
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8

Published online 31 March 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.991

RESEARCH ARTICLE

Key splitting: making random key distribution schemes
resistant against node capture
Mohammad Ehdaie1 *, Nikos Alexiou3, Mahmoud Ahmadian Attari1, Mohammad Reza Aref2

and Panos Papadimitratos3

1 CCL, Department of Electrical and Computer Engineering, K.N.Toosi University of Technology, Tehran, Iran
2 ISSL, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
3 School of Electrical Engineering, KTH, Stockholm, Sweden

ABSTRACT

A large number of random key pre-distribution (RKD) schemes have been proposed in the literature to secure wireless
sensor network applications, relying on symmetric key cryptography. However, sensor nodes are exposed to physical
compromise by adversaries, who target the symmetric keys stored at each node. With the stolen keys in their possession, the
adversaries are then able to compromise communication links between benign nodes. Here, the big challenge arises: how
to increase resilience of RKD schemes for wireless sensor networks to node capture, while maintaining the flexibility and
low-cost features of RKD? We propose the idea of key splitting to address this problem, without the need of any special-
purpose hardware. Our key splitting scheme neither increases per-node storage nor introduces additional computation and
communication overheads. Nevertheless, it can achieve better connectivity. More importantly, it significantly increases
resilience to node compromise, when the adversary does not have overwhelming computational power. Copyright © 2014
John Wiley & Sons, Ltd.

KEYWORDS

wireless sensor networks; random key distribution; node capture attack; key splitting

*Correspondence

Mohammad Ehdaie, CCL, Department of Electrical and Computer Engineering, K.N.Toosi University of Technology, Tehran, Iran.
E-mail: mohammad@ehdaie.com

1. INTRODUCTION

Wireless sensor networks (WSNs) support a wide range
of applications, including monitoring for industrial pro-
cesses, environmental pollution, and agriculture as well as
home automation, health care, traffic control, and forest fire
detection. However, WSN nodes have restricted computing
and storage capabilities, and operate on a stringent energy
budget. Given these limitations, traditional security mech-
anisms are not applicable, rendering WSNs vulnerable to
numerous attacks.

A large gamut of security schemes for WSNs has been
proposed in the literature. Asymmetric key cryptography,
while feasible [1], comes at a high cost (computation,
communication overhead, and thus power) [2]. Public key
cryptography is limited to infrequent operations (e.g., [3]),
or it is precluded altogether. Given the resource constraints
of the sensor nodes, symmetric key cryptography is widely
accepted to secure sensor networks. Each key shared by
a pair of nodes is used to secure their communication.
Keys can be shared not only by neighboring (i.e., in direct
communication) but also physically remote nodes. In both

cases, they can be used to establish security associations
and secure links, as well as authenticate nodes, and have
been used in different ways to secure the WSN protocols.

However, sensor nodes are low-cost small-footprint
platforms. This means it is impossible to offer tamper-
resistant features [4] and build security schemes upon this
requirement. Moreover, sensors operate unattended [5] and
exposed to adversaries. As a result, nodes may be physi-
cally compromised: an adversary can extract the symmetric
keys stored at each sensor and then use the captured keys
to attack the WSN protocols. The compromised symmet-
ric keys allow the adversaries to masquerade as legitimate
nodes and inject arbitrary messages in the network that are
still authenticated.

The impact of capturing a WSN node depends on the
way keys are managed and used by sensor nodes. Each sen-
sor stores multiple symmetric keys. One option is to make
a centralized assignment that prescribes exactly the keys
each node can use for specific peers (other nodes) [6,7]. In
that case, if each key is used only for one link, that is, one
pair of nodes, a captured node can at most misbehave to its
a priori associated peers.

Copyright © 2014 John Wiley & Sons, Ltd. 431

:431–445

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

On the other hand, a looser yet more flexible and
scalable approach can be used. Nodes are first given a ran-
domly chosen set of keys (called the key ring) from a large
pool. Then they contact their neighboring peers to discover
shared symmetric keys (if any), and finally, the shared keys
are used to generate a secret key and securely communicate
with the related peer [8,9]. Random key pre-distribution
(RKD) schemes support larger WSN networks compared
with the aforementioned pairwise schemes [6,7], an impor-
tant characteristic, along with simplicity and flexibility, for
many sensor applications. The flip side of such schemes is
their higher vulnerability to node capture. A captured node
allows attacks against its associated peers. More important,
for longer node capturing history, more keys are revealed
to the adversary, who is now able to compromise addi-
tional links (between non-compromised nodes) throughout
the network. Intuitively, the more numerous the captured
nodes are the more likely the compromise of other secure
links in the network.

Given the advantages of RKD, is it possible to enhance
its resilience to node capture? Can we do this without
altering its salient features, reducing its efficiency, or with-
out special purpose tamper-resistant hardware? This work
addresses the previous questions. We propose a simple
yet very effective solution we term key splitting [10].
Our solution is applicable and can be extended for any
RKD scheme.

In a nutshell, rather than using key rings, we use rings
of key parts, which can be put together to form entire
keys. Rather than looking for matching keys, any two peers
search for a sufficient number of key parts; if they have
such key parts in common, they establish a secure link
using a transformation of them as the shared key. As our
analysis shows, the improvement in resilience is signifi-
cant. The probability of link compromise we achieve can
be up to half of that for existing widely used schemes. At
the same time, we maintain the same storage requirements:
simply put, rather than keeping a ring of m keys, we keep
a ring of m � z key parts each one being 1/z-th of original
key in size. Moreover, the connectivity, that is, the like-
lihood that two nodes can be securely associated, can be
enhanced.

In the rest of the paper, we first briefly define our
system, the adversary models, and the problem at hand
(Section 2). We discuss related work in Section 3, and
then we present our key splitting scheme in Section 4. A
detailed analysis of its resilience is performed in Section 5.
In Section 6, we conclude the paper.

2. SYSTEM MODEL AND
PROBLEM STATEMENT

2.1. System model

Each WSN node is assigned a set of m keys termed the key
ring. Keys are randomly chosen from a key pool, of size |P|,
and they are stored at each sensor before its deployment.

At any point in time, two sensors can run a key discovery
protocol (KDP) to discover their common keys, in order
to then establish a secure communication link. Consider
two sensors that wish to communicate securely and run
the KDP. In the basic RKD approach [8], only one com-
mon key is required to establish a secure connection. In
a widely referenced variant of the basic scheme, the so-
called q-composite RKD approach, the nodes have to share
(and discover) at least q common keys in order to estab-
lish a secure connection [9]. For the rest of the paper, we
consider both the basic and the q-composite RKD schemes
and compare our scheme with them.

2.2. Adversary model

We assume an adversary, Adv, that can capture a number
of wireless sensors and thus construct a set of compro-
mised key rings. A secure link between a pair of sensors
can be compromised if the gamut of captured keys by Adv
includes all those used to establish the link. If Adv wants
to compromise the link between two nodes using the basic
scheme, the shared key between them should be included
in the set of captured keys. If the nodes use the q-composite
scheme, then all the x � q keys shared between them need
to be stolen to compromise the link.

Consider an adversary who is able to capture nodes
at special rate. We define the average required time for
capturing a node as a time unit. Besides capturing nodes,
we assume a brute-force power (BFP) for Adv. Let us
introduce a new parameter to address Adv’s capability in
running a brute-force attack. We say that the BFP of Adv
is equal to bfp if it is possible for Adv to search (and run
the required operations in) all the 2bfp space in a time unit.
For example, if we say that bfp = 32, it means that Adv can
search all possible 32-bit numbers in a time unit. Equiva-
lently, Adv can search all possible 31-bit numbers in a half
of a time unit or search all possible 40-bit numbers in 28

time units. We discuss more about this ability in Section 5.

2.3. Problem statement

An adversary, Adv, compromises a number of nodes and
obtains their key rings. Links between benign nodes are
vulnerable if their corresponding shared keys are included
in the captured set of keys. As a result of the node com-
promise, a fraction ˛ of the WSN links between benign
and non-compromised nodes is compromised (fully com-
promised links), that is, Adv possesses the corresponding
shared key(s). Alternatively, as we will see in our scheme,
Adv knows for another fraction, ˇ, of the WSN links, a
part of the key(s) shared and used by the non-compromised
nodes (partially compromised links). In the latter case, Adv
can attempt to compute the missing part(s) and compro-
mise the link.

Overall, the challenge is how to enhance RKD
resilience against node capture, in particular how to reduce
link compromise. Given the aforementioned defined adver-
sary attacking over a period [0, t], we assume that there is

432 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

no reparative action by the WSN. Thus, s = 1� t = t nodes
are captured, and their keys are compromised during that
period (time unit = required time for capturing one node).
In the same time, Adv tries to guess non-compromised
part(s) of keys with trial and error. On the basis of Adv’s
BFP, all or a fraction of partially compromised links in the
given time interval can be broken. We want to minimize the
total fraction of compromised links at time t.

On the basis of the security properties of the network,
Adv may be interested in compromising as many links as
possible in a given time interval or even aim to break a
desired fraction of links in a reasonable time. In this case,
our goal is to maximize the required time for breaking this
number of links. In Section 5, we use both of these models
to compare different schemes with each other.

Adversarial benefit parameter: We now introduce a
new parameter called the adversarial benefit parame-
ter AdvBen. We will use this parameter as a measure of
cumulative benefit for the adversary during the attack.

Our main concern for the analysis is the fraction of
network links compromised by Adv. Consider a constant
rate of node capture. As the attack unfolds in time, the
adversary captures more nodes and is thus capable of com-
promising additional network links. Given a single point in
time t > 0, and using our analysis from Section 5, we are
able to measure the fraction of compromised links at time
t using the failtime function: failtime(t)|R! [0, 1].

failtime(t) =
Num. of comp. links at time t

Number of all network links
(1)

However, the resilience of any RKD scheme against
node compromise cannot be fully captured only at a given
point time, through the probability that a given link is
compromised. Instead, as the attacker progresses with
the attack (compromising an increasing number of nodes
and working toward compromising links), what matters
is the overall “progress” of the attacker or inversely the
“resistance” of the system.

Therefore, we wish to measure the benefit for the adver-
sary to hold a fraction of compromised network links over
time until t. To achieve that, we introduce our AdvBen
parameter. Using AdvBen, we are able to directly compare
the resilience of RKD schemes against our Adv, for t time
units of network exposure to the node capturing attack. We
compute AdvBen(t) as the integral of the fail function, over
the time interval [0, t].

Definition 2.1. For a key distribution scheme and for a
given adversarial power settings, the adversarial benefit is
defined as the integral of the fail function:

AdvBen(t) =
Z t

0
failtime(�)d� (2)

Notation: For easy reference, the notation we use
throughout the paper is as follows:

� P: key pool.
� |P|: key pool size.
� m: size of the key ring.
� q: the minimum number of shared keys for two nodes

to have a secure link.
� L: the length of a key in bits.
� k: a key or a key slice.
� pc: probability that a pair of nodes share at least q keys

(to have a secure link).
� p(i): probability of two nodes sharing exactly i keys.
� z: number of slices of an original key.
� � : the fraction of broken links the adversary wants to

achieve.

3. RELATED WORK

An overview of the large palette of security problems in
WSNs is given in [11–13]. Some of the most important
security attacks are tampering of sensors and node cap-
ture [4], denial of service [14], attacks to secure routing
and secure neighbor discovery [15,16], and Sybil attacks
[6,17]. Security challenges of sensor networks are unique
in nature, because of their limitations in storage, computa-
tion, and communication capabilities. Traditional security
approaches, such as public key cryptography, are there-
fore unsuitable for frequent usage [2]. Symmetric key
approaches, relying on RKD schemes have been proposed
instead, to overcome these limitations [7–9,18].

Each sensor is equipped with a set of symmetric keys
called the key ring, randomly chosen from a key pool.
RKD schemes define the way that two sensors can estab-
lish a common symmetric key, using the overlaps in their
key rings. To discover common keys, a KDP has to be run.
The main RKD schemes proposed are the basic [8], the
q-composite [9], and the random pairwise schemes
[7,9,18]. The first two are briefly discussed in Section 2.
The random pairwise scheme associates a sensor identity
with one key from the sensor’s key ring. The corre-
sponding sensors can establish a secure channel using the
associated key.

The starting point for many attacks is an adversary who
compromises a sensor and obtains its key ring. A node
replication attack is described in [19] and a collusion attack
against random pairwise schemes in [20]. Tamper-resistant
devices can be used to protect against node capture. How-
ever, the increased cost of tamper-resistant devices is a
limiting parameter for extended usage of such devices [11].

Communication links between sensors may be compro-
mised by adversaries who manage to capture the keys used
to set up the secure connection [7,9,18]. Having captured
a number of nodes, the adversary can derive the secret
keys used for communication between two sensors. RKD
schemes play an important role in the resilience against the
attack. In the basic scheme, when m = 200 keys are stored

Security Comm. Networks 2015; 8 433
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

per sensor and each sensor can establish a secure channel
with 1

3 of its neighbors (pc = 0.33), an adversary has to
capture about 50 nodes to compromise 10% of the links
[9]. For the same setup, the 2-composite scheme has bet-
ter resilience against the attack, and more than 70 nodes
have to be captured to compromise the same percentage
of links. The random pairwise scheme achieves increased
resilience, since at most, m links can be compromised
from one captured node. Advanced stealthy strategies from
colluding adversaries are studied in [21], where adversar-
ial nodes combine their knowledge of captured keys to
maximize their link compromise.

Despite the obvious advantages of the random pairwise
scheme, it introduces restrictions in the maximum support-
able network size. The total size it can support can be
computed as n = m/pc and is directly constrained by the
sensors’ limited memory [7,9]. This limitation may ren-
der the random pairwise schemes unsuitable for a number
of applications. Large and flexible network deployments,
as well as frequent addition of new nodes, are better han-
dled by the q-composite or the basic scheme. However,
the security vulnerabilities of these schemes bring out new
challenges on how to make these schemes more resilient
against attacks. In the next section, we merge good proper-
ties of the basic scheme and the q-composite scheme, that
is, good connectivity and good resilience.

4. THE KEY SPLITTING SCHEME

The key splitting scheme is a method to increase the
resilience against node capture attacks. We split each of the
keys in the pool into z equal parts, creating a new key pool
of size z � |P|. We now explain the main intuition behind
key splitting by presenting an example of the basic RKD
scheme and key splitting. In the next section, we study the
effectiveness of the key splitting scheme in detail.

Basic scheme: Consider two nodes A and B with key
rings of size m. The two nodes use the basic RKD scheme
to establish their common secret. Each sensor key has a
length of L bits, and therefore, each sensor needs m�L bits
of storage for its key ring. Figure 1 shows an instance of a
KDP run between A and B for the basic scheme. Methods
on how to run the KDP are included in the related work,
and we do not enter into a detailed discussion here.

Figure 1. Random key pre-distribution scheme for A and B that
discover a shared key of size L.

After completing the KDP, the two nodes discover that
they share k7. Then they can use k7 to establish a secure
channel. Now, consider the adversary Adv; all is needed is a
bit of “luck" to capture a node, somewhere in the network,
with k7 stored in its memory. Then it is only a matter of
time and a few trials to compromise the link of A and B.

The question we aim to address in this work is the fol-
lowing: “How could the probability of compromising the
link between A and B be decreased, without introducing
any computational or storage overhead?"

Key splitting: To answer the previous question, we sug-
gest a straightforward and effective method: to split the
keys. Consider again A and B but in a slightly different
setup; each key in P is now split into z equal parts. Each
of the new key parts, or let us say key slices, will now have
a length of L/z bits. Splitting the keys has no storage over-
head for the nodes. With the same memory usage at each
sensor, z � m key slices can now be stored, creating a key
ring of z � m key slices. For example, let z = 2 and keys
with original length of L = 128 bits. We split the keys into
two parts and now generate (and store) twice as many keys
of size 64 bits.

A and B now run the KDP to find their common key
slices. To preserve the same security level with a sym-
metric key of size L, we require that A and B should
now discover z key slices of size L/z, instead of just one.
Figure 2 illustrates this key splitting scenario. Having dis-
covered k3 and k9, A and B can establish a symmetric key
of size L, just as in the previous example.

But in the latter key splitting scenario, they have a great
advantage over Adv, who tries to compromise their link.
Instead of having to get one key only, as in the basic
scheme, the adversary has to get z (here, z = 2) key slices
now. Having compromised the same number of nodes in
both cases, Adv is less likely to hold both secret pieces
in the second case than just one. Building on this observa-
tion, we analytically prove the effectiveness of the scheme
in Section 5 and verify that network connectivity is not
deteriorated. This is actually the main advantage of our
scheme over the q-composite scheme. In the q-composite
scheme, the resilience is increased with the cost of mem-
ory or connectivity, that is, it needs more keys to be stored
in the key ring or the connectivity is deteriorated; while in
the key splitting scheme, the resilience is improved without
such cost.

Figure 2. Key splitting scheme for nodes A and B that discover
two shared key parts of size L/2.

434 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

Definition 4.1. z-Splitting is an RKD scheme, with key
slices of size L/z, a key pool of size |P| � z, and key rings
of size m� z, where every pair of nodes that share at least z
key slices can establish a secure channel using those slices.

The steps of the z-splitting scheme are as follows:

� Key pool generation: Generate a key pool of z � |P|
key slices, each one of length L/z bits.

� Key assignment: m � z key slices are randomly
assigned to each sensor.

� Link establishment: Sensors run the KDP in pairs
and discover j key slices in common. If j � z, they
use a hash function, h, to derive a secret key as
h(k1||k2||...||kj) where || denotes the concatenation and
k1, k2, ..., kj are the shared key slices.

4.1. q-composite key splitting

In 2003, Chan et al. [9] proposed an improvement over
the basic RKD scheme [8]. They suggested increasing the
threshold for required number of shared keys to establish
a secure channel. This way, they increased the resilience
of the scheme against node capture for small scale attacks.
We can apply their method on key splitting to improve its
resilience, too.

Definition 4.2. (z,q)-Splitting, with q � z, is an RKD
scheme, with key slices of size L/z, a key pool of size |P|� z,
key rings of size m�z, where every pair of nodes that share
at least q key slices can establish a secure channel using
those slices.

The steps to establish a link are the same as with
z-Splitting, except that in (z,q)-Splitting, the required num-
ber of shared key slices is q instead of z.

5. SCHEME ANALYSIS

We analyze the resilience to node capture comparing the
key splitting scheme to the basic and q-composite RKD
schemes. For easier presentation, we first study the case
of a single node/key ring captured and then we extend our
analysis for the case of multiple compromised key rings.
We review performance issues for key splitting, notably
connectivity and memory storage, and propose the best
network configuration parameters (q and z) for different
security requirements. Finally, we compare key splitting to
the rest of RKD schemes using our AdvBen parameter and
calculate the maximum supportable network sizes.

In brief, we find that our key splitting scheme improves
resilience against node capture, as long as the adversary
does not have overwhelming computational power. We cal-
culate the probability that the adversary possesses all of
the keys or key slices for the q-composite and key splitting
schemes, as well as for the basic scheme. Finally, we con-

sider the case of a subset of the key parts for a link being
compromised.

5.1. Security analysis

Resilience against node capture is the core of this study.
The fraction of compromised secure communication links
between pairs of benign nodes is our main metric of
interest. This is expressed by the measure Fail(s)|N !

[0, 1], where s is the number of compromised nodes or
equivalently, key rings. This is the fraction of compro-
mised secure links of a WSN, given that the adversary has
captured s key rings

Fail(s) =
Num. of comp. links given s comp. nodes

Number of all network links
(3)

Note here that in contrast to Fail(s), our failtime(t) func-
tion from Section 2 calculates the fraction of compromised
nodes at a given point in time, given that the adversary
captures nodes at a given rate. For the rest of the paper,
we assume that the adversary knows the number of shared
keys. This is essentially a worst case for the scheme, or a
best case for the adversary, because it removes uncertainty
for the adversary.

5.1.1. Simple case.

Consider Fail(s) with s = 1. Let V1 – V2 be a link in
the network and V be the captured node; we compute the
probability of the event A ={the link is compromised}. Let
B be the event {V = V1 or V = V2}, that is, the captured
node is one of the end nodes of the considered link. Fail(1)
is equal to Pr{A}.

5.1.1.1. Single node capture: basic scheme. In the
basic scheme, it is claimed [8] that the probability of break-
ing a link when one node is captured is m

|P| , that is, Fail(1) =
m
|P| , where m is the memory size and |P| denotes the size
of the key pool. We now show that the probability of com-
promising the link between V1 and V2 is 2

n + m
|P| . Using the

Bayes rule, we obtain

Fail(1) = Pr{A}

= Pr{A|B}Pr{B} + Pr{A|B0}Pr{B0} (4)

There are n nodes in the network and each link has two
end nodes, so Pr{B} = 2

n . The probability of not captur-

ing any of the two link’s edges is thus Pr{B0} = 1 – 2
n . All

the communication links of a compromised node succumb
to the adversary, and therefore, the probability of compro-
mising these is Pr{A|B} = 1. Finally, because m keys are
compromised per captured node, and there are |P| keys in
total, we obtain

Pr{A|B0} =
m

|P|
(5)

Security Comm. Networks 2015; 8 435
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

From Equation 4 and assuming |P|, n!1, we obtain

Fail(1) = 1 �
2

n
+

m

|P|
� (1 –

2

n
) '

2

n
+

m

|P|
(6)

5.1.1.2. Single node capture: key splitting scheme.
For simplicity, consider the case that each pair of nodes
uses only two half-part keys, even if they have more in
common. From the Fail function, as per Equation (4), we
also have Pr{B} = 2

n and Pr{B0} = 1– 2
n , and Pr{A|B} = 1.

Now, for the Pr{A|B0}, note that when a single node is cap-
tured, 2m key slices are compromised. The considered link
uses two halves of keys from the key pool, and it will be
compromised if both of them are known to the adversary,
that is, (2m/2|P|)2 = (m/|P|)2. Note that if only one-half of
a key is revealed to the adversary, we do not count such a
link as compromised. We discuss specifically the ramifica-
tions of the adversary having partial knowledge of the key
splits further in the succeeding text. Thus, we obtain

Pr{A|B0} =
� m

|P|

�2
(7)

By substitution, we have

Fail(1) = 1 �
2

n
+
� m

|P|

�2
�

�
1 –

2

n

�
'

2

n
+
� m

|P|

�2
(8)

From Equations (6) and (8), we see that the Fail metric
is much lower for the key splitting scheme compared with
the basic RKD scheme. Results can be even better in favor
of key splitting, in the case that more than two key slices
are used to establish the connection. We show that in the
next part.

5.1.2. General case.

For each scheme, we calculate the probability of com-
promising a link when s nodes are captured, but none of
the compromised nodes is incident on the considered link.

5.1.2.1. Multiple node capture: basic scheme.
Recall the probability from Equation (5); thus, the prob-
ability to not reveal a key is (1 – m

|P|). When s nodes
are captured, the probability that a key is not revealed
is (1 – m

|P|)
s. As a result, the probability that a key, and

consequently a link that uses the key, is comprised is

1 –
�

1 –
m

|P|

�s
(9)

5.1.2.2. Multiple node capture: q-composite
scheme [9]. For the q-composite scheme, assume two
nodes share i keys (with i � q). The probability that two
nodes have i keys in common is

p(i) =

�
m
i

�
�

�
|P| – m
m – i

�
�

|P|
m

� (10)

Also, the probability that two nodes can establish a secure
link is pc = p(q) + p(q + 1) + � � � + p(m).

Then, with s compromised nodes, the probability of
that link being compromised is (1 – (1 – m

|P|)
s)i. Hence,

the probability that any link between two benign (non-
compromised) nodes is compromised is

mX
i=q

�
1 –

�
1 –

m

|P|

�s�i
�

p(i)

pc
(11)

5.1.2.3. Multiple node capture: (z,q)-Splitting
scheme. A link would be compromised if all of i key
slices shared by the two incident nodes are known to the
adversary. Let p0z (i) be the probability that the two nodes
have i key slices in common

p0z(i) =

�
z � m

i

�
�

�
z � |P| – z � m

z � m – i

�
�

z � |P|
z � m

� (12)

and p0c denotes the probability that two nodes can establish
a secure link in key splitting scheme, that is, p0c = p0z(q) +
p0z(q + 1) + � � � + p0z(z � m).

Then, the probability for a link to be compromised is

z�mX
i=q

�
1 –

�
1 –

m

|P|

�s�i
�

p0z(i)

p0c
(13)

In Figure 3, we plot the probability of compromising a
link when s nodes are captured for different schemes:

� Basic RKD scheme (Equation (9)),
� q-composite scheme with q = 1 (Equation (11) with

q = 1)
� q-composite scheme with q = 2 (Equation (11) with

q = 2)

Figure 3. Resilience against node capture; comparison. (pc =

0.33, m = 200).

436 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

� q-composite scheme with q = 3 (Equation (11) with
q = 3)

� Key splitting scheme with z = q = 2 (Equation (13)).

Our key splitting scheme achieves a much lower
probability of link compromise, increasing resilience
against node capture attacks. For example, if 50 nodes in
the network are captured, 9.5%, 7.9%, 4.7%, and 4.4%
of other links would be compromised with basic scheme,
1-composite scheme, 2-composite scheme, and 3-
composite scheme, respectively; while in the key splitting,
only 1.3% of links are compromised. Even in the case of
150 captured nodes, less than 10% of the links are com-
promised for the 2-splitting scheme, while the rest of the
schemes perform much worse. The difference between
2-composite and 2-splitting is that the former tries
to increase the resilience with the cost of mem-
ory/connectivity; while the latter tries to have such
improvement without such cost. The simulations show
that we have approximately

fail2–composite(s) = fail2–splitting(2s) (14)

In the key splitting scheme, an adversary may get only
some of the key slices used to establish a link, that is, one
of the two 64 bits key slices in the 2-splitting scheme. This
is a case of information leakage. Given that the key parts
are inputs to a one-way hash function h to produce the
complete key, the adversary cannot generate the complete
key, unless a brute-force attack is done for all the possible
missing key parts. We calculate this probability that out of
i shared key parts x of them are revealed:

z�mX
i=q

�
i
x

���
1 –

m

|P|

�
s
�i–x �

1 –
�

1 –
m

|P|

�
s
�x
�

p0z(i)

p0c
(15)

We plot this probability in Figures 4 and 5 for the
2-splitting and 4-splitting schemes. We observe that the

Figure 4. Fraction of fully compromised links and fraction of
links with information leakage; 2-splitting. (pc = 0.33, m = 200).

Figure 5. Fraction of fully compromised links and fraction of
links with information leakage; 4-splitting. (pc = 0.33, m = 200).

fraction of fully compromised links is low, especially for
the 4-splitting scheme. However, the adversary has an
increased probability of capturing a small number of slices,
especially as more nodes are captured over time. This
gets a good chance to the adversary to run a brute-force
attack and obtain the missing parts. In the section that fol-
lows, we prove why even if the adversary can obtain parts
of the complete keys, our splitting scheme still performs
much better compared with the alternative schemes in
the literature.

5.1.3. Computational compromise of links.

Considering relative strengths for the adversary,
notably, the rates of capturing nodes and the brute-force
checks, key splitting comes with a trade-off. That is, while
splitting the keys greatly improves resilience against node
capture, an adversary holding a subset of the key slices
forming the secret key could brute-force the unknown key
part. Considering the case that two key slices are used,
the brute-force check would be done on strings of 64 bits
long. Depending on how fast the adversary can run the
brute-force checks and the available adversarial hardware,
additional links can be compromised. We add this latter
factor to key splitting in Figure 6, using an equal capture
rate for all the schemes.

We assume a network with 100 000 links and a capture
rate of one node per time unit for the adversary. Next, we
consider really the worst case for our key splitting scheme
by assuming an adversary that can run 10 brute-force
checks in a time unit, that is, run 10 � 264 computations
per time. We plot the fraction of links that the adversary is
able to compromise during the time. We observe that the
curve for key splitting rises slightly only. Adversaries with
overwhelming computation powers could perform better,
but key splitting certainly raises the bar. Next, we test key
splitting for different brute-force attack powers.

5.1.4. Adversarial brute-force power effect.

We assume an adversary that can capture one node per
time unit. We want to study the effect of running a brute-

Security Comm. Networks 2015; 8 437
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

Figure 6. Resilience against node capture and exploitation of
information leakage; comparison. (pc = 0.33, m = 200).

Figure 7. Resilience against node capture and effect of adver-
sarial power; comparison. (pc = 0.33, m = 200).

force check over the key splitting scheme. First, we run
our simulations for different values of BFP parameters and
then compare the results with the basic and q-composite
schemes. Recall from Section 2, that BFP shows the num-
ber of brute-force operations that the adversary is capable
of running in a time unit. For example, BFP = 48 means
that the adversary can search (and try) all possible 48-bit
binary strings in a time unit or equivalently all 32-bit binary
strings 216 times in a time unit.

We present our results for different BFP powers in
Figure 7. We observe that for BFP values up to 64,
the curve for the 2-splitting scheme does not change
considerably and performs better than all the remaining
q-composite and the basic schemes. Even for BFP = 70,
which means 2.7 � 1011 times searching all possible
32-bit binary strings in a time unit, key splitting shows bet-
ter resilience when more than 50 nodes are captured. It
is only against extremely capable adversaries with over-
whelming power that the key splitting scheme has worse
performance, that is, 4, 5 � 1015 searches of 32-bit strings
in a time unit. Clearly, this computational power is not
practical at all. A simple calculation shows that if adver-

sary has capability to compute 109 hash functions in a
second (with using several super computers and very fast
implementation), it takes more than 580 years to search a
264 key space one time.

A considerable point is that for very high BFP values,
that is, BFP � 80, the curve for 2-splitting does not change
at all. The reason is that for these values, the adversary is
able to compromise all partially broken links, and there are
no more links to compromise with brute-force checking.

5.1.5. Advanced brute-force check.

Consider a partially broken link and an adversary who
runs a brute-force check to get the unrevealed key slice.
When the adversary finds the unrevealed key slice, he or
she will compromise that link. In addition, the adversary
has this chance to use this new key slice for compromis-
ing other links in the network. We study this scenario and
show that the percentage of compromised links by this
method is negligible, when the adversary does not have
overwhelming power.

In a single time unit, the adversary can capture one
node and obtains its key ring, that is, 2 � m key slices in
a 2-splitting scheme. Using a brute-force check, he or she
is able to search a 2BFP key space. Thus, the adversary
finds 2BFP–64 key slices in a time unit. When this num-
ber is much smaller than the number of key slices in a key
ring (2 � m), the effect of this kind of attack is negligi-
ble. Figure 8 shows the fraction of compromised links for
different situations: no brute-force checking, normal brute-
force checking (when the revealed key slice is used only
for the considered link), and advanced brute-force check-
ing (when the revealed key slice is used for the considered
link and other possible links in the network). We assume
an adversary with very high (reasonably impractical) com-
putational power (BFP = 68) and observe that the curve
for key splitting rises slightly. For more reasonable BFP
values, the change in the curve is negligible.

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

Time

F
ra

ct
io

n
of

 C
om

pr
om

is
ed

 L
in

ks

1−Composite Scheme
2−Splitting Scheme, no brute−force
2−Splitting Scheme, normal brute−force
2−Splitting Scheme, advanced brute−force

Figure 8. Effect of advanced brute-force check. (pc = 0.33,
m = 200).

438 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

5.1.6. z parameter effect.

We now compare the resilience of different z-splitting
schemes against each other and the 1-composite scheme,
as it is one of the best performing RKD schemes in our
analysis.

In Figure 9, we observe the effect of the z parame-
ter on resilience against node capture for a period of 150
time units. 16-splitting performs better than 8-splitting,
and 8-splitting performs better than 4-splitting and
2-splitting schemes. Therefore, splitting the key in many
parts improves resilience against node capture. However,
WSNs may be exposed to node capture attacks for longer
time intervals.

In order to study such a scenario, we extended the
exposure period for the network and tested our scheme
over 300 time units. Figure 10 demonstrates our results.
As time elapses, 8-splitting and 16-splitting curves rise
rapidly. However, 2-splitting, which was the worst per-
forming scheme in the previous scenario, now shows the
best resilience.

Figure 9. Resilience against node capture and effect of z param-
eter (number of slices); comparison. (pc = 0.33, m = 200).

Figure 10. Resilience against node capture and effect of z
parameter (number of slices); an extended view comparison.

(pc = 0.33, m = 200).

Figure 11. Resilience against node capture and effect of q
parameter; comparison. (pc = 0.33, m = 200).

Before choosing the best z configuration for the net-
work, it is very important to consider the properties of
WSN and its security requirements. For better resilience
over a short time interval, that is, a tactical network with
a shorter life time, 8-splitting or 16-splitting increases the
bar for the attacker. However, for longer time intervals, that
is, WSN unattended for long periods, 2-splitting performs
much better.

5.1.7. q parameter effect.

In Figure 11, we compare the resilience of (z, q)-
splitting, using two key slices for each key (z = 2) and
different values of q, ranging from 2 to 5. We can see that
for lower numbers of captured nodes (less time for the
adversary to capture), increasing q leads to increased node
capture resilience. However, as time elapses, q = z shows
the best resilience. Our results are consistent with the anal-
ysis in [9], where q-composite schemes with q > 1 show
better resilience for low number of captured nodes.

5.1.8. A general comparison.

In this part, we aim to answer the following question:
what network configuration achieves maximum resilience
against node capture attacks? In other words, we are
searching for the optimal z and q values to configure the
sensor network for maximum resilience against our adver-
sary Adv. For our analysis we use two variants of m and
pc setups. For SetupA, we use m = 200, pc = 0.33 and for
SetupB, m = 100, pc = 0.5. Both are commonly used in
practice and in the related work.

Assume that the goal of Adv is to compromise a given
percentage of network links. We use � to denote the frac-
tion of broken links the adversary wants to achieve. To
compare the key splitting variants, we calculate the time
needed by Adv to reach � . We test our key splitting scheme
for z = 1, 2, 4, 8 key slices and q = z..12 for the threshold
parameter. Note that z = 1, that is, splitting into one slice
only, corresponds to the q-composite scheme. For all our

Security Comm. Networks 2015; 8 439
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

simulations, we used keys of 128 bits length and two types
of adversaries with BFP = 49 and BFP = 70.

Table I presents the best performing network configu-
rations for z and q. We observe that some of the tested
configurations perform better according to the � parame-
ter. For example, if the adversary wants to compromise 1%
of the network links, the best configuration is z = 4 and
q = 7 for BFP = 49, for either of the two setups of m and
pc. The (2,2)-splitting scheme achieves better resilience in
many of the tested scenarios. For computationally strong
adversaries (BFP = 70), the (1,1)-splitting (i.e., equiva-
lent to 1-composite scheme) performs well when we set
� = 30%. We can argue here that z and q parameters should
be chosen according to the strength and the objective of
the adversary. In a real world example, assume a tactical
sensor network that cannot tolerate compromising of links
greater than 1%. This can be translated to 1000 broken
links in a network with 105 links. In order to achieve maxi-
mum resilience, the network in SetupA could be configured
with z = 4, and q = 7 or q = 9, according to the expected
adversarial computational power.

5.1.9. Adversarial benefit analysis.

We now wish to extend our analysis further and com-
pare the key splitting schemes with the rest of the RKD
schemes, using the adversarial benefit parameter (Equation
(2)), as defined in Section 2. In other words, we compute
the overall benefit for the adversary to hold a fraction of
links over time.

Figure 12 shows the performance of the different
schemes according to AdvBen, for a network opera-
tion time of 300 time units. 2-splitting is the most
resilient scheme compared with the rest. 8-splitting per-
forms slightly worse, while all the key splitting schemes
are harder to break compared with q-composite and the
basic schemes.

5.1.10. Simulation results.

In this part, we show that the simulation results match
with the formulations in previous sections. Consider a sim-
ple network setting with 100 nodes and a memory size of
50 keys for each node. To reach connectivity level of pc =
0.5, we use a key pool of size P = 3577 for 1-composite
scheme and a key pool of size P = 2946 (5892 key slices)
for 2-splitting scheme. In Figure 13, we plot the curves for

Table I. Best (z,q) network configuration;
SetupA(m = 200, pc = 0.33), SetupB(m = 100, pc = 0.5).

SetupA SetupB

BFP = 49 BFP = 70 BFP = 49 BFP = 70

� (%) z q z q z q z q

1 4 7 4 9 4 7 4 7
10 2 2 2 2 2 2 4 6
20 2 2 2 2 2 2 2 2
30 2 2 1 1 2 2 2 2

Figure 12. Normalized adversarial benefit from node capture in
different schemes; comparison. (pc = 0.33, m = 200, 100 samples

in time interval [0, 300]).

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time

F
ra

ct
io

n
of

 C
om

pr
om

is
ed

 L
in

ks

1−Composite Scheme (formulation)
1−Composite Scheme (simulation)
2−Splitting Scheme (formulation)
2−Splitting Scheme (simulation)

Figure 13. Fraction of compromised links; simulation results.
(pc = 0.5, m = 50).

fraction of compromised links according to Equations (11)
and (13) as well as the simulation results. This figure shows
correctness of our calculations in previous sections and
demonstrates the resilience of key splitting scheme against
node capture in comparison with q-composite scheme.

5.2. Performance analysis

We consider next the connectivity achieved by our scheme
in comparison with the basic and q-composite RKD
schemes. Consider a key pool of size |P| and sensor nodes
with memory m � L bits. The probability that two nodes
have at least a common key in the basic scheme is

pc,basic =
mX

i=1

p(i) (16)

where p(i) denotes the probability that two nodes share
exactly i keys (Equation 10). For the q-composite scheme,
the conditions are tighter. Two nodes can communicate

440 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

securely if they have at least q common keys. Thus, the
connectivity decreases to

pc,q–comp =
mX

i=q

p(i) (17)

where p(i) is the same as .
For key splitting, note that the key pool has z � |P| key

slices and each WSN node stores z � m such key parts.
Two nodes can establish a connection if they share at least
z key slices. If we consider the general case, (z, q)-splitting,
they should share at least q key slices to start a secure
connection:

pc,split =
z�mX
i=q

p0z(i) (18)

where p0z(i) is given in Equation (12).
We plot pc in Figure 14, for different values of m in a

constant pool size (in bits) and compare the schemes. For
the q-composite scheme, we consider the case q = 2 (For
q = 1, its connectivity is the same as that of the basic
scheme). For our scheme, we consider (2,2)-splitting as
well as (4,4)-splitting.

We observe that the key splitting scheme achieves much
better connectivity than the q-composite scheme. In com-
parison with the basic scheme, sometimes we obtain a
higher connectivity, while sometimes the connectivity is
lower. Because there is a trade-off between connectivity
and memory usage of this scheme, one may be interested
in reducing the memory usage by keeping the connectivity
constant. Besides, reducing the memory usage leads to an
improvement in resilience against node capture, because
the resilience against node capture is related to the memory
usage in a reverse manner.

Figure 14. Connectivity versus memory usage for different ran-
dom key pre-distribution schemes and key splitting; comparison.
(P = 10 000 keys, or equivalently 20 000 half keys or 40 000

quarter keys).

This figure shows that, for example, if we consider the
memory usage m = 140 (140 complete keys, 280 half-part
keys, 560 quarter-part keys), then the value of pc will be
0.863, 0.9056, and 0.9549 for the basic scheme, 2-splitting
scheme, and 4-splitting scheme, respectively. This means
a 5% and 11% improvement in pc in two versions of our
scheme in comparison with the basic scheme. To address
the importance of such improvement, consider as an exam-
ple that we have a network with n = 10 000 nodes and we
want to increase the probability that the network be con-
nected from 0.99999 to 0.999999. Such increase needs an
11% improvement over pc.

On the other hand, if we are interested in a connectiv-
ity that corresponds to pc = 0.9, the amount of memory
usage will be 151, 139, and 129, respectively, that is, an
8% and 15% reduction in memory usage, respectively.
Such reduction could be so important in memory con-
strained devices as sensor nodes, where a 4 KB RAM
memory is very typical. Also, remember that decreas-
ing the memory usage yields in increasing the resilience
against node capture, because an adversary obtains a
lower number of keys by capturing a constant number
of nodes.

In this example, for pc > 0.7 (approximately), we see
an improvement over connectivity or memory usage. Usu-
ally, this is a high probability that two nodes have common
keys; but, it could be employed in some situations, for
example, when the density of nodes in an environment is
very low. In this case, every node has a limited number of
neighbors. So, it is very important for a node to establish
a secure link with most of its neighbors. While for smaller
values of pc, we have to pay some costs (in terms of mem-
ory usage or connectivity), usually the improved security
is worth the cost.

5.3. Comparison and numerical illustration

Table II shows a comparison between the following
schemes:

� the basic scheme
� the 2-composite scheme
� the 2-splitting scheme
� the (2,4)-splitting scheme

We use a constant pool size |P| = 10 000 and compare
the memory usage as well as the resilience of the schemes
with different pc values. Table II demonstrates that key
splitting schemes have better resilience in all situations.
Regarding memory usage, 2-splitting uses a bit more mem-
ory compared with the basic scheme and (2,4)-splitting
uses a bit more memory compared with the 2-composite
scheme. However, this is not so when pc is high. In all
situations, the basic scheme and the 2-splitting scheme
have lower memory usage than the 2-composite and the
(2,4)-splitting schemes.

Security Comm. Networks 2015; 8 441
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

Table II. A comparison between resilience and memory usage of different schemes.

pc = 0.33 pc = 0.5 pc = 0.8

Scheme m Fail(50) Fail(100) m Fail(50) Fail(100) m Fail(50) Fail(100)
Basic 64 0.27 0.46 84 0.34 0.56 127 0.47 0.72
2-composite 109 0.14 0.38 130 0.16 0.44 173 0.18 0.52
2-splitting 77 0.08 0.23 92 0.09 0.27 123 0.10 0.32
(2,4)-splitting 121 0.03 0.19 136 0.03 0.23 166 0.04 0.29

5.4. Comparison with other random key
pre-distribution schemes

In the previous subsections, we compared the resilience
of key splitting scheme with the resilience of two impor-
tant RKD schemes, that is, the basic scheme and the
q-composite scheme. Now, we would like to extend our
analysis and compare the key splitting with some more
RKD schemes.

There are several works in the literature that engage
hash functions to increase the resilience of RKD schemes.
They usually develop one or several chains of keys or key
materials and take advantage of the one-way property of
hash functions.

One interesting improvement is the so-called key chain
improvement [22]: consider a key pool as in the basic
scheme. Extend the pool by creating some hash chains with
the primary keys as roots of the chains. For each node,
select m keys randomly from the extended key pool, such
that no more than one key is selected from each chain.

If the primary key pool size and memory size are the
same as in the basic scheme, connectivity will not be
affected. But, this idea can decrease the chances of an
adversary to compromise secure links in the network: con-
sider a link that is secured with a key, say K. Even if
the adversary captures some nodes and obtains a key in the
chain corresponding to K, she succeeds if and only if the
adversary’s key is closer to the root than K. In the best case,
the probability that the adversary fails to compromise the
link given that she owns a key in the same chain as of K
would be 33% [22]. It is less than the improvement by key
splitting scheme.

As an another example, adaptive random pre-
distribution [23] uses some hash chains to improve the
connectivity. However, our analysis shows that the
resilience is approximately the same as the basic scheme.

Zhao et al. proposed a hashed RKD utilizing hash
chains and auxiliary nodes[24]. They showed that for very
small number of captured nodes, their scheme is resistant
against node capture attack. However, using their formula
for fail function, we observe that it is not resistant if the
number of captured nodes increases. We set the parameter
L = 300 and t = 5 (some constants in their scheme) as they
suggested and set q = 10 to reach the connectivity level
near 0.33 as other schemes in the comparison.

Some schemes are location-aware and utilize deploy-
ment knowledge of nodes to improve the performance
of the scheme. One of the most important ones is the

scheme by Du et al. [25], which we mark it as location-
aware scheme in the comparison figure. We plot its fail
function according to their simulations in their paper. We
observe that this scheme is comparable with the key split-
ting scheme, that is, for some values of s (number of
captured nodes), key splitting scheme is more resistant than
location-aware scheme and for other values of s, location-
aware scheme is more resistant than key splitting scheme.
This shows the excellence of our scheme: resilience of key
splitting, without use of deployment knowledge, is approx-
imately equal to the resilience of one scheme that uses
deployment knowledge of nodes.

Levi et al. proposed another RKD scheme [26], entitled
ABCD scheme. It uses reusable key pools. However, key
splitting performs better than this scheme, too.

Figure 15 shows a comparison between resilience of the
aforementioned RKD schemes. For the basic scheme, we
set m = 200 and pc = 0.33. For key splitting scheme,
we use the same setting and also set BFP = 64. For
chain improvement scheme, we use the same setting as
of the basic scheme and also ˛ = 2

3 , that is, the best
case for this scheme. For adaptive random pre-distribution
scheme, the same setting as of the basic scheme is used.
The setting for hashed RKD scheme is mentioned ear-
lier. Also, we used the same setting for the location-aware
scheme. In ABCD scheme, the authors claim that the
memory usage is decreased to m = 95; however, the con-
nectivity is pc = 0.33 to be able to make a comparison

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (Number of Captured Nodes)

F
ra

ct
io

n
of

 C
om

pr
om

is
ed

 L
in

ks

Basic Scheme, ARP Scheme
Chain−Improvement Scheme
Hashed RKD Scheme
Location−aware Scheme
ABCD Scheme
Key Splitting Scheme

Figure 15. Resilience of some important key distribution
schemes; comparison.

442 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

with the others. This figure demonstrates that key splitting
scheme and location-aware scheme are more resistant than
other schemes.

5.5. Maximum supportable network size

In this section, we analyze the maximum supportable
network size for the 2-splitting scheme and compare it to
the rest of the RKD schemes. We calculate the maximum
supportable size according to the fraction of compro-
mised nodes that the network can tolerate and still be
considered secure.

Given a standard capture rate for all the schemes,
as well as a brute-force attack against key splitting,
we observed that node capture resilience is drastically
improved. Recalling Figure 6, an adversary would need 53
time units to compromise 10% of the network links when
the basic scheme is used. For the 2-composite scheme,
77 time units are needed, while our splitting scheme
introduces a real improvement, forcing the adversary to
consume 140 time units to achieve 10% of broken links,
even when a brute-force attack is done.

We now wish to measure the maximum size of a WSN
that can be supported by the RKD schemes, given that
there is a limit in the fraction of compromised links, after
which the network is no longer secure. Following the initial
deployment, each sensor can establish a secure connection
with an expected number of nodes throughout the network.
A node’s degree can be computed as d = n � pc, where n
is the network size and pc is the given probability for any
two nodes to establish a secure connection. It follows that
d represents an average number of links an adversary could
compromise after capturing a node.

For a long enough history of captured nodes, an
adversary is expected to hold a large gamut of captured
keys. This should allow the attacker to be confident enough
and start compromising sensor links, throughout the net-
work, but this time at numbers greater than d. Let fm
represent the percentage of compromised communications,
after which the node capture attack in no longer bearable
for the network. In other words, fm represents a limit for the
fraction of compromised links, to consider to the network
secure. A secure network can thus be defined as (f � fm),
where f is the percentage of communications compromised
by the adversary. As in [9], we define the global payoff
requirement according to d:

Global payoff requirement: The adversarial gain fol-
lowing a node capture, measured in communication links
compromised, should be on average of the node’s degree.
The total fraction of compromised communications should
be kept below the fm limit (f � fm).

The payoff requirement defines the acceptable level of
compromised links from a single node capture. We perform
our analysis using the payoff requirement on the basis of
time units needed by the adversary, to compromise a given
percentage fm of communications. fm is a given parameter,
and for our analysis, we set it equal to 0.1.

Figure 16. Maximum supportable network size for different
network configurations (pc = 0.33, fm = 0.1).

Let f (t) be the fraction of secure links compromised
when t time units have passed. It follows that tm is the time
needed by the adversary to achieve fm = f (tm). There are
nd
2 links in total in the network. According to the payoff

requirement, the number of network links compromised in
the network should be less than the degree of the node, thus�

nd
2 – xmd

�
fm � xmd. By simplifying, we obtain

n � 2xm

�
1 +

1

fm

�
(19)

For pc = 0.33, fm = 0.1, and m = 200, the maximum
supportable network size for the 2-splitting scheme with-
out a brute-force attack is 3388 nodes. For the 2-composite
and the basic RKD schemes, the maximum supportable
network sizes are 1694 nodes and 1166 nodes equiva-
lently. Even if a brute-force attack is launched against
the network, the 2-split scheme performs better and sup-
ports a network size of 3102 nodes. Figure 16 shows the
maximum supportable network sizes for different network
configurations.

6. CONCLUSION

We considered the problem of increasing the resilience
of RKD schemes to node capture. We proposed a new
scheme, key splitting, which can significantly increase
the resilience compared with existing schemes. As long
as the adversary does not have overwhelming computa-
tional power, to brute-force links for which it has partial
knowledge of the secret material, our scheme greatly
increases resilience to node capture attacks. Essentially,
key splitting raises the bar against a powerful and
sophisticated adversary.

We analyzed key splitting, using variants of slitting the
key, and proved it is applicable to every RKD scheme.
We achieve a significantly lower fraction of compromised
links compared with other schemes, especially when

Security Comm. Networks 2015; 8 443
DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

Making random key distribution schemes resistant against node capture M. Ehdaie et al.

the number of compromised nodes increases. Key split-
ting achieves better network connectivity and is thus
able to support much larger secure network deployments,
compared with the state of the art. Finally, we have proven
that all these benefits come at no extra communication and
computational overhead for the sensors.

ACKNOWLEDGEMENTS

This work is partially supported by the Iranian Research
Institute for ICT (grant T/500/19241).

REFERENCES

1. Liu A, Ning P. TinyECC: a configurable library for
elliptic curve cryptography in wireless sensor net-
works, in Proceedings of the 7th IPSN, Washington,
DC, USA, 2008.

2. Piotrowski K, Langendoerfer P, Peter S. How public
key cryptography influences wireless sensor node life-
time, in Proceedings of the 4th ACM SASN, New York,
2006.

3. Papadimitratos P, Luo J, Hubaux J-P. A randomized
countermeasure against parasitic adversaries in wire-
less sensor networks. IEEE Journal on Selected Areas
in Communications 2010; 28: 1036–1045.

4. Hartung C, Balasalle J, Han R. Node compromise in
sensor networks: the need for secure systems. Techni-
cal Report CU-CS-990-05, University of Colorado at
Boulder, 2005.

5. Bohli J, Papadimitratos P, Verardi D, Westhoff D.
Resilient data aggregation for unattended WSNs, in
IEEE LCN SenseApp, Bonn, Germany, October 2011;
994–1002.

6. Newsome J, Shi E, Song D, Perrig A. The sybil
attack in sensor networks: analysis & defenses, in
Proceedings of the 3rd IEEE International Sympo-
sium on Information Processing in Sensor Networks,
New York, 2004; 259–268.

7. Du W, Deng J, Han YS, Varshney PK. A pairwise key
pre-distribution scheme for wireless sensor networks,
in Proceedings of the 10th ACM conference on Com-
puter and communications security, New York, 2003;
42–51.

8. Eschenauer L, Gligor VD. A key-management scheme
for distributed sensor networks, in Proceedings of the
9th ACM conference on Computer and Communica-
tions Security (CCS), New York, 2002; 41–47.

9. Chan H, Perrig A, Song D. Random key predistribu-
tion schemes for sensor networks, in Proceedings of
the 2003 IEEE Symposium on Security and Privacy,
Washington, DC, USA, 2003; 197–213.

10. Ehdaie M, Alexiou N, Ahmadian M, Aref M,
Papadimitratos P. Key splitting for random key distri-

bution schemes, in Proceedings of the 7th workshop
on Secure Network Protocols (NPSec), Austin, Texas,
USA, 2012.

11. Perrig A, Stankovic J, Wagner D. Security in wireless
sensor networks. Communications of the ACM 2004;
47: 53–57.

12. Giruka VC, Singhal M, Royalty J, Varanasi S. Security
in wireless sensor networks. Wireless Communications
and Mobile Computing 2008; 8(1): 1–24.

13. Shi E, Perrig A. Designing secure sensor net-
works. Wireless Communications, IEEE 2004;
11: 38–43.

14. Wood AD, Stankovic JA, D A, A J. Denial of service in
sensor networks, in Upper Saddle River, Prentice Hall,
Inc, 2002.

15. Poturalski M, Papadimitratos P, Hubaux J-P. Towards
provable secure neighbor discovery in wireless net-
works, in ACM Workshop on Formal Methods in Secu-
rity Engineering, Alexandria, VA, USA, October 2008;
31–42.

16. Poturalski M, Papadimitratos P, Hubaux J-P.
Secure neighbor discovery in wireless networks:
formal investigation of possibility, in ACM Sympo-
sium on Information, Computer and Communications
Security (ASIACCS), Tokyo, Japan, March 2008;
189–200.

17. Douceur JR. The sybil attack, in Revised Papers from
the First International Workshop on Peer-to-Peer Sys-
tems, London, UK, 2002; 251–260.

18. Liu D, Ning P. Establishing pairwise keys in dis-
tributed sensor networks, in Proceedings of the 10th
ACM conference on Computer and Communications
Security (CCS), New York, 2003; 52–61.

19. Parno B, Perrig A, Gligor V. Distributed detection of
node replication attacks in sensor networks, in Secu-
rity and Privacy, 2005 IEEE Symposium on, Oakland,
California, US, may 2005; 49–63.

20. Moore T. A collusion attack on pairwise key pre-
distribution schemes for distributed sensor networks,
in Pervasive Computing and Communications Work-
shops, 2006. PerCom Workshops 2006. Fourth Annual
IEEE International Conference on, Pisa, Italy, March
2006; 5–255.

21. Papadimitratos P, Deng J. Stealthy pre-attacks against
random key pre-distribution security, in Proceedings
of the IEEE International Conference on Communi-
cations - Communication and Information Systems
Security Symposium (ICC’12 CISS), Ottawa, Canada,
2012; 251–260.

22. Kur J, Matyas V, Svenda P. Two improvements of
random key predistribution for wireless sensor net-
works, in Proceedings of the International Conference
on Security and Privacy in Communication Networks,
Padua, Italy, 2012.

444 Security Comm. Networks 2015; 8

DOI: 10.1002/sec

:431–445 © 2014 John Wiley & Sons, Ltd.

M. Ehdaie et al. Making random key distribution schemes resistant against node capture

23. Huang S-I, Shieh S, Wu S. Adaptive random key
distribution schemes for wireless sensor networks,
Computer Security in the 21st Century, Springer, 2005;
91–105.

24. Zhao H, Hu J, Qin J, Varadharajan V, Wan H.
Hashed random key pre-distribution scheme for
large heterogeneous sensor networks, in Procee-
dings of the IEEE 11th International Confe-
rence on Trust, Security and Privacy in
Computing and Communications, Liverpool, 2012;
706–713.

25. Du W, Deng J, Han YS, Chen S, Varshney P. A
key management scheme for wireless sensor networks
using deployment knowledge, in Proceedings of the
IEEE INFOCOM 2004, 23rd Annual Joint Conference
of the IEEE Computer and Communications Societies,
Washington, DC, 2004; 586–597.

26. Levi A, Tasci S, Lee Y, Lee Y, Bayramoglu E,
Ergun M. Simple, extensible and flexible random
key predistribution schemes for wireless sensor
networks using reusable key pools. Intelligent
Manufacturing Springer 2010; 21(5): 635–645.

Security Comm. Networks 2015; 8 431–445 © 2014 John Wiley & Sons, Ltd. 445
DOI: 10.1002/sec

:

	Key splitting: making random key distribution schemes resistant against node capture
	Introduction
	System Model and Problem Statement
	System model
	Adversary model
	Problem statement

	Related Work
	The Key Splitting Scheme
	q-composite key splitting

	Scheme Analysis
	Security analysis
	Simple case
	Single node capture: basic scheme
	Single node capture: key splitting scheme

	General case
	Multiple node capture: basic scheme
	Multiple node capture: q-composite scheme Chan:2003
	Multiple node capture: (z,q)-Splitting scheme

	Computational compromise of links
	Adversarial brute-force power effect
	Advanced brute-force check
	z parameter effect
	q parameter effect
	A general comparison
	Adversarial benefit analysis
	Simulation results

	Performance analysis
	Comparison and numerical illustration
	Comparison with other random key pre-distribution schemes
	Maximum supportable network size

	Conclusion

