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ABSTRACT
The openness of PS systems renders them vulnerable to
malicious users that can pollute the measurement collection
process, in an attempt to degrade the PS system data and,
overall, its usefulness. Mitigating such adversarial behavior
is hard. Cryptographic protection, authentication, authoriza-
tion, and access control can help but they do not fully address
the problem. Reports from faulty insiders (participants with
credentials) can target the process intelligently, forcing the PS
system to deviate from the actual sensed phenomenon. Filter-
ing out those faulty reports is challenging, with practically no
prior knowledge on the participants’ trustworthiness, dynam-
ically changing phenomena, and possibly large numbers of
compromised devices. This paper proposes SHIELD, a novel
data verification framework for PS systems that can comple-
ment any security architecture. SHIELD handles available,
contradicting evidence, classifies efficiently incoming reports,
and effectively separates and rejects those that are faulty. As
a result, the deemed correct data can accurately represent
the sensed phenomena, even when 45% of the reports are
faulty, intelligently selected by coordinated adversaries and
targeted optimally across the system’s coverage area.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; E.3
[Data Encryption]: Public Key Cryptosystems

General Terms
Experimentation, Performance, Security

Keywords
Participatory Sensing; Security; Privacy

1. INTRODUCTION AND BACKGROUND
Participatory Sensing (PS) [1] leverages the proliferation

of modern sensing-capable devices enabling (wide-scale) in-
formation collection practically from anywhere, at anytime,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

WiSec’15, June 22 - 26, 2015, New York, NY, USA.

Copyright 2015 ACM. ISBN 978-1-4503-3623-9/15/06 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766498.2766503.

about anything. PS has incubated a wide gamut of appli-
cations aiming to improve the welfare of individuals and
the general public: environmental monitoring [2, 3], urban
sensing [4, 5], intelligent transportation [6, 7, 8, 9], assistive
health-care [10, 11] and public safety [12, 13].
PS users are information prosumers [14]: they produce

and consume information. As producers, they deliver content
to the system, contributing sensed data with their smart-
phones, smart-vehicles, wearable sensor vests and armbands.
Such information is sensitive: it reveals their location, daily
routines and social relations and it can be used to profile
them. Sensible users valuing their privacy might opt-out
or even oppose systems that harm their privacy [15, 16].
Therefore, strong privacy protection, combined with incentive
mechanisms, can facilitate mass user participation [14].
At the same time, to attract and retain information con-

sumers, PS systems must create added value by providing
accurate information and intelligence. Unlike the deployment
of dedicated sensors, PS systems can have much broader
spatial coverage. The broader the participation, the better
the results, in principle. But this openness is a double-edge
sword: any of the participants can be adversarial and pollute
the collected data, seeking to manipulate (or even dictate)
the PS system output. Faulty, distorted information can lead
to wrong decisions, possibly rendering PS systems useless.
Security mechanisms can mitigate such misbehavior to a
certain extent: authentication, authorization and access con-
trol can prevent outsiders (i.e., external entities, not part of
the sensing campaign) from polluting the sensing task. This
has led to numerous proposals aiming at securing PS data
collection [17, 18, 19, 20, 21, 22].

However, what happens when registered PS users (insiders)
attack the system? Insiders, that is, compromised devices
equipped with the system credentials and cryptographic keys,
can still (easily) pollute PS data. Worse even, as PS gets
widely adopted and mobile devices are being infected, in large
numbers, by malware [23], one cannot expect that such inter-
nal adversaries will be a small minority in the system. This
implies that security cannot alone guarantee the collection of
truthful and trustworthy data.

The eviction of misbehaving users is possible [22], but it
necessitates fine-grained and node-specific identification of
offending behavior. This can be time-consuming and hard
against intelligent and numerous adversaries. Even harder it
is to rely on reputation [24, 25]: users would need to have their
reputation built up based on the trustworthiness of their data.
But assessing data trustworthiness is exactly the problem at
hand: in other words, a circular dependency. What we need is
to assess and sift faulty data without any assumption on the



trustworthiness of their source. Designing such mechanisms is
not easy: it requires fusing (contradictory) data, originating
from untrustworthy sources describing dynamic and uncertain
phenomena evolving over space and time.

Statistical anomaly detection could mitigate pollution at-
tacks: adversary-free statistical models of the sensed phenom-
ena, e.g., estimated based on past sensing campaigns, can be
empirically compared to incoming user reports. Nonetheless,
such models are hard to obtain for every monitored phe-
nomenon (e.g., temperature or traffic congestion) in every
possible geographical area. Furthermore, even if such models
existed, they would not capture (frequent) changes of the
underlying phenomena or extraordinary events. For example,
a model describing traffic congestion levels is not valid in
the presence of accidents or road maintenance activities. We
need to assess user-contributed information without prior
statistical descriptions or models of the data to be collected.
The absence of such prior knowledge has been considered
in [26, 27]. Nonetheless, these works are limited to scenarios
where the goal of the system is to solely infer the presence
or absence of (boolean) conditions of interest (e.g., damage,
pollution, litter).

Other works focus on mitigating data manipulation in the
domain of Wireless Sensor Networks (WSNs), notably seek-
ing to render data aggregation robust. Resilient aggregation
functions [28, 29] thwart data pollution by removing some of
the faulty data without relying on prior data knowledge. The
challenge is to have a scheme that effectively removes most,
if not all, of the faulty data. An alternative approach, also
investigated in the WSN context, is to leverage node-to-node
communication to detect and filter out faulty data [30, 31,
32]. However, this approach is not applicable to the open,
volatile, and voluntary PS context. Existing PS applications
require user-PS system communication alone and any addi-
tional user-to-user communication can be a burden (e.g., data
transmission cost, battery, complexity). What we need, for
easy adoption, is to have user mobile devices implementing
the bare minimum of functionality on the user (client) side,
placing the load for safeguarding the data collection on the
server side.
Contributions: We meet these challenges with SHIELD;

a novel data verification framework that combines evidence
handling (Dempster-Shafer Theory) and data-mining tech-
niques to identify and filter out erroneous (malicious) user
contributions. More specifically, SHIELD (i) is generic and
applicable to any type of PS task, (ii) it guarantees no
(or small) distortion of the PS system output even in the
presence of strong, colluding adversaries, (iii) it adapts to
spatio-temporal changes of the underlying phenomena, (iv)
it enables users to perform fine-grained queries, and (v) it
provides information that can be used for decision making.
We provide a prototype implementation of SHIELD and we
extensively evaluate its performance under various scenarios,
employing both real and synthetic datasets. We also show
how it outperforms various existing resilient aggregation and
outlier detection schemes. Overall, our framework can com-
plement any security architecture for PS, closing the existing
gap and protecting against powerful internal adversaries.
In the rest of the paper, we first describe the system and

adversarial models (Sec. 2). We then provide an overview
of SHIELD, followed by a detailed description of its core
components (Sec. 3). Sec. 4 outlines the experimental setup

used to evaluate SHIELD, with results presented in Sec. 5,
before we conclude (Sec. 6).

2. SYSTEM AND ADVERSARY MODEL
We consider a generic Participatory Sensing (PS) [14] sys-

tem consisting of:
Users: Set of individuals using mobile devices (e.g., smart-

phones, tablets and smart vehicles) equipped with embedded
sensors (e.g., inertial and proximity sensors, cameras, micro-
phones and gyroscopes) and navigation modules (e.g., GPS).
Mobile devices collect and report sensory data to the PS in-
frastructure across any available network (e.g., 3/4G, WiFi).
Users (devices) also query the results of sensing tasks.

Campaign Administrators: Organizations, public au-
thorities or individuals [33], initiating data collection cam-
paigns: they recruit users and distribute descriptions of sens-
ing tasks to them.

Identity & Credential Management Infrastructure:
It supports sensing tasks by registering users, providing cryp-
tographic credentials and enabling or offering Authentication,
Authorization and Access Control services. We require a Sybil-
proof infrastructure, which guarantees that no registered user
can obtain multiple identities and credentials valid simulta-
neously; [19, 22] provide these features and guarantees.

Reporting Service (RS): The RS exposes the interfaces
that enable registered users to submit data to and query the
results of a sensing task. SHIELD operates on the RS, to
assess and remove invalid, faulty data.

The area of interest of a sensing task is the locality within
which users contribute data. It is defined explicitly (i.e., by
means of coordinates forming polygons on maps) or implic-
itly (through annotated geographic areas, e.g., New York
city). In either case, the area of interest is divided into spatial
units. Spatial units are homogeneous, with respect to the
sensed phenomenon, areas [34]. More specifically, the value of
the sensed phenomenon within a spatial unit might exhibit
temporal but not significant spatial variations. The defini-
tion of spatial units largely depends on the PS application
and, hence, on the underlying monitored phenomenon. For
instance, in the context of traffic information systems (e.g.,
[6, 7]), road links (i.e., road segments between two junctions)
serve as spatial units. Similarly, for public transport PS appli-
cations (e.g., [35]) spatial units can correspond to individual
bus, metro and train lines. Finally, pollution areas around
points of interest (e.g., factories) can serve as spatial units [3]
for environmental monitoring tasks.

Each user submits to the RS a stream of measurements on
the sensed phenomenon over a time interval, t, specified in
the PS campaign [14]. These data are submitted in successive
reports, each with n measurements, vi where i ∈ {1, 2, ..., n},
corresponding to a device location, loc:

ri = {[v1, v2, v3, ..., vn] || t || loc ||σPrvKey ||C}
σPrvKey is a digital signature with some private key, with

the corresponding public key included in the certificate C.
User-RS communication is over an end-to-end secure channel.
We do not dwell further on the identity management and cryp-
tographic protection specifics; we assume these are addressed,
e.g., by the most recent scheme [22] in the literature.

Adversary model: Malicious users (clients) can partici-
pate in sensing campaigns: having obtained valid credentials,
they can submit authenticated yet faulty reports to the RS.
We do not refer only to human operators with malevolent in-
tentions, but more generally to compromised devices (clients),
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Figure 1: System Overview

e.g., imbued with a rogue version of the PS application. Each
such compromised client (essentially, the corresponding iden-
tity, certificate, and private key) can pollute the data col-
lection process. This can result in the distortion of the PS
system’s perception of the sensed phenomenon, and thus
degrade the usefulness of the campaign (e.g., causing wrong
answers to user queries). Consider, for example, traffic moni-
toring campaigns, with users submitting their velocity to the
RS: adversaries could submit low velocities to impose a false
perception of the congestion levels of the road network (e.g.,
traffic jams or accidents).

We allow adversaries to submit values (arbitrarily) different
than the ones of the honest users (i.e., the values character-
izing the sensed phenomenon). Let Vai be the adversary-free
system output for a spatial unit i, and Vri the system output
in the presence of adversaries. The objective of the adver-
saries is to impose a Vri that deviates from Vai . In extremis,
the adversaries can seek to maximize the distortion:

max {|Vri − Vai |}
Adversaries can act individually or collectively. Here, we

focus on the latter, i.e., coordinated attacks, as they can have
far graver impact on the system. We assume adversaries
follow the same strategy, i.e., submit reports drawn from
the same set of values, or even optimally select how (where)
to inject faulty reports. This is possible because adversaries
can spoof (forge) their (device) location and submit reports
for regions they are not physically present but they want to
affect. We elaborate the attack instantiation in Sec. 4.

SHIELD objective: In the presence of such adversaries,
we seek to safeguard the accuracy of the RS perception of the
sensed phenomenon. In other words, minimize the distortion
imposed by adversaries:

min {|Vri − Vai |}
Note that SHIELD is agnostic to the cause of faulty reports;

these can so be due to benign impairments of the PS clients
(devices operated by honest users). In what follows, we do not
distinguish deliberately and unintentionally faulty reports.

3. SHIELD FRAMEWORK
3.1 High-Level Overview
In a nutshell, the RS preprocesses incoming user reports

and then acts in three phases (Fig. 1): a) bootstrapping, b)
region merging and training and c) classification.
During the bootstrapping phase, user reports are classi-

fied as inlying or outlying, also termed inliers and outliers,
essentially corresponding to non-faulty and faulty ones. As
the system has no a-priori knowledge of what makes reports
inliers or outliers, this phase is an exploration of their innate

structure (Sec. 3.3). Reports are classified not as raw data but
as evidence: each incoming report is processed; i.e., it is trans-
formed into a mass function (Sec. 3.2) and a feature vector,
one for each report, is created and classified. Bootstrapping
is run separately for each spatial unit (Sec. 2) (recall: mea-
surements of honest users follow the same distribution within
a spatial unit).

At the second phase, SHIELD explores the spatial charac-
teristics of the sensed phenomenon and merges spatial units
into larger regions. To do this, SHIELD derives an empiri-
cal distribution for all data from all inlying reports within
a spatial until. Then, it examines the statistical similarity
of empirical distributions for neighboring spatial units and
merges them if they are deemed similar. This way region
merging (Sec. 3.4) creates larger and homogeneous (with
respect to the phenomenon) geographical regions. For each of
these regions, training is performed: this process is similar to
the bootstrapping phase except that it is performed for the
reports of all the spatial units that now comprise a region.
At the third phase, the output of the training and region

merging phase (i.e., user reports labeled as inliers and out-
liers) is given into an ensemble of classifiers (Sec. 3.5). This
ensemble is a supervised learning mechanism that leverages
the previously acquired training data in order to classify
subsequent user reports. A different ensemble is created for
each of the regions that was extracted during the region
merging phase. Then, each new incoming report is assessed
by the ensemble of classifiers; the individual decisions of the
classifiers are then combined into a majority-based decision,
which classifies the report as inlying or outlying.

The statistical properties of the sensed phenomena may
change over time in unforeseen ways. Such events, known as
concept drifts [36], can deteriorate the performance of any
classification model. SHIELD leverages a triggering mecha-
nism that detects and adapts to such changes (Sec. 3.6).

3.2 Handling Evidence
The SHIELD-ed RS is an agent that reasons on the actual

value of the sensed phenomenon, relying on multiple sources
of evidence (i.e., reports). For example, RS has to decide
whether the congestion level of a street is “high”, based on
the velocities that participating users report, or that the
temperature of an area is within the interval 10 ◦C− 11 ◦C,
based on temperature measurements. This is essentially a
decision making and a sensor fusion problem. The canonical
approach for such problems is Bayesian Inference (BI), which
computes the posterior probability of a hypothesis given
the available supporting evidence and its prior probability.
Nonetheless, the definition of prior probabilities is an obstacle
for using BI in the context of PS. For example, it is hard to
define the prior probability of a hypothesis that the road is
congested or that the temperature (of an area) is within some
interval. Instead, we need to handle uncertainty : having a
user report stating that temperature is within an interval α
does not preclude temperature from lying in another interval
β (as is the case for BI). SHIELD leverages Dempster-Shafer
Theory (DST) [37] that allows reasoning about uncertainty;
we provide basic notions of DST next.

3.2.1 Use of Dempster-Shafer Theory
Let Θ be the exhaustive set of hypotheses about the actual

value of the sensed phenomenon; the frame of discernment.
Since the phenomenon can only have a single actual value,
it follows that all hypotheses of Θ are mutually exclusive. A



mass function m is a probability assignment from the power
set of Θ (i.e., 2Θ) to [0, 1] so that:

m(∅) = 0 (1)

∑
A⊆Θ

m(A) = 1 (2)

where m(A) is the basic probability number for A and it is
a measure of the belief committed exactly to this hypothesis.
The belief of all possible subsets of A, Bel(A) : 2Θ → [0, 1] is
the sum of all masses of all subsets that support A:

Bel(A) =
∑
B⊆A

m(B) (3)

Simply put, Bel(A) is a measure of the strength of the
evidence in favor of A and it corresponds to a lower bound on
the probability that A is true. The upper probability bound
is given by the plausibility function, Pl(A) : 2Θ → [0, 1]:

Pl(A) =
∑

B
⋂

A�=∅
m(B) (4)

Plausibility is the amount of evidence not contradicting
hypothesis A. For Bel(A) and Pl(A), two properties hold:

Bel(A) ≤ Pl(A)

Pl(A) = 1−Bel(Ā)

Two independent sets of probability mass assignments,
m1,m2, can be combined (to a joint mass) with Dempster’s
rule of combination:

m1,2(A) = (m1 ⊕m2)(A) =
1

1−K
(5)

where K =
∑

B
⋂

C=∅
m1(B)m2(C) and m1,2(∅) = 0

This rule derives the shared belief between the two masses
and can be extended to combine multiple masses. Two masses
are considered conflicting to the extent they support incom-
patible hypotheses. An indication of the conflict of the masses
is given byK. A quantification can be extracted by the weight
of conflict, Con, metric:

Con(bel1, bel2) = log(
1

1−K
) (6)

In the case of no conflict between bel1 and bel2,Con(bel1, bel2) =
0. If these two beliefs have nothing in common,Con(bel1, bel2) =
∞.
There are different ways to measure the uncertainty of a

mass function. Here, we use the classical entropy measure:

LCon(m) = −
∑
A∈Θ

m(A)log2(m(A)) (7)

LCon is a measure of the inconsistency within a mass
function. Intuitively, the larger the number of mutually dis-
agreeing hypotheses, the larger U becomes.

Assume two devices, c1 and c2, participating in a sensing
task of a phenomenon that takes the abstract values a, b, c
and d (either numerical or nominal). As it was described
in Sec. 2, each participating user submits a stream of mea-
surements of the sensed phenomenon. The transformation
of these streams to probability masses depends on the phe-
nomenon itself. First, if the system wants to infer the value of
the same phenomenon that users monitor, it generates a prob-
ability density function (p.d.f) by constructing a normalized
histogram [39] from each user-submitted stream. This p.d.f
will be used to assign masses to the different hypotheses for
the phenomenon. Note that better accuracy requires smaller

Algorithm 1 Pseudocode for DBSCAN [38]

1: procedure DBSCAN(D, ε,MinPoints)
2: Cluster ← empty
3: for each unvisited feature f of D do
4: f ← visited
5: Neighbors← QUERYREGION(f, ε)
6: if size(Neighbors) < MinPoints then
7: f ← outlier
8: else

9: EXPAND(f,Neighbors, Cluster, ε,MinPoints)

10:
11: procedure QUERYREGION(f, ε)
12: return ε−neighborhood of f

13:
14: procedure EXPAND(f,Neighbors, Cluster, ε,MinPoints)
15: f ← member(Cluster)
16: for each n in Neighbors do
17: if n visited then
18: n← visited
19: Neighbors′ ← QUERYREGION(n, ε)
20: if size(Neighbors′) ≥MinPoints then
21: Neighbors + = Neighbors′

22: if n �∈ any cluster then
23: n← memberof(Cluster)

discretization intervals (i.e., small histogram bin size). For
instance, in case of temperature monitoring tasks we assume
1◦C intervals. This, however, has an impact on the system
performance as the frame of discernment grows (more hy-
potheses to consider). To compensate for this, we can exclude
improbable hypotheses; e.g., we do not consider temperatures
outside the operational limits of modern smart-phones (e.g.,
0− 32◦C)1. Moreover, histogram bins do not need to have
the same granularity. One bin could include temperature
measurements < 0◦C (i.e., an unlikely hypothesis during
summer months in cities of the northern hemisphere); an-
other temperatures > 30◦C. Intermediate bins, corresponding
to more probable hypotheses, can have .5◦C granularity (e.g.,
0.5, 1, 1.5, ..., 30◦C).

SHIELD can also infer the value of a phenomenon Pα, based
on measurements of a phenomenon Pβ . For example, users
monitor air-temperature but their measurements are used
to infer soil-temperature.2 An air-temperature measurement,
vα,i, can correspond to multiple soil-temperature values: e.g.,
vβ,x, vβ,y, vβ,z. In this case, the system treats each vα,i as
supporting evidence for the vβ,x, vβ,y, vβ,z hypotheses. We
term such sensing tasks as Indirect Inference (IInf).3

Let us assume that the mass of c1 is the vector mc1 = [ab :
0.6, bc : 0.3, a : 0.1, ad : 0.0]. This states that c1 assigns a mass
of 0.6 to the hypothesis that the value of the phenomenon is
a or b, a mass of 0.3 that the correct hypothesis is either b
or c and a mass of 0.1 that a holds. Similarly, let the mass
of c2, be mc2 = [ab : 0.5, bc : 0.4, b : 0.05, a : 0.05]. Using the
combination rule (5), we get that the combined mass is m =
mc1 ⊕mc2 = [b : 0.46, ab : 0.32, cb : 0.12, a : 0.09]. We can
compute the plausibility that the value of the phenomenon
is a. Using (4) we get that P lm(a) = 0.41. Finally, (6) yields
that the conflict between mc1 and mc2 is 0.06.4

1https://support.apple.com/en-us/HT201678
2Possibly based on an inference model that leverages the
empirical relationships between the two phenomena.
3Eq. (7) becomes LCon(m) =

∑
A∈Θ m(A)log2(|A|) −∑

A∈Θ m(A)log2(m(A)) [40].
4The numbers used in this example have been rounded for
easy readership.



Figure 2: Clustering with DBSCAN (circles denote inliers).

3.3 Bootstrapping Phase
By collecting user reports and transforming them into prob-

ability masses, the system enters the bootstrapping phase
for each spatial unit. The goal is to give the system an initial
understanding of the sensed phenomenon (within each spa-
tial unit) and to remove deviating, or potentially polluting,
reports. To do this, the system trains itself to identify struc-
ture in user measurements. More specifically, for each report
(transformed into a probability mass), it computes a) the
hypothesis, Hmax, with the maximum belief, b) the belief,
Bel(Hmax), of this hypothesis, and c) the local conflict of
the probability mass. These are included in a 3-dimensional
feature vector vrα (one for each report rα):

vrα = [Hmax, Bel(Hmax), LCon(mc)]

where mc denotes the probability mass derived from the
user report (Sec. 3.2.1). The system waits until a sufficient
number of reports has been collected for a spatial unit5

and then initiates the DBSCAN density-based topological
clustering algorithm [38] (Alg. 1). The algorithm input is the
set, D, of all feature vectors, the maximum distance, ε, that
two feature vectors must have to be considered “close”, and
the MinPoints number. A vector (i.e., point) is considered
central if there are MinPoints other vectors close to it. To
calculate the distance between two feature vectors vrα and
vrβ , we use the Canberra distance metric [41]:

d(vrα , vrβ ) =
∑3

i=1

∣
∣
∣vrα (i)−vrβ (i)

∣
∣
∣

|vrα (i)|+∣
∣
∣vrβ (i)

∣
∣
∣

If d(vrα , vrβ ) ≤ ε we say that vrβ is in the ε-neighborhood
of vrα . By settingMinPoints to be low, the algorithm will cre-
ate many clusters. Nevertheless, since honest reports within
a spatial unit follow the same distribution (Sec. 2), honest
feature vectors will be close to each other. As a result, we
can set MinPoints to be rather large (for example, a feature
vector can be considered a core point if it has in its neigh-
borhood 45% of all vectors). This expected high density of
feature vectors implies that the distance between them will
be relatively small. Hence, we can set ε to be small (e.g., to
be equal to the 30th percentile of all the pairwise vector dis-
tances). To estimate the proper values for these parameters,
we employ the heuristic described in the original DBSCAN
paper [38]. This heuristic leverages the k − distance of the
dataset to compute the ε and MinPoints of the thinnest
cluster created by the algorithm.6.

The output of the algorithm is a partitioning of all feature
vectors in D into inliers and outliers. Fig. 2 illustrates such

5This can be identified heuristically; based on our evaluations,
20 reports suffice.
6Additional details are presented in [38]

Algorithm 2 Pseudocode for the Region Growing Algorithm

1: procedure REGIONGROWING(Seed s)
2: s← visited
3: region← ∅
4: region.add(s)
5: active set← s
6: while active set not ∅ do
7: c = dequeue point(active set)
8: for n in neighbors of(c) do
9: if n(¬visited) and KSTEST (c, n) : True then
10: active set.add(n)
11: region.add(n)

12: visited← n
return region

a partitioning: most of the inlying reports suggest Hmax =
50, whereas outlying reports suggest Hmax to be around
55. Inlying and outlying reports are easily separable when
considering the LCon feature. Compared to inlying reports,
outlying ones have higher conflict because they support (i.e.,
they assign masses to) more hypotheses.
Since DBSCAN examines the topological density of the

feature vectors, it relies on honest majorities to (correctly)
identify inliers and outliers. Simply put, it learns what the
majority of users suggest for each spatial unit. Nevertheless,
as we discuss in Sec. 5, such honest majorities can be rather
marginal.

3.4 Region Merging and Training Phases
The system essentially learns the topological variation of

the sensed phenomenon. The previous phase labeled user
reports (for each spatial unit) as inliers and outliers. Leverag-
ing the inlying reports, the system then merges neighboring
spatial units within which user measurements and, thus, in
all likelihood, the underlying sensed phenomenon follows
(almost) the same distribution. To compare the similarity
between the inlying reports of two neighboring spatial units,
we perform a two sample Kolmogorov-Smirnov (K-S) test.
The system first constructs two empirical distributions (from
the inlying reports of each spatial unit) and verifies the null
hypothesis: i.e., reports are drawn from the same distribution.
The K-S statistic is:

Dci,cj = supx |Fci(x)− Fcj (x)|
where Fci and Fcj denote the empirical distributions.

Based on Dci,cj , the system accepts the null hypothesis (and
merges the two spatial units) at a significance level of 5%.
Alg. 2 gives the details of the region merging. The algo-

rithm is initiated with a spatial unit as a starting point. It
then traverses all neighboring spatial units and examines
whether the null hypothesis holds. Its output is a region of
units within which the sensed phenomenon follows the same
(or almost the same) distribution. Executing the algorithm
multiple times, for different starting units (not yet belonging
to any region), yields a unique segmentation of the area of
interest of the sensing task. The worst case scenario is when
the monitored phenomenon exhibits extreme spatial diver-
sity; then, no (larger) regions will be formed and, thus, each
spatial unit will be considered as a separate region.

For illustration, Fig. 3 shows an execution instance of this
algorithm for an emulated traffic sensing campaign with par-
ticipating users contribute their velocities to the RS (Sec. 4).
On the left side of the figure, we see a part of the road net-
work of the city of Stockholm. In this context, each road link
corresponds to a spatial unit (Sec. 2). The right side of Fig. 3



depicts the output of the region merging algorithm, where in-
dividual spatial units have been merged into 4 larger regions
(annotated with red color) based on the homogeneity of the
reported velocities. The color density of the road links serves
as an indication of the average speed users experience on
each road segment (darker colors indicate smaller velocities).
Once the region merging phase concludes, the training

takes place for each formed region. It is identical to the
bootstrapping phase except that the clustering algorithm
runs over reports originating from all the merged, into a
region, spatial units. Again, the output is a labeling of all
user reports (of a region) into inliers and outliers.
SHIELD can operate for any phenomenon irrespective of

the underlying distribution. Recall that our system leverages
Hmax,Bel(Hmax), LCon(mc) (Sec. 3.3). These features are
not specific to any type of distribution. Moreover, this phase
employs empirical distributions able to describe any type
of distribution. This, in fact, makes SHIELD generic and
relevant to any physical phenomenon.

3.5 Classification Phase
Clustering is not efficient for data streams because it re-

quires the execution of the clustering algorithm for each
incoming user report. This is why, as described previously,
we employ clustering for a small number of initial reports
(Sec. 3.3), sufficient to craft an understanding of the sensed
phenomenon in each spatial unit. With this knowledge, the
system then trains (supervises) an ensemble of classifiers com-
prising (i) a random forest, (ii) a naive Bayes (NB) classifier
and (iii) a nearest neighbor (NN) classifier. The goal of this
ensemble is to assess subsequent incoming reports in each
region (i.e., their characterization as inliers and outliers).

A random forest [42] is a collection of decision trees, each
trained over a different bootstrap sample. Each decision tree
is a classification model created during the exploration of
the training data. More specifically, the interior nodes of the
tree correspond to feature values of the input data. Recall
that our system considers three features: Hmax, Bel(Hmax)
and LCon(mc). For instance, according to the example of
Fig. 2, an interior node could be Hmax > 52. Nodes can have
other nodes as children, thus, creating decision paths (e.g.,
Hmax > 52 and Bel(Hmax) < 0.1). Tree leaves describe the
decision (i.e., classification) of all training data described by
the path from the root to the leaf. For example, training data
for which Hmax > 52 and Bel(Hmax) < 0.1 are inlying. Once
a new report arrives, each decision tree estimates its class
by examining all the possible paths the report could follow.
The estimations of all decision trees are combined together
resulting into the final estimation of the random forest.7

The classification rule for SHIELD’s NB classifier is:

ŷ = argmax
y

P (y)
∏3

i=1 P (xi|y)

where ŷ is the decision (i.e., inlying or outlying) and xi

is a feature of the feature vector (i.e., Hmax, Bel(Hmax),
LCon(mc)). Prior probabilities are estimated by examining
the fraction of inlying and outlying reports for the training set.
The NN classifier implements a simple k-nearest neighbors
voting scheme (in our case k is set to 10). All classifiers are
trained with the output of the previous phase which is the
labeling of inlying and outlying reports for each region.

7Due to space limitations we omit the details of this process
and we refer the interested readers to the relevant work [42].

Figure 3: Illustration of the output of the Region Merging
algorithm for a traffic monitoring PS campaign.

Classifiers make their decisions (on inlying or outlying
reports) which are, in turn, combined in a majority voting
scheme to form the system’s final decision. If deemed inlying,
then a report is taken into consideration for updating the
system’s perception of the phenomenon (in a region). More
precisely, the system generates a mass function that is the
combination (according to Dempster’s rule of combination)
of all probability masses of all inlying reports in a region.

3.6 Concept Drift Detection Module
This module is responsible for detecting changes in the

statistical properties of the sensed phenomenon. It contin-
uously monitors the disagreement between the probability
mass, the system has for each region, and each new incoming
report. This is done by computing the Con metric (Eq. 6)
described in Sec. 3.2. More specifically, if the conflict between
the already computed probability mass and the incoming
user reports exceeds a predefined threshold, then an alert is
triggered. Based on the type of concept drift, different actions
can be taken by the system. We consider the following cases:

Local Concept Drifts: They occur locally and concern only
one, or a small number of regions. In this case, the system re-
trains (i.e., it enters the Training Phase described in Sec. 3.4)
the classifiers of these regions (in question) with the new
data it received from the users.

Global Concept Drifts: They occur globally and they affect
the whole area of interest for a task. As a result, the system
has to be bootstrapped; the area of interest is broken down to
the original spatial units and the training and region merging
phases are executed. The system differentiates between these
cases of concept drift by leveraging the location information
in the user reports.

3.7 Querying SHIELD
Any authenticated entity can query the system sending:

q = {Hmax || loc ||σPrvKey ||C}
Again, σPrvKey is a digital signature (of the querier) pro-

duced with some private key. The corresponding public key is
certified by the credential management system and included
in the certificate C. When queried, the system identifies the
region relevant to the query based on loc. Then, it responds
with the region’s [Hmax, Bel(Hmax), Pl(Hmax), LCon(ms)].
ms denotes the mass the system assigns to the different hy-
potheses derived from the combination of all inlying reports
for that region; from the moment of the latest concept drift
till the issued query.

Users can issue fine-grained queries as follows:

q = {Bel/P l ||H || loc ||σPrvKey ||C}
will return the belief and the plausibility that the system as-

signs to hypothesis H (for the region containing loc). Queriers



measuring the same phenomenon (as the sensing task) can
assess the degree of agreement (or contradiction) between
their measurements and the system’s belief, by issuing:

q = {Con || [v1, v2, v3, ..., vn] || loc ||σPrvKey ||C}
SHIELD will respond with the Con (Eq. (6)) value be-

tween its mass function and the mass function derived by the
measurements that the user provided (i.e., [v1, v2, v3, ..., vn]).
Users can also receive the whole mass function of the

system for a region with the query:

q = {m || loc ||σPrvKey ||C}
Queriers can then perform a pignistic transformation [43]

of m; a transformation of the system’s belief function to a
probability function that can yield optimal decisions [44].

4. EXPERIMENTAL SETUP
Since SHIELD is a composition of machine learning mecha-

nisms and heuristics, getting theoretical bounds on the quality
of the system is intractable. Instead, we provide strong em-
pirical evidence on the performance of the system, in various
scenarios, leveraging both real-world and synthetic datasets.

Datasets - The real-world dataset relates to PS-based en-
vironmental monitoring applications, whereas the synthetic
dataset relates directly to a traffic monitoring sensing cam-
paign. In both cases, we inject faulty reports originating from
adversaries, as detailed below, and we evaluate the ability of
SHIELD to accurately classify incoming reports and yield a
truthful and undistorted view of the underlying phenomenon.
As real-world measurements, we use Strata Clara (SC)

dataset, from the Data Sensing Lab [45], as a reference point
in the domain of environmental monitoring applications [2, 5].
It contains raw measurements for different physical phenom-
ena (i.e., humidity, sound and temperature), from 40 sensors
deployed at the Strata Clara convention center in 2013. The
underlying (normal) distributions of the monitored phenom-
ena are: (μ, σ) = {(31, 5)|(3, 2)|(21, 1.3)}, respectively.
The synthetic dataset is based on simulations of urban

road links, emulating a traffic monitoring PS task [9]: drivers’
smart-phones report their location and velocity to the RS.
We consider 250 users and simulate urban road links (and
traffic conditions) by generating “actual” location traces for
each vehicle/mobile with the SUMO [46] traffic simulator.
To produce “realistic” measurements, a percentage of the
location updates was degraded by introducing a random
error, for example, due to weak GPS signal.

Adversarial Behavior - We emulate adversaries by in-
jecting faulty reports drawn from distributions different than
those of the adversary-free datasets (i.e., the ones correspond-
ing to the underlying phenomena and containing reports only
from honest users (devices)). We instantiate coordinated
adversaries by having them inject data in the same manner.
We consider three cases:

• “Uniform” Adversaries report values drawn from a
uniform distribution (i.e., they assign an equal mass to
all hypotheses).

• “Normal” Adversaries report values drawn from a nor-
mal distribution.

• “N-value” Adversaries select N hypotheses (Sec. 3.2)
and randomly distribute probability masses to them.

The adversarial strategy determines the distortion adver-
saries try to impose on the system. Among the above,“normal”
adversaries may cause significant distortion (by increasing

the distance between the μ of their distribution and the mean
of the distribution that honest samples follow). On the other
hand, adversaries may try to increase the uncertainty of the
system, choosing a normal distribution with large σ or a
uniform distribution (thus, causing maximum uncertainty).
They could also try to increase the system’s certainty about
the true value of the phenomenon (e.g., by selecting a normal
distribution with μ equal to the mean of the honest distri-
bution but with significantly smaller σ). The system should
react even in this case; it is important to reflect the innate
uncertainty of the sensed phenomena in the system’s output.
For “normal” adversaries the employed (μ, σ) determine

the similarity (i.e., the overlap) between the honest and
adversarial distributions and it can be computed by simple
numerical integration. This overlap serves as an indication of
the detection difficulty: the bigger the overlap is, the harder it
becomes to detect and sift malicious data. Nevertheless, even
in the case of highly similar distributions, SHIELD manages
to correctly identify both the honest and malicious samples
(Sec. 5).

Examples of such strategies can be found in Appendix A.
We do not consider malicious users acting independently with
different strategies: in that case, their effect on the system
would be significantly smaller compared to collaborative at-
tackers; the more reports (users) support the same hypotheses,
the more probable it is for the system to believe them.

To assess the impact of pollution attacks, we examine
two cases: local attacks, targeting specific regions, and global
attacks that aim to distort the system output for as many
(if not all) regions as possible. For local attacks, we examine
the trade-off between the detectability of adversarial reports
(depending on the distribution chosen by the adversaries) and
the harm (distortion) they inflict on the system. Adversarial
report distributions that significantly differ from the actual
one (i.e., based on honest users’ reports) can more effectively
distort the system’s output. But, at the same time, such
reports may be more easily characterized as faulty (outlying).
For global attacks, we assume adversaries do not simply

cooperate (i.e., decide on a common distribution) but they
also jointly decide on the optimal allocation of their faulty
reports across the different regions, in order to maximally
affect the system [47, 48]. Simply put, they try to gain the
majority in as many regions as possible. This is possibly
irrespective of the physical placement of the adversaries: they
can forge the location of their reports. To model this enhanced
adversarial coordination, we assign a popularity value, pi, to
each region: the number of user queries expected to be issued
for region i. We also assign ci, the number of honest users,
expected to be within the region i, and we assume that ci is
proportional to pi; a popular region (e.g., roads around the
city center) is expected to have more users. The problem of
optimally allocating adversarial reports to each region, based
on the knowledge of pi and ci, is formulated as:

Maximise:
∑N

i=1 x · pi

subject to:
∑N

i=1 x · ci ≤ M,

x ∈ {0, 1}
M is the number of malicious reports (or, equivalently,

users, as we assume a sybli-proof security scheme and that
the RS accepts reports at the same rate from all devices,
adversarial or not) and N is the number of regions. While RS
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Figure 4: Performance analysis of the classification algorithm (a). Confusion matrices for humidity (μ = 31, σ = 5), sound
(μ = 3, σ = 2) and temperature (μ = 21, σ = 1.3) sensors (b, c, d).

can estimate vi and ci relatively accurately, based on the large
volume of data it has, this is harder for the adversaries. Exact
knowledge of vi and ci is unrealistic, thus, we assume that
adversaries have inaccurate estimates of those values. We
assume that they solve this optimization problem centrally.
This way, we emulate their ability to coordinate and decide
on the allocation of faulty reports to different regions.

5. RESULTS AND ANALYSIS
First, we assess the efficiency of SHIELD because PS ap-

plications can generate massive amounts of data. We then
analyze its accuracy in the presence of adversaries. Our focus
is on SHIELD’s ability to identify and filter out faulty reports;
i.e., the labeling of user reports as inlying and outlying. We
use five performance metrics [49]: (i) precision, (ii) recall,
(iii) F-score, (iv) Matthew’s correlation coefficient (MCC)
and (v) Jaccard similarity score (Appendix B). These in-
dices measure different aspects of a system’s classification
accuracy and of its ability to correctly identify instances of a
certain class (i.e., either inliers or outliers). Next, we continue
with an evaluation of the adversarial impact on the system
responses to user queries and we compare our scheme with
different robust aggregation functions. We conclude with an
assessment of our framework’s reactiveness to concept drifts.

In each experiment, SHIELD is provided with reports orig-
inating from both honest and malicious users (Sec. 4). This
dataset is partitioned into two sub-sets: a training set (TS)
and an evaluation set (ES). Based on the TS, the bootstrap-
ping (Sec. 3.3) and training (Sec. 3.4) phases take place. Then,
the ES is used to assess the performance of the supervised
classification part (Sec. 3.5). We refrain from assessing the
accuracy of DBSCAN as it is reflected on the performance of
the unsupervised classification: better training yields better
classification results. For each simulation we perform ten-fold
cross validation [50] to avoid overfitting. We show results
based on both datasets (Sec. 4); due to space limitations, we
do not repeat similar figures from both datasets. The results
show that SHIELD is equally effective for both datasets.

Complexity Analysis and Efficiency. The complexity
of the DBSCAN algorithm is O(r · logr), where r is the
number of reports within a spacial unit. Furthermore, the
complexity of the region merging algorithm, for an area of
interest with n spatial units, is O(n2). Each KS test is exe-
cuted in approximately 0.0005 sec. The low complexity of
both algorithms serves as an indication of SHIELD’s effi-
ciency during the training phase. This is important for highly

dynamic and regularly changing phenomena (entailing many
concept drifts) that require retraining of the system.
As sensing tasks proceed, large amounts of data will be

contributed by users. These data must be examined by the en-
semble of classifiers (Sec. 3.5) in an efficient manner. Fig. 4 (a)
depicts the performance of the ensemble as a function of
the number of user reports per sec: the classification time
increases (linearly) with the number of user reports. For
instance, the classification of 200 user reports requires less
than 0.013 sec whereas 500 concurrent reports are classified
in less than 0.017 sec. To obtain these measurements we
deployed SHIELD on a commodity server with an 8-Core,
3.6 GHz CPU. System components were implemented with
the Scikit-learn library.8

Classification Accuracy. We begin with the SC dataset
to evaluate the accuracy of SHIELD. We are interested in its
ability to correctly assess (i.e., classify) the samples submitted
by both honest and malicious users (i.e., positive and negative
labels, respectively). We perform separate tests for each
sensed phenomenon (i.e., humidity, sound and temperature).
Classification accuracy can be represented in a structure

termed confusion matrix or contingency table. Each column
of the matrix shows the instances in a predicted class (1
for positive, i.e., inlying and −1 for negative, i.e., outlying,
reports), while each row shows the instances in an actual
class. A confusion matrix C is such that Ci,j is equal to the
number of observations known to be in classi but labeled,
by the ensemble of classifiers, to be in classj . Essentially, C
shows the true positives (TPs), false positives (FPs), true
negatives (TNs) and false negatives (FNs).
The confusion matrices for the humidity, sound and tem-

perature sensors are shown in Fig. 4 (b), (c) and (d). Here,
we assume that 45% of the users are malicious, representing
an equal percentage of faulty data injected into the dataset.
The distributions, from which the malicious samples were
drawn, are: {(μ = 31, σ = 6)|(μ = 3, σ = 1)|(μ = 21, σ = 3)},
respectively. The diagonal elements (in the matrices) show
the number of correct classifications made for each class, and
the off-diagonal elements indicate the errors.

SHIELD is almost 100% successful in correctly classifying
both the inlying (i.e., positive) and outlying (i.e., negative)
reports. For instance, in the case of humidity readings, 18
out of 19 samples were classified positive correctly and all
true negatives were identified without error. Overall, the true
negative classification rate remains high in all cases and only

8http://scikit-learn.org
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Figure 5: Precision, Recall and F-score metrics, for uniform (a, b, and c), N-value (e, f, and g) and normal (d, h) adversarial
strategies. SC dataset.

Figure 6: MCC and Jaccard coefficients as a function of the
percentage of overlapping regions. Traffic dataset.

the false positive rate shows a variation, depending on the
percentage of overlapping regions between the honest and
malicious distributions (Sec. 4). Nevertheless, the observed
variation is small even when the underlying distributions are
rather similar (e.g., in the case of temperature).

Fig. 5 shows the precision, recall and F-score metrics when
different adversarial strategies are employed (i.e., uniform,
N-value and normal distributions). The bars depict the score
values for both honest and malicious reports, respectively.
As we can see, the overall correctness of SHIELD remains
high, regardless of the number of malicious users (Average F-
score ≥ 0.85); in almost all cases, the percentage of correctly
classified samples is at least 80%. However, it might seem
interesting that higher accuracy is achieved for larger number
of adversaries (≥ 35%). In fact, this is because the number
of negative samples increases in the evaluation set and, thus,
mis-classifying one such sample will have a smaller impact
on the overall precision.

Fig. 5 (d) and (h) take a closer look at SHIELD’s accuracy
when adversaries follow a normal distribution (for the humid-
ity and temperature sensors, respectively). Here, we fix the
number of malicious users to be 45% and we vary the per-

centage of overlapping regions (with the honest distribution)
by changing the (μ, σ) values of the adversarial distribution.
We see that our framework manages to correctly classify
both positive and negative samples with high accuracy even
for rather similar distributions. For instance, even when the
humidity dataset is injected with malicious reports drawn
from a normal distribution with high overlap (μ = 26, σ = 5
i.e., 70% overlap), SHIELD’s accuracy remains high (F-score
≥ 0.78).
We further examine the impact of overlapping regions

(Fig. 6) for the synthetic datasets generated from the emu-
lated traffic monitoring sensing task (Sec. 4). Honest users
report their velocities drawn from a normal distribution with
(μ = 16, σ = 2). For each simulation run, we used different
normal (adversarial) distributions; {(μ = 22, σ = 2)|(μ =
20, σ = 2)|(μ = 18, σ = 2)|(μ = 17, σ = 2)|(μ = 16, σ = 2)}.
Each case corresponds to a different percentage of overlap-
ping regions; 35%, 55%, 80%, 90% and 100% respectively.
Again, we set the number of malicious users to be 45%.

We see that SHIELD achieves perfect prediction when
the overlap between the distributions is relatively small (i.e.,
their similarity is less than 35%). When it is around 50%,
the classification accuracy still remains high (MCC, Jaccard)
≥ 0.85. But even for high overlap percentages (≥ 80%),
the SHIELD accuracy is close to 60%. Considering that the
two distributions are almost identical, adversaries cannot
significantly distort the system’s output. Finally, for identical
distributions, SHIELD exhibits an average random behavior
(MCC = 0, Jaccard = 0.5) since malicious and honest reports
do not differ at all (same as classifying based on a “coin
toss”).

In conclusion, both honest and malicious reports are shown
to be assessed correctly, irrespectively of the employed adver-
sarial strategy. Honest data following distributions with small
standard deviations can be classified better with almost per-
fect scores (e.g., temperature SC dataset with (μ = 21, σ =
1.3)). However, even for high standard deviation values - a
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Figure 7: Analysis of Local (a) and Global (b) Adversarial Impacts. Comparison of SHIELD with robust aggregation functions
(c) and Concept Drift detection (d). Transportation dataset.

measure of the phenomenon’s uncertainty - the impact on
SHIELD’s classification accuracy is negligible (≤ 10%).

Impact of Adversaries. Considering local attacks, within
a region, we measure the detectability of adversarial data
through the precision metric. Again, the fraction of adver-
saries (or, equivalently, adversarial reports) is set to 45%
of the total number of users (reports) in the region. More-
over, we assess their impact by examining the distortion they
cause; i.e., the difference between the value the system would
report for a region in an adversary-free state and the value
the system reports in the presence of adversaries. As Fig. 7
(a) shows, adversaries with report values drawn from the
(μ = 19, σ = 2) normal distribution can be easily detected
by SHIELD, and, thus, the distortion of the system output
is negligible (0.03). As the adversarial distribution moves
towards (resembles to) the actual one, detectability decreases
(i.e., precision drops); but so does the distortion of the system
output (for the targeted region).
For global attacks, we assume overwhelming adversaries;

they comprise almost the majority of system users and coor-
dinate their attacks by deciding an optimal allocation of their
reports (by solving the optimization problem presented in
Sec. 4). Note that this optimal allocation is computed against
a non-optimal allocation of honest users (honest users re-
port data from their current location and thus, they do not
coordinate). Figure 7 (b) shows the utility that adversaries
achieve (i.e., the number of queries they manage to arbitrarily
pollute) as a function of M (i.e., the adversarial strength)
and the estimation error for ci (Sec. 4). Small estimation
errors yield high utility for the adversaries. Nonetheless, as
the estimation error grows, this utility significantly reduces.

We also compare SHIELD to robust aggregation schemes
proposed for wireless sensor networks. More specifically, we
consider the median robust aggregation function, discussed
in [28] and used in [3], and the RANBAR aggregation scheme
[29]. We compare them to SHIELD for different adversarial
strategies. We set the fraction of adversary-controlled nodes
to 25% (because it was shown that median performs well in
this case [29]) and we assume adversaries report values from
a normal distribution; we vary μ and fix σ to 3. Recall that
honest users report (velocity) values from the (μ = 16, σ = 2)
distribution. We assess the impact of adversaries by exam-
ining the distortion they impose to the system output. Fig-
ure 7 (c) shows that SHIELD significantly outperforms both
schemes for all examined adversarial strategies. More specif-
ically, for adversarial distributions that significantly differ

from the actual one, SHIELD correctly identifies and removes
malicious contributions, thus, achieving no distortion.

Concept Drift Adaptation. Fig. 7 (d) shows SHIELD’s
concept drift detection process. We demonstrate the trig-
gering mechanism based on the observed weight of conflict
between the probability mass the system assigns to each
hypothesis (for a region) and the masses of incoming reports
(Sec. 3.6). For this experiment, we modeled the underlying
data as synthetic streams that change over time, in an un-
expected and unpredictable (for the system) manner. The
conflict threshold value was set to 2.5 (Eq. 6). Moreover,
concept drifts were simulated every 100 samples.
Our model succeeds in maintaining an up-to-date under-

standing of the underlying phenomenon. Once it detects that
the incoming reports do not conform to its current view, the
previous prediction model is deemed obsolete and it retrains
the employed classifiers. After retraining itself, subsequent
classifications start again to converge to the actual values.
Furthermore, all incoming reports that led to this drift de-
tection (and were, initially, falsely classified as outlying), are
reconsidered with the retrained prediction model.

In general, there is no particular threshold (i.e., weight of
conflict) for the concept drift, but rather an entire range of
threshold values depending on how sensitive the model is
to changes of the underlying phenomenon. Lower thresholds
imply faster detection but, at the same time, may result to
(possibly unnecessary) retraining of the system. This is espe-
cially so for incremental concept drifts slowly evolving [51]
over time. On the other hand, higher thresholds imply slower
adaptation to changes. Identifying the proper thresholds
strongly depends on the underlying phenomena and is or-
thogonal to this investigation.

6. CONCLUSIONS
We presented SHIELD, a novel PS data verification frame-

work, for resilience against strong adversaries that pollute
sensing campaigns, efficient adaptation to the underlying phe-
nomena spatio-temporal changes, and fine-grained user query-
ing. Our prototype implementation and extensive evaluation
under various realistic scenarios demonstrate its resilience
and practicality, with SHIELD outperforming existing aggre-
gation and outlier detection schemes. Towards future work,
the nearly agnostic SHIELD can break, in conjunction with
a security architecture, the circular dependency of data and
user trustworthiness: simply put, SHIELD-deemed outlying
reports can be linked to the device (credentials) and allow
the security architecture to adjust the device trustworthiness
(reputation), and possibly evict it.
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APPENDIX
A. ADVERSARIAL DISTRIBUTIONS

Fig. 8 presents examples of the adversarial strategies (Sec. 4)
for the humidity and temperature measurements of the SC
dataset. Recall that the underlying (normal) distributions
for these phenomena are: (μ, σ) = {(31, 5)|(21, 1.3)}, respec-
tively. For the case of the humidity (upper part of Fig. 8),
adversaries using the (μ = 41, σ = 1.5) distribution aim for
a large deviation from the actual value of the phenomenon.
Adversaries using the (μ = 31, σ = 1) try to increase the
system’s certainty with respect to the actual value of the
phenomenon.

B. EVALUATION METRICS
In binary classification problems, classifiers label points

as positive or negative. In our case, positive (p) refers to the
inlier class (i.e, honest reports), whereas negative (n) to the

Figure 8: Adversarial data distributions and their similar-
ity with the original SC humidity and temperature sensor
datasets (depicted with thick lines).

outlier (and possibly malicious) class. D = {x}mi=1 is a dataset
consisting of m reports divided into a training (TS) and an
evaluation (ES) set. TS is given to the classifier for training,
whereas ES is used to assess the its accuracy. Let yi = {n, p}
be the true label of each report contained in the ES. Based on
these true labels, ES is partitioned into two classes {Tn, Tp}.
The classifier decides independently on the classification of
ES and produces a partitioning, C = {Cn, Cp}, where each
partition comprises the reports sharing the same classification
label, ŷi = {n, p}. The accuracy of such a classification is
assessed by examining the similarity of each partition, Ci,
with the corresponding ground-truth, Ti, and measuring the
degree of agreement between the actual and classified labels.
Precision and recall metrics [52] measure the correlation

between TPs, TNs, FPs and FNs. Intuitively, precision
examines the ability of a classifier not to label as positive
(or negative) a sample that is negative (or positive), whereas
recall measures the accuracy of a classification model in
selecting all instances of a certain class. They are commonly
expressed through the counts of TPs, TNs, FPs and FNs:

(Prec,Recall, F ) =

{
Prec = TP

TP+FP

Recall = TP
TP+FN

F = 2 · Prec·Recall
Prec+Recall

where the F-measure is the harmonic mean of the precision
and recall values for each class. Overall, higher values for
these metrics indicate better classification.

Another important aspect that needs to be examined is the
similarity between the classification and the ground-truth;
the degree to which the two sets of actual and classified
labels are related. In this context, the Matthew’s Correlation
Coefficient (MCC) reflects the correlation between these two
sets and the Jaccard coefficient [53] measures the similarity
as the intersection divided by the union of the sample sets.
The formal definitions of these two metrics are,

(M,J) =

{
MCC = TP ·TN−FP ·FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Jaccard =
|yi

⋂
ŷi|

|yi
⋃

ŷi|

MCC is a correlation coefficient ranging between [−1 : 1].
A value of 1 indicates perfect prediction, 0 an average random
prediction (same as deciding based on a “coin toss”) and −1
an inverse prediction. The Jaccard coefficient ranges between
[0 : 1]. It is equal to the highest value when ŷi = yi and to
the lowest when ŷi and yi are disjoint.


