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Abstract. As social networks sites continue to proliferate and are being used facaasing variety
of purposes, the privacy risks raised by the full access of socialonking sites over user data become
uncomfortable. A decentralized social network would help alleviate thisl@no, but offering the func-
tionalities of social networking sites is a distributed manner is a challengirigegmo In this paper, we
provide techniques to instantiate one of the core functionalities of sociabrietwdiscovery of paths
between individuals. Our algorithm preserves the privacy of relatiprisformation, and can operate
offline during the path discovery phase. We simulate our algorithm orsoe#l network topologies.

1 Introduction

Social Networks have proliferated over the past few years, offerimgerous services that attract
millions of subscribers. In fact, Social Networking Sites are among the megtdntly visited
Internet sites (e.g., Myspace, Facebook). Their novel functionaliytiae ways of personal inter-
action they offer fuel their tremendous success.

A fundamental feature of social networks is tledationship graphthat connects users. This
graph enables two individuals to find the relationship paths that conneut fiteese paths are
useful to express trustworthy users: nearby people (with short nesije paths connecting them)
often deserve a higher level of trust. The path discovery mechanistreaased as a building block
for many social networking applications: (1) discovering a relationsHipfoea recruiter may boost
the chances of a job applicant to get the position; vice-versa, discgweri@lationship path to an
applicant could help the recruiter get a more trusted judgment on the appli2anelationship
path discovery can provide a basis for access control mechanismdestiiaSocial Networks,
where users determine the authorized users based on their distance teltiesnis the social
network; (3) a path to a person submitting an online review can boost eocgdn the review; and
(4) ensuring the receiver of an email that the sender is nearby in biet setwork can help avoid
falsely flagging the email as spam.

Although the relationship graph is at the core of the usefulness of satiabrks, personal
relationships represent sensitive, private information that can also lsenisA primary concern
is the unwelcome linkage among users. For example, two professionals eahfpyival com-
panies that have a connection may trigger suspicion. Or, connectiona@faitors and venture
capitalists could alert the competition by giving leads to upcoming technologigelagenments.
Or, simply, a social relationship can correspond to a sensitive perssaialorld relationship. Of
greater concern is the discovery of entire relationship paths and, in thefthe entire graph. A



significant negative consequence of this discovery is the large-scgéitay, tracking, and mon-
itoring of multiple individuals in real life based on discovered relationship paiither privacy
concerns can arise from graph operations; e.g., user de-anonymi#aitagh merging of rela-
tionship graphs [15].

Problem Scope. Protecting the privacy of relationship paths in a social network is a separa
concern from that of protecting the privacy of (1) other content oividdal users, (2) pairwise
inter-user relationships, or (3) inter-user relationships based on la smegrmediary contact. The
stored content of a social network site can be protected using cryptagnarimitives [4, 10, 13].
Pairwise-private relationship protection arise in practical settings sucis@ast messaging [12].

The protection of a user’s pairwise private relationships has recexetsive coverage out-
side social networks; e.g., “trust-negotiation” between a client and &rsémvtrust negotiations,
a client’s relationships-revealing credentials could not be disclosed tovarsand the server's
relationship-revealing access policies could not be disclosed to the chiesthdr settings, private
set-intersection protocols (viz., Section 3) can maintain a limited type relationstggy namely
help discover one intermediate contact between two users privately.

In all these examples, enforcement of privacy protection is a mattecafuser policies; e.g.,
client-server policies, pairwise-private policies. In contrast, proteatehgtionship paths among
users in social networks requires (uniform) enforcemegtathal privacy policies because all users
are affected by unauthorized privacy breaches. This is a significartthe challenging problem,
whose solutions, nevertheless, present opportunities for novel asanrety of other applications.
Decentralized Access. Any effective solution to relationship-path privacy would be based on
decentralized access control mechanisms and policies. Decentralizsg aoatrol is required by
both privacy and robustness concerns. First, mobile users shouldeotoaliscover other mobile
users with whom they have a relationship without having to connect to aatlgradministered
social network site, which could track their movement or which would beaafrable without net-
work access. For example, two nearby users should still be able to digbevr private relationship
paths even in the absence of Internet connectivity.

Second, perhaps more important, a single point of privacy failure sheuévoided. The cen-
tralized, full access that Social Networking Sites have over relationgtigpbse serious privacy
threats. Some Social Networking Sites have permissive privacy policiegnhale them to use
such data for commercial purposes. Moreover, even sites with stivecyrpolicies can be subject
to disclose private information disclosure. For example, sites can be enidpd to disclose user
information indiscriminately, which would be ineffective whenever suchrmfition would be
decentralized; i.e., subpoenas would have to be network-node selestedd-to-know based and
would yield limited user information. Another risk are malicious insiders with ectegrivate
information that can disclose private information. Finally, administrator gwosecurity vulnera-
bilities can also lead to privacy disclosures, as we have frequently witiessently in the case of
leaked databases containing credit card and social security numbers.

Design Challenges. Implementing decentralized access control to protect relationship-path pri-
vacy poses significant challenges, and obvious approaches daldrasa the problem. An ap-
proach where people make their relationships list visible to their neighbors idable because



that would disclose sensitive information. Another approach would be td flelationship path
discovery messages throughout the social network, but that wouldhigtuoverhead and latency,
especially if some users are offline; they would delay path discovery uetijl @ne online. Fur-
thermore, these challenges are exacerbated during relationship-matbetis For example, if two
users want to discover private relationship paths to each other, thelisativery protocol could
not rely on all intermediate users sites to be on-line and help find relationattip. pn other words,
two users should be able to discover private relationship paths to eachbaed only on their
local communication.

Contributions. In this paper we propose a system that enables users to benefit fobah reet-
working applications without the privacy exposure associated with halirigeir data stored at a
central site. The key contribution of this paper is thus our privacyepvasy multi-hop relationship
path discovery mechanism. Our design enables new access controlgpbhsied on social rela-
tionships, new trust establishment policies, and new ways to manage comtimmagaplications
(e.g., e-mail spam).

2 System Model and Problem Statement

A relationship pathbetween two usensandyv is a sequence of users whose pairwise relationships
(i.e., friendship) connect the two users. We call the two userertdaiser®f the relationship path.

The distance(depth)d between two users on a relationship path is the number of edges (aka
hops) from one user to the other on that relationship path.

A bridge contactuseruy;, of useruto a user on some relationship path is the direct relationship
(i.e., edge) of usan to userv on that relationship path.

A private relationship pathfrom useru to userv is a tuple(u, u;,d,v) encoding a relationship
path (u,u;,...,vj,v) of distanced. By symmetry,(v,vi,d,u) is the private relationship path from
userv to useru of distanced. Whenever a relationship path, u;,...,vj,v) is private, neither user
(u, v) can discover any intermediate users on that path to the other user hsy@spective bridge
contact (i, vj). Of course, there may be multiple private relationship paths fucmv with the
same bridge contact and different distances, and an user may have nuitiigle contacts each
on a different private relationship path to the other user.

A bridge contact; has different roles: (1) it can facilitate the introductionudo v. This can
be relevant, for example, in a job search scenario. (2) It helassign a trust value ta which
can be useful when the private relationship paths are used to enfaressacontrol. (3) It helps
u track/blacklist misbehaving users. Assume that in the email whitelisting scenaaity ofu;’s
friends send spam messages.ta may no longer want to whitelist a useto whichu has a private
relationship pathu,u;,d,v). Whenever there are multiple private relationship pdthsi,d;,Vv),
thenu would assign trust valuebased on the shortest private relationship path.

An obfuscated private relationship path, u;,d,?) is a private relationship path, where the
identity of one end user is unknown.

The example topology of Figure 1(a) is provided to illustrate the use of @tesyentities
defined above. In that figure, useksand M discover private relationship paths to each other at



distancesl < 3. A discovers the two private relationship patAsB,3,M) and(A,D,3,M), where
B andD are the bridge contacts and 3 is the distance of the private relationship pagise private
relationship paths captured by graph edgesB—?—M andA— D—?— M, depicted in Figure 1(b),
where “?” means that usérdoes not know the identity of the corresponding user. Wsdiscovers
the two private relationship patfis, J, 3,A) and(M, K, 3,A), corresponding td1 —J—?— A and
M — K—?— A depicted in Figure 1(c).
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(a) Example topology (b) A(lice) (c) M(ary)

Fig. 1. Example topology and private relationship paths of distahee3 discovered by A(lice) and M(ary).

2.1 Assumptions

We assume that each useis free to choose the users with whom she wishes to establish a re-
lationship, but that relationships can only be established based on thenta@fdoth users. We
assume the existence of a secure and authenticated channel betwepaieat friends. We as-
sume that friends can communicate anonymously, for example using ToissWma that has a
public-private homomorphic key pair. We also assume that two users whictevdiscover private
relationship paths can authenticate each other's homomorphic public keys.

In this work, we also assume the typical case where relationship pathsedgclalue with
increasing length. Hence, users do not gain any benefits from imaged® length of their own
relationship paths. This assumption is based on the observation that fociall setwork applica-
tions in use today, shorter paths are more desirable and take precedentmger paths.

2.2 Desired Properties

Privacy. The central goal of our protocol is to enable two parties to discoveatgrirelationship
paths to each other in an efficient manner while minimizing the additional informakiout rela-
tionships that users can learn. We will compare our approachesitiealnschemewhich returns
private relationship paths without disclosing any additional information. &yelsat our approach
provides privacy if it does not leak any more information than the idearseh

Path Integrity. The protocol needs to provideath integrityfor the discovered paths, i.e., an
adversary cannot alter discovered paths. An adversary may attemplate\path integrity in two
ways: alter the bridge contact, or shorten the discovered path.



Completeness. Our protocol should also bmompletdn the sense that each party discovers all the
discoverable private relationship paths. On a discoverable privat®rehip path, all users on the
corresponding relationship path do not object the discovery.

Offline discovery. Our protocol should enable two users to discover private relationshis pa
offline, i.e., based only on their physical interaction and without the helptefritediate users.
Not requiring intermediate users to be online during the discovery phasgjisppealing for most
situations. The ability of two users to discover private relationship pathegdaslusively on their
local interaction, without being connected to the Internet, is particularlyaetdor mobile users.
Low overhead. We aim for low communication and computation overhead.

2.3 Adversary Model

We distinguish between two kinds of adversaries: internal and netwadrsaties. An internal
adversary sets up an account and creates relationships with usecaitheyy., her friends in real
life. The network adversary controls the communication channel betwsens,.can eavesdrop,
stop or inject messages. This adversary is, however, not part obtie setwork, and does not
participate in our protocol.

The internal adversary is free to arbitrarily deviate from our protoddis.adversary may wish
to alter the topology of the social network to bring more value to themselvesxXemnple, an
adversary may want to make other users see her nearby (i.e., at a swaalteifom them). The
adversaryM may also want to alter the bridge contact in a private relationship path digecbve
by some useu to M. v may trust one bridge contact more than other. Similarly, the adversary
may try to deny value to honest users. The adversary may also wantai the privacy of the
social network by discovering the relationships of other users. A misiimta not considered an
attack if it only results in an outcome permitted in social networks as descril&&ection 2.1. For
example, a user may not want an extremely sensitive relationship to be |8&kedser suppresses
all private relationship paths corresponding to a relationship path corgatm relationship.

The network adversary can observe the network traffic of usersdier @o learn about their
relationships. It should be noted that people who use regular e-mailscoypeed e-mails are
already vulnerable to having this kind of adversary learn their relatioashipe network adversary
can observe the source and destination of their e-mails, as well as theriggoat which they send
and receive e-mails from each person. This combined information erthelegtwork adversary
to infer the friends of a user as the people with whom the user has many exolaélnges. People
concerned about this kind of adversary usually use some form ofyarmrs communication. We
do not discuss this kind of adversary further in the paper.

3 Background on Privacy-Preserving Cryptographic Techniqles

In this section, we present background on privacy-preservingagyaphic techniques that we will
build on. Private set intersection protocols [3, 8, 11] enable two or memtéep that each hold a set
of inputs drawn from a large domain to jointly calculate the intersection of theirtsnpvithout



leaking additional information. The private set intersection proposedégdman et al. [8]is a
two-party protocol between a clie@tand a serve®. C’s input is a set of siz&:, drawn from some
domain of sizeN; Ss input is a set of sizé&s drawn from the same domain. At the conclusion of
the protocol C learns which specific inputs are shared by botandS. That is, ifC inputsX =
X1, ..., X andSinputsY =y, ..., Vi, ClearnsXNY : {x|3j, x; =y; }. The protocol is based on the
presentation of sets as roots of a polynomial and on the use of homomorppicsystems. The
protocol follows the basic structur€.defines a polynomidP whose roots are her inputB(y) =
(X1 =Y)(X2—=Yy) - X —Y) = ka\f:o aywy". C sends t&shomomorphic encryptions of the coefficients
of this polynomial.S uses the homomorphic properties of the encryption system to evaluate the
polynomial at each of her inputs. She then multiplies each result by a fiadlom numben to get
an intermediate result, and she adds to it an encryption of the value of lierTimat is,Scomputes
Endn.P(y;j) +yj) for each of her inputy; € Y. Srandomly permutes this set and returns iCto
C decrypts each element of this set. For each element in the intersection obtpauties’ inputs,
the result of this computation is the value of the corresponding element, agiereall others the
result is random. The computation overhead3anainly consists okc homomorphic encryptions
and ks homomorphic decryptions. The homomorphic encryptions only need to be computed
once per input set. The computation overheadt mainly due to the evaluation of each of her
inputs on a degrek: polynomial. The use of multiple-low degree polynomials and Horner's Rule
make the asymptotic computation overh&itlc + ksInInkc) exponentiations.

A slight variation of the above protocol is provably secure in the rand@uol® model against
malicious adversaries, where a malicious adversary may behave arhiffhglgecurity definition
of private set intersection protocols is based on a comparison betwddaarmand a real imple-
mentation. In an ideal implementation, a trusted third party receives the inptite tfo parties
and outputs the result of the intersection, whereas in the real implementatrengh® trusted
third party. The security model requires that in the real implementation of tieqmi, each party
does not learn more information than the ideal implementation. Such a securigl dues not
deal with attacks that apply to the ideal model. For example, a party may lie ladoimput set.

4  Protocol Overview

The goal of our protocol is to enable two users to discover private rekitip paths to each other
offline, without disclosing superfluous relationships. This requiressusestore topology infor-

mation that enables the discovery, without revealing relationships. Otogolcoperates in two

phases: @oken flooding phasand apath discovery phas@uring the infrequent token flooding
phase, we assume that users are online so they can exchange t@uftspalogy information. The

path discovery phase runs when two users want to discover privat®nship paths to each other,
offline based on the collected obfuscated topology information; it returtisetowo users private

relationship paths.

1 The paper refers to the protocol both by private set intersection avatgomatching. We only refer to the protocol
as private set intersection in order to avoid confusion with matchmakistgqwls.
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Fig. 2. Basic scheme. Extended hexagonal topology and obfuscated takgragpted for originatoh.

During the token flooding phase, users disseminate cryptographic ttiersecome associ-
ated with obfuscated relationship paths. Each user issues tokens tadtdrane to explore rela-
tionship paths starting from herself. Other users will cryptographicallysmate these tokens and
continue the flooding process up to a pre-determined number of hopsbfirgcation operation
is deterministic and independent of the identity of the user. This enablesidfireador to compute
the value of all possible tokens at any distance. The originator will in fautlate the flooding
and compute the obfuscated token values at all distances up to the maximdindldepth. The
originator associates each computed token with an obfuscated relatioashif¥ pe path discov-
ery phase runs when two users want to discover private relationsttip faeach other. The two
users perform a private set intersection protocol: one user playslthefra client and enters the
tokens she has computed as originator, and the other plays the role e¢eaat enters the tokens
received. The first user learns the existing private relationship pasedion the common tokens.
A second run of the private set intersection protocol with the roles of tbheusers inverted en-
ables the second user to learn existing private relationship paths. Tdrelg@ivate set intersection
protocol does not run ¥ is not interested in discovering private relationship paths.

We now explain some more details based on the example in Figure 2(a). Weezdhe token
flooding phase where nodeis the originator and floods her tokens through the network. To limit
the flood up to a maximum distance, each token is accompanied with the distamcthé origi-
nator. Figure 2(b) depicts the hash tree that is created during the flopaingss forA’'s tokens.
To initiate the token flooding process picks a random numbetr To prevent nodes from inferring
relationship topology information during the flooding process, each tokebfisscated through
a one-way hash functiod and a counter value — through this approach each token represents a
unique sequence of users. As Figure 2(b) shéwsends tokefl; = H(z|| 1) to userB, and token
T, =H(z|| 2) to userC, along with the distance B andC obfuscate the token through another
application of the one-way hash function and a counter value, andrfdsulze unique token values



to their neighbors along with the distance value 2. Users store the redekests in their list of
received tokens.

Figure 2(b) only shows the tokens that are distributed for Aserpractice each user distributes
her own set of tokens. Due to the deterministic operation of the token @tifosprocess, the token
originator can simulate the token flooding phase and compute all tokens depitke hash tree
in Figure 2(b).

To demonstrate the discovery of a private relationship path, consideasigevchere user&
andF meet. One user will use the computed list of obfuscated tokens, and theustrewill use
the list of all received tokens. In our example in Figure 2fyyill compute tokensly, To, ..., Ts,
andF will use all received tokens, which include tokehRsand Tg. After performing private set
intersection of the two lists, they find a match with tokdgsand Tg. SinceA knows that token
Ts was derived from tokefi; which was handed to us&; B is the bridge contact for that private
relationship pathA further knows thafg is at distance 3 hops. Analogoustyknows thatC is the
bridge contact for the 3-hop long path representedghy

5 Protocol Description

We describe next our protocol in more detail, assuming all users followrtiteqol. Sections 6.1,
and 6.2 discuss protocol deviations. Table 1 describes our notation.

Table 1. Notation.

o] originator

r relay node

V,u |users in the social network

X; ith friend of x

[X| number of friends of uset

d distance

dmax |maximum distance of private relationship paths
degnax maximum number of neighbors of any node

5.1 Basic Scheme

In this section, we first describe a basic version of our protocol atahebit in Section 5.2.

Token Flooding Phase. As we describe in Section 4, the originator floods tokens that represent
obfuscated paths and that can later be used to discover private reigtigraghs. Algorithm 1

is used by the originatoo to construct and send tokens to her friends. To start, the origioator
generates a random numiand uses it as a seed to compute nodes at depth 1 of a hash tree.
computesl; = H(Z]|i),i = 1,...,|o| and send$d = 1,T;) to each friend;.



Algorithm 1 Basic scheme. Token propagation. Originator

Generate a random number
Send(d=1,Ti=H(z|i))too,i=1,...,|0|

Algorithm 2 Basic scheme. Token propagation. Ralay

for reception of(d, T) fromr; do
Insert(ri,d, T) into list of received tokens

if d < dmaxthen
Send(d+1,Tj=H(T|[j)) torj, j=1,...,|r|, ] #I
end if
end for

Algorithm 3 Basic scheme. Hash tree construction. Originator
Inser{o;,1, T =H(Zli)),i =1,...,|0| into hash tree
while Unmarked(o;,d, T) do
Mark (0;,d,T)

if d < dmaxthen
Insert(oj,d+1,Tj =H(T|[j)), j = 1,...,degnaxin hash tree
end if
end while

Algorithm 2 is used by the friends of the originator to construct and serehtto their friends.
This propagation continues hop-by-hop up to distathee dnax from the originator. A user per-
forming this propagation is termedelay r. Whenr receivegd, T) from her friendr;, she inserts
T into her list of received tokens. The relaycomputesT; = H(T||j),] € {1,...,]r|}, j #i, and
sends(d + 1,Tj) to each of her friends; # r;. Figure 2(b) presents the hash tree spanned'®y
token propagation, where plays the role of an originator.

The originatoro can reconstruct the hash tree created during the token flooding phasersy
at distanced < dmax This way, the originator has a common token with each user at distance
d < dmax Each of these tokens is associated with an obfuscated relationship patliokens
that are common between the originator and users at disthrRtémax constitute the basis for
discovering private relationship paths during the path discovery peaptained in detail below).
Algorithm 3 is used by the originator to reconstruct all tokens from the tragh The originatoo
constructs a hash tree based on the getttk maximum degregegnax and depthdmax Each token
of the hash tree is associated with an obfuscated private relationshipApattenT; at depth 1 is
a token associated with the trivial obfuscated private relationship patbs1,?), as the toker;
was sent to the friend;. A nodeT at depthd with ancestofT; is associated with the obfuscated
private relationship patto,0;,d, ?).

Path Discovery Phase.The path discovery phase runs when two useasdv want to discover
private relationship paths. Usewsandv run a private set intersection protocol (as described in



Section 3) wherau plays the role of the client entering the tokens in her hash treevaniays
the role of the server entering the tokens in her list of received tokdmesprivate set intersection
outputs tou the tokensl in u's hash tree corresponding to the entriag di, Tx) in u's hash tree.
This enables to discover private relationship paths ug, dg, V). A second private set intersection
protocol with the roles ofi andv inverted. That isy plays the role of the client and enters the
tokens in her hash tree as input, amglays the role of the server and enters the tokens in her
list of received tokens as input. This second private set intersectainesv to discover private
relationship paths ta.

We consider the extended hexagonal topology, with uersdF running the path discovery
phase A andF run a private set intersection protocol whér@nters the tokens in her hash tree
as input, whileF enters the tokens in her list of received tokens as infysthash tree contains
tokensTy, - - -, Tg depicted in figure 2(b). During the token flooding phdseeceived token3g, Ts.
The private set intersection protocol outpl§sTs for A. Ts enablesAto learn(A, B, 3,F). Aknows
that B is the bridge contact sinc& knows thatTg was derived froml; that was handed tB. A
further knows thaf is at distance 3 sinc& was derived fronT; by applying three times a hash
function to the seed. AnalogouslyA discovers the private relationship pa#hC,3,F) from Ts.

A second private set intersection protocol is run with the role& ahdF inverted.F learns the
private relationship pathd, D,3,A) and(F,E,3,A).

5.2 Extended Scheme

The basic scheme, unfortunately, suffers from a privacy leak: it $sipte to learn whether dis-
covered private relationship paths intersect at specific intermediate. ¥sssume that in the ex-
tended hexagonal topologh, runs the path discovery phase wkhand subsequently with. A
discovers the private relationship pat#sB, 3,F ), (A,C, 3,F) based orfg, Tg and later(A, B, 2,D),
(A,C,3,D) based oril3, T7. SinceA knows thatTs is the ancestor of in the hash treeA learns
thatD is the user at distance 2 in the private relationship paiB, 3,F). Similarly, sincel; andTg
have the same ancestér]earns tha{A,C,3,D) and(A,C, 3,F) have the same intermediate user
at distance 2. The basic scheme also has a very large overhead sorggraatior computes a hash
tree of degre@egnax Since most users have fewer thadeg,ax friends, the basic scheme computes
and stores many unnecessary tokens in the hash tree.

We present an extended scheme to address these shortcomings. Tide@steheme utilizes
a randomization technique to seal the privacy leak and an optimization toer¢deicoverhead
associated with the computation of unnecessary tokens. The goal ohtt@meation technique is
to prevent an originator from learning information about intermediate asesiprivate relationship
path beyond what can be directly inferred from discovered privdédisaship paths. This holds
even after the originator runs a path discovery phase with multiple usdfe Bxtended scheme,
we separate the computation of the token of a uéerm the computation of tokens of intermediate
users betweew and the bridge contact. More specifically, for a given bridge contacseparate
the computation of tokens based on the distance to the originator. A usetasic@i®< d < dmyax
receives a token randomly chosen from the set of tokens computdd for



Algorithm 4 Extended scheme. Token propagation. Originator

Generate a random number
Send(d=1T'=H(Z|'1|i)) too;, i=1,...,|0|

Our basic observation towards designing the extended scheme is thath&rrédge contact
is disclosed with the private relationship path, the bridge contact can dietite tokens for
all subsequent users dt< dmax Since in practicalnax = 3, the bridge contacts creates tokens
for distances 2 and 3. The bridge contact obtains the number of tokedssfance 3 by asking
her friends about their degrees and summing these degrees. Tokatistdnce 3 are computed
separately from the ones for distance 2. The bridge contact sendsht@ilaer friends one token
for distance 2 and a number of tokens for distance 3 proportional toiémelfs degree. The tokens
transmitted are randomly chosen from the computed tokens. The friend stert@ken for distance
2 and to each of her friends one of the received tokens for distaridé@s3approach addresses the
inefficiency of the basic scheme, because each bridge contact cam itife originator of how
many tokens were distributed.

We now describe the extended scheme in more detail for the cakg,0f 3, which we con-
sider to be the largest value fd,ax that is viable in practice. Algorithm 4 presents the algorithm
used by the originatoo to construct and forward tokens to her friends. o generates a random
numberz and uses it to create tokens for her friendsas= H(Z|'Y|]i),i = 1,---,|o| and sends
(1,T:1) to each of her friends. These friends constitute the bridge contactstithigos presents
the algorithm used by a bridge contéct o; to construct and send tokens. The algorithm assumes
thatb previously received the value dfi| from each of her friends. Whemreceives a tokefT
from o, b computes tokens for all subsequent users at distances 2 and 3sTokatistance 2
are computed a§2 = H(T||'2||i),i = 1,---,p = |b| — 1. Tokens for distance 3 are computed as
Tj3 =H(T|'3||j),j=1,---,9= Zi‘i‘l,bi;éo“bi’ —1). Similarly to the basic scheme, each token en-
codes the distance to the originatbrsends to each of her friendls a token for distance 2 and
|bi| — 1 tokens for distance 3. These tokens are randomly chosen from to&erzuted for dis-
tances 2 and 3 respectively. At the ehdhformso about(p, q) the number of tokens computed for
distances 2 and 3. A subsequent user on the relationship path is termeelasra Algorithm 6
presents the algorithm used byo forward tokens to her friends. Wheneceives from a bridge
contact((2,T?), T.3,i=1,---,|r| - 1), r storesT2. r sends to each of her friend3, T3), whereT?>
is randomly chosen from the received tokdfts Figure 5.2 presents the hash tree spannetidy
token propagation.

Similarly to the basic scheme, the originator computes the hash tree of tokengein the
network, where each token is associated with an obfuscated privaiemshap path. Algorithm 7
presents the algorithm used by the originator. The algorithm takes as(inpgt, the number of
tokens computed for distances 2 and 3 by each bridge comtdébr each bridge contaat, the
originator constructs a token for distance Tids=H(z|'1'||i), wherezis the previously generated
seed. The originator constructs tokens for distance'qzas H(TY)2]|j),j=1,---,p and asso-
ciates them with obfuscated private relationship pathe;, 2, ?). Similarly, tokens for distance 3



Algorithm 5 Extended scheme. Token propagation. Bridge coritact
Require: |bj|, i=1,---,|b|
for reception of(1, T) fromo do
InsertT in list of received tokens

p=|b[—

TZ=H(T[['2[]i), i=1,---,p

=34 b so(lbi ~ 1)
i=1bj#o\IM

TJ3:H(TH/3,HJ), J:177q

ShuffleT?
Shul‘fleTj3
Send(2,T?) and(|ri| — 1) values fromT? tor
Send(p,q) too
end for

Algorithm 6 Extended scheme. Token propagation. Relay

for reception of( (2,T), T3, i =1,...,|r| — 1) from bridge contach do
InsertT in list of received tokens
ShuffleT;®
Send(3,T3) tori, i=1,...,r|, ri #b

end for

for reception of(3, T) fromr; do
InsertT in list of received tokens
end for

Tz =H(T1l/'2[1), 2
Ts = H(T1]/'3|2)
T4 H(Ta|/'3'][2)

Te=H(T2[['2|1),2

e
AN
M /
S

Te=H(®I'3l12) H(T2|'3']2)

Fig. 3. Extended scheme. Obfuscated tokens propagated for origih@idhe extended hexagonal topology.

are constructed ﬁ =H(TY[3]j),j=1,---,q and associated with obfuscated private relation-
ship pathg0,0;,3,?). The hash tree constructed by this algorithm has a different structuré¢itba



Algorithm 7 Extended scheme. Hash tree construction. Origirator
Require: (pi,q) number of tokens for distances 2 and 3 computed by bridge comkacits=1,-- - ,|0|
fori=1,---,|o| do
Insert(o;,1,TL = H(Z|'||i)) in hash tree
Insert(0;,2, T2 =H(TY'2[|})), j=1,---,pi inhashtree
Insert(0,3, T3 = H(T!|'3]|j)), j=1,---,q inhashtree
end for

one for the basic scheme. The depth of the tree is 2. Thezidoad degre¢o|, whereas a token for
distance 1 handed m has degre; + ¢;. For exampleT; has 3 childrenTs, T4 andTs.

The path discovery phase runs similarly to the basic scheme. A privatdesseiction between
u andv enablesi to discover common tokens and learn private relationship paths.

In practice, a user does not inform others about her exact ddgstead, the user adds to it a
positive noise in order to further hide the network topology. To be comgigtith the noise added,
the user creates and sends dummy tokens as if she had additional fiieadgsnount of the noise
to be added in order to appropriately hide the network topology is beyorsttpe of this paper.
It should be noted that the extended scheme does not require additissteldrthiness from the
bridge contact. The bridge contact is free to deviate from the protocatier do suppress private
relationship paths containing her relationships, as any other intermediate use

In our discussion, we considerégiax = 3. However, the scheme can be easily extended to a
largerdmax

6 Evaluation

In this section, we evaluate the extended scheme. Sections 6.1 and 6.2 paos@turity and
a privacy analysis. Section 6.3 analyzes the scheme overhead. Simulzget on real social
network topologies are presented in Section 6.4. We condigge= 3.

6.1 Security Analysis

Completeness. Assume there exists a relationship pathu;,---,v;j,v) of distanced < dmax
Completeness requires that wheandv run a path discovery phasediscoversu, u;,d,v) andv
discovers(v,vj,d,u) in case all users on the relationship path consent to the discovery. pr@ur
tocol, a user is provided with the flexibility to suppress all private relationgips corresponding
to paths containing one of her relationships. This relationship may be extresmditive.

We focus on relationship paths with distance 3. The discussion can be adafied to rela-
tionship paths with distance 2. We consider the discoveny, ltlye one by being very similar. We
list sufficient conditions fou’s discovery: (1) during the token flooding phasegceives a well
constructed tokef originating fromu andu computesT as part of her hash tree and associates it
with the obfuscated private relationship pathu;,d,?); and (2) during the path discovery phase,
bothu andv enterT to the private set intersection protocol instance wheptays the role of a
client andv plays the role of a server.



The first condition holds ifi sends a token associated with= 1 to u;, U; receives an upper
bound onlv;| fromv;j, constructs and forwards as many tokensifer 3 (one of these tokens being
T) to vj, andyv; forwardsT to v. The second condition holds if computes all tokens encoding
d = 3 forwarded byu; to vj, and associates them with the obfuscated private relationship path
(u,u;, 3,?). ucan perform such computationuf informs her about the total number of constructed
tokens encodingl = 3. It can be seen therefore that the first condition holds if all users@n th
relationship path consent to the discovery by performing the requirechacimilarly, the second
condition only depends on the consenuafndv.

In order to further clarify why completeness holds in our protocol, wesiclar one specific
protocol deviation. Assume an intermediate user on the relationshigypagh: - - ,v;,v) does not
forward tokens to subsequent userandv will not be able to discover the corresponding private
relationship paths. This, however, does not break the completengssrigrdn our protocol, a
user is provided with the flexibility of suppressing private relationship patinsesponding to a
relationship path containing one of her relationships.

Path Integrity. Path integrity requires than an adversdtycannot alter the bridge contact or
shorten the discovered path. In our protoaoliscovers a private relationship path,uj,d,M)
when running a path discovery phase withif: (1) M owns a token thati associates with the
obfuscated private relationship pdth u;,d,?) and (2) bottu andM enter that token to the private
set intersection protocol.

WhenM is at distanced > dmax from u, M does not receive any token originating fram
M is only left with the option of generating random tokens. This attack is coresidef limited
scope. We now consider the existence of one relationship(path - - - ,M) of distanced < dmax
M receives a tokeil corresponding to the private relationship péthu;,d,M). Additionally, M
has access to tokens corresponding to longer private relationshipyjtitiise same bridge contact
because of the hop-by-hop token propagaftiooannot be used to compute tokens corresponding to
shorter obfuscated paths with a different bridge contact, thanks toeimagge resistance property
of a cryptographic hash function. When there are multiple relationship péttistanced < dmax
from uto M, M receives a token originating fromfor each of these relationship paths. Here also,
the preimage resistance property of a cryptographic hash functioargsathese tokens from being
used to compute a token corresponding to a shorter obfuscated pelaiernship path or one with
a different bridge contact.

In our protocol M can make a userappear at a shorter distance to another us@onsider a
relationship patfu, u;, M, v). M can forward its own token te, makingv appear at distance 2 to
This misbehavior causes disturbance to the system, but does not direwfit be

6.2 Privacy of the Network Topology

We compare our protocol to an ideal scheme, which returns private redatppaths without dis-
closing any additional information. we first consider an honest but esr@aversary that follows
our protocol, but performs all possible computation on available data., ve¢econsider a mali-
cious adversary that deviates from our protocol.



Honest but Curious Adversary. During the token flooding phase, users learn no information
about the network topology in an ideal scheme. In our protocol, we disshduietween the three
roles played by each useran originator, a bridge contact and a relay. As an originattgarns
a noisy version of the number of users at distances 2 and 3, for edwr bridge contacts. We
clarify that a user having two distinct relationship paths of distance 2 owv3steounted twice in
the number learnt by. v receives this information directly from the bridge contacts as described
in Algorithm 5. As a bridge contact; does not learn additional information, compared to what
v already learnt as an originator. As a relaygan infer the number of users at distances 2 and 3
through a simple count of the received tokenslready learnt this information as an originator.
v does not learn whether two received tokens have the same originatmwelid not originate
any of the two tokens. This is achieved thanks to the way tokens are odestrédiowevery can
recognize that she is the originator of a received tokeeceives one of her tokens wheiris on
a cycle of distancel < dmax= 3. Cycles of distances 1 and 2 are trivial. The ones of distance 3
are the only interesting case. These cycles enalitelearn about the existence of a friendship
relationship between any two of her friends. Although, in the ideal scheoh@es not learn about
the existence of these relationships during the token flooding phase, easily learn about them
by running a path discovery phase with her friends. Similarlypes not know whether the same
intermediate user (beyond direct friends) was involved in the forwarafibgo received tokens, if
v was not involved in the forwarding of any of the two tokemsan be involved in the forwarding
of a token either as a relay, bridge contact or originator. We considn tye example topology
in Figure 1(a). Figure 6.2 preseraglice)’s perception of the social network topology by the end
of the token flooding phase. The figure does not depict the noise dgdeskrs to their degrees.
During the path discovery phase, the two partiemdv exclusively learn existing private rela-
tionship paths, in an ideal scheme. In our protoadearns the common tokens between her hash
tree andv's list of received tokens. The construction of these tokens and tlimmaization tech-
nigue prevent these tokens from leaking information beyond existingtprelationship paths to
However, the perception of the social network topology gained by the end of the token flood-
ing phase may help her gain some additional knowledge. Such knowledge isllimitase users
have a large number of friends. It is further reduced by the noiseddayleisers to their degrees.
We consider the example topology in Figure 1(a). AssumeAf(iate) runs a path discovery phase
with M(ary) and subsequently witB(ary). A discovergA,B,3,M), (A,D,3,M) and subsequently
(A,D,2,G). The tokens oM andG were randomly chosen from the total set of tokens computed
by D for distances 2 and 3 respectively. This prevehtsom learning whethe(s is D’s friend
present in(A,D,3,M). However, from Figure 6.24 knows thatD| = 3. A gains more confidence
up to whethelG is D’s friend present ifA,D, 3,F ), compared to the ideal scheme, whérdoes
not know |D|. This confidence is limited in typical social network topologies wh&iewould be
much larger. It is further reduced by the noise adde®lty |D|.

Malicious Adversary. We examine relationship information that can be leaked to a malicious
adversary, but not to a honest but curious one. More specificalgre/interested in misbehaviors
that aim at breaking relationship privacy. In our protocol, relationsHigrination can be learnt in
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Fig. 4. A’s perception of the topology by the end of the token flooding phase fapgiwogy from Figure 1(a).

two ways:(1) during the token flooding phase, through analysis of de¢dvesl from friends; and
(2) by running a path discovery phase with other users. During the fdeding phase, a malicious
adversanM learns additional relationship information compared to an honest but susiwaif it
can influence the received data in a way that leaks private informationewythe only data that
M can both influence and receive is the one propagated through cydiestarficed < dmax= 3
containingM. Even ifM associates the smallest possible distance 1 with a transmitted token, other
users will stop the propagation aftéfax hops fromM. Such misbehavior can heM discover
friendship relationships between any of her friends. However, arstdout curious adversary
already knows about these relationships, as was already discussad) the path discovery phase
with a userv, a malicious adversary can enter to the private set intersection protocelantess
tokens than prescribed in our protocol. Whéiplays the role of a server, this kind of misbehavior
is not beneficial as the private set intersection protocol does nottaangthing to the server. As a
client, M does not gain anything from entering less tokens to the private set ictiersprotocol.
WhenM enters additional token®) learns whether these tokens are/mlist of received tokens.
Because of the large space of tokens, we assumé/ilias a toke that is inv's list of received
tokens only wherM was involved in the construction or the propagationrofe first consider
whenM does not deviate during the token flooding phase. Beyond tokens in higreasM has
access to the tokens it received and to the ones that can be constroatetiém. Entering these
tokens to the private set intersection protocol maWediscover private relationship pathsvamf
distanced < dmax— 1. These private relationship paths are also discovered in the normafl thum
protocol. By deviating during the token flooding phaglecan only receive maliciously constructed
tokens through cycles of distande< dmay as was already explained. Tokens propagated through
these cycles do not heM learn additional information.

6.3 Overhead Analysis

We distinguish the overhead of the token flooding phase and that of thelisativery phase. The
token flooding phase needs to run very infrequently. The path discptase runs when two users
uandv need to discover private relationship pattisthe first time We introduce a new variable for



the purpose of simplifying the notation for this sectiBpis the fan-out of a userat depth. That

is F is the number of relationship paths startingyaf distanced < i. In the extended hexagonal
topology,Fi =2,F2 =4 andF2 = 8.

Token Flooding Phase. As an originatory computes/? tokens in constructing the hash tree
and transmit, tokens. As a bridge contastcompute<O(F;! . F?) tokens and transmits a similar
number of themy receivesF! tokens. As a relay does not perform any computationreceives
O(F2 +F}r.F?) and transmit®(F}.F?) tokens. Therefore, during the token flooding phase, the
overhead i©O(F2 + 2F}. F?) hash computation and exchange.

Path Discovery Phase. We evaluate the overhead whardiscovers private relationship paths
to v. The overhead originates from the private set intersection protonovhereu plays the role

of the client and enters the® tokens in her hash tree antplays the role of the server and en-
ters theF\,3 tokens in her list of received tokens. From Section 3, the computation eserifu
consists oF2 homomorphic encryptions arif homomorphic decryptions. THe® homomorphic
encryptions only need to be computed once per input set. The computagdmead ofv con-
sists of O(F2 4 F2InInF2) exponentiations. The communication overhead of this step consists of
O(F2 +F?2) exchange of homomorphic ciphertexts. The overheadsatiscovery can be obtained
through a similar analysis.

6.4 Simulations

We carried out our overhead analysis based on graphs of major setiabrking sites: Flickr,
LiveJournal, Orkut, YouTube. The graphs were crawled by Mislded.¢14] in late 2006. Table 2
presents statistics about the social network topologies used.

Token Flooding Phase. Figure 5 presents the computation and communication overhead during
the token flooding phase to an individual user. It presents the cdf ofuimder of tokens computed
and exchanged in logarithmic scale. For Flickr, LiveJournal and YbaTabout 90% of users
exchange less than 1@ash values, which is equivalent to 2 MB, given that a hash value ¢snsis
of 20 B. For Orkut, more than 75% of users exchange less th&ihdsh values equivalent to 20
MB and more than 90% of users exchange less thdntdi®ns, equivalent to 200 MB. Similar
trend applies to the computation overhead.

Path Discovery Phase. We consideF? = F2. Figure 6 presents the computation overhead when
useru discovers private relationship paths to ugerhe overhead follows a similar trend compared
to the token flooding phase. The main difference is thaerforms homomorphic decryptions
andv performs exponentiations. These operations are more expensive dehrcbmputations.
The communication overhead is not depicted. It follows a similar trend comiparthe token
flooding phase. The difference is that the items transmitted are homomorphérteixts and not
hash values. It should be noted, however, that the path discovesg my needs to run once
between two particular usessandv. After the first runu andv can mark the common tokens with
the identity of the other party andv can also establish a shared symmetric key for future use.



Flickr |LiveJournal Orkut |YouTube
Number of users 1,846,199 5,284,457 3,072,441|1,157,827
Estimated fraction of user population crawle®6.9 % 95.4 % 11.3% |unknown
Number of friend links 22,613,98177,402,652223,534,30[4,945,382

Table 2. Statistics about the social network topologies used.
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7 Related work

In this section, we discuss decentralized social networks that wereggdpWe then discuss pre-
vious schemes to discover relationship paths between users.



Several centralized social networking sites enable users to find relapqreths. For instance,
LinkedIn, a professional social networking site, enables users t@fiadte relationship paths to
others. Unfortunately, these centralized sites know the entire topologgfiamaho privacy.

Decentralized social networks were proposed [1, 2] to circumvent tkeofinteroperability
among current social networking sites, where users store their prioilaby and directly com-
municate with their friends. We did not find any support for a discoverprafate relationship
paths in a fully decentralized manner in any of these works. A decentralzgdl network was
also proposed by Popescu et al. [16] to resist government monitofiggsdcial network provided
search capabilities for sensitive items, but unfortunately, discoveryi@itp relationship paths is
not supported.

The most closely related work is by Freedman and Nicolosi [7], and thedepling paper [9].
Techniques to verify social proximity between users are presented astaniem to whitelist
emails from the social network of the recipient. The paper mainly focusegiiying friend of
friend relationships, i.e., a relationship path of distance 2, while only disg@asimmon friends to
one party. The paper suggests an extension to check for longer reldfigraths, but unfortunately,
their extension discloses all the relationships on the relationship path at theftimgfging the
social proximity.

Carminati et al. [5] propose techniques to discover relationship pathgéetusers in a decen-
tralized social network. The paper assumes an untrusted centralaratldjscloses to one party
all the relationships on the discovered relationship paths. Domingo-Hétrpropose a mecha-
nism to discover private relationship paths in a decentralized social fdetWdrenu wishes to
discover paths tw, u floods her social network at that time. A major issue of this approach is that
the discovery to be arbitrarily delayed if intermediate users are offlineeter, after some time
has elapsedj cannot know whether there does not exist a relationship path, or simplgdhee
intermediate user did not happen to be online.

Conclusion

Social networks are increasing in importance. The majority of curremdlsoetworking sites rely
on a centralized server, which unfortunately offer no privacy farsissensitive data. Given the
highly privacy-sensitive nature of social networking topology (i.e.nidighip relationships), a chal-
lenge is how to construct privacy-preserving social networks thatige the ability to find rela-
tionship paths without disclosing superfluous relationships. We take thHidepnoone step further
and consider decentralized social networks, where users can eligetationship pathsffline (in

a privacy-preserving manner) with people they meet. Our proposedagpprovides the property
to users who casually meet to discover relationship paths without disclosimgtivate relation-
ships. More efficient schemes are the subject of our future research
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