the encountered traffic conditions.
This is a demanding case of MCS since it entails strict
location-privacy protection requirements: users request many
pseudonyms to protect their privacy while submitting frequent
location samples.

To emulate this task, we use the “TAPAS” data set [44]
that contains synthetic traffic traces from the city of Cologne
(Germany) during a whole day. We assume a request policy
of ten pseudonyms every 10 min, i.e., pseudonym lifetime
of 1 min each. By combining this policy with 5000 ran-
domly chosen vehicular traces from the data set, we create
threads for Jmeter. Each thread is scheduled according to the
TAPAS mobility traces, with journeys specified by start and
end timestamps. Fig. 9 shows that our system is efficient in
this high-stress scenario: it serves each request, approximately,
in less than 200 ms. Furthermore, during the 1 h execution of
this test, we simulate an outage of one of the two PCAs lasting
11 min. As shown in the shaded area of Fig. 9, the request
latency does not increase and the system recovers transparently
from the outage.

Fig. 10 shows the time required for a single device revo-
cation, as a function of the number of pseudonyms in the
database. The RA queries the PCA for the authorization token
that the device used to request the PS. After retrieving the
token, the RA asks the GM to translate it to the device long
term identifier. Then, the GM invalidates all the dispenser cor-
responding to the token and informs the IdP (Section VI-D).
Accordingly, the PCA revokes all device pseudonyms. These
two processing delays are accounted for as the time spent on
PCA (tPCA) and GM (tGM), respectively. The total time spent
on RA is tTOT = tRA + tPCA + tGM, where tTOT is the total
execution time of revocation protocol.

The pseudonym set is generated by assuming the same
request policy for all devices. This maximizes the entropy of
the database set. Each assumed device obtained ten tokens for
requesting a set of ten pseudonyms per token, thus giving the
overall ratio 1 device : 10 tokens : 100 pseudonyms. The box-
plots in Fig. 10 depict the results averaged over 100 runs, with
the pseudonym set increasing from 10 000 to 100 000 items
linearly (i.e., we assume more devices). The performance of
the system is not significantly affected by the size of the set.
On average, revocation of a device requires 2.3 s.

D. Remuneration Evaluation

We evaluate the proposed remuneration mechanism for the
unbiased estimator of (2). We start by assessing the mech-
anism fairness assuming sensing tasks with two user types:
honest users monitoring the sensed phenomenon and submit-
ting samples as they move along different regions and, selfish
users that obtain a single measurement, for a single region,
and massively replay it to the RS. This way, selfish users try
to gain inordinate, to their efforts, rewards: although they do

Fig. 11. Shapley utility for different fraction of selfish users (10% and 30%).

Fig. 12. Standard error of the estimator.

not spend resources for sensing the monitored phenomenon
and their location, they submit samples to the RS. To emu-
late such a greedy deviant behavior, we synthesize a dataset
of 40 users participating in a sensing task. Fig. 11 presents
our findings: the left plot corresponds to a scenario where
the fraction of selfish users is 10%. The parameter α of the
x-axis is the replaying frequency of selfish users: for α = 20
malicious users submit (i.e., replay) 20 times more messages
than an honest user to the RS. As the figure shows, even for
the extreme case that α = 30, selfish users receive, on aver-
age, 25% of the total value; this is a result of the employed
value function (Section VI-E2): coalitions in which selfish
users participate are unbalanced; they contain many reports
for one region, and are, thus, evaluated lower (H → 0) com-
pared to more balanced coalitions. Increasing the amount of
selfish users to 30% yields higher utility for them but, still,
disproportional to the number of reports they replay to the
system.

Indeed, selfish users could become malicious and spoof their
device location, thus, submitting reports for regions they are
not physically present. Mitigating such behavior is orthogonal
to this investigation since it necessitates a data trustworthiness
and verification framework such as [29] or position verification
and location attestation schemes. Furthermore, selfish users
can also share measurements: a user in region A might receive
measurements from another user, for a region B, and submit
it to the system as hers (and vice versa). This behavior can
be easily mitigated due to the our sybil-proof scheme: simply
examining the distance between samples submitted under the
same pseudonym serves as an indication of such attacks (i.e.,
when the corresponding distances are implausible).
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Fig. 12 assesses the accuracy of the Shapley Estimator as
a function of the of number of sample permutations [variable
k of (2)] for a sensing tasks with 40 participating users. As
we do not have any ground-truth we plot on the y-axis the
standard statistical error of the values the estimator assigns to
the different users. We observe that the relative standard error
is small. Moreover, as we tradeoff efficiency for accuracy (i.e.,
increasing k), the error significantly diminishes.

IX. CONCLUSION

Technological advances in sensing, microelectronics and
their integration in everyday consumer devices laid the ground-
work for the rise of people-centric sensing. However, its
success requires effective protocols that guarantee security and
privacy for MCS systems and their users. To meet this chal-
lenge, we presented a novel secure and accountable MCS
architecture that can safeguard user privacy while support-
ing user incentive mechanisms. Our architecture achieves
security, privacy and resilience in the presence of strong adver-
saries. Moreover, it enables the provision of incentives in a
privacy-preserving manner; a catalyst for user participation.
We formally evaluated the achieved security and privacy prop-
erties and provided a full-blown implementation of our system
on actual devices.
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