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Abstract. As social networks sites continue to proliferate and are being used for anincreasing variety
of purposes, the privacy risks raised by the full access of social networking sites over user data become
uncomfortable. A decentralized social network would help alleviate this problem, but offering the func-
tionalities of social networking sites is a distributed manner is a challenging problem. In this paper, we
provide techniques to instantiate one of the core functionalities of social networks: discovery of paths
between individuals. Our algorithm preserves the privacy of relationship information, and can operate
offline during the path discovery phase. We simulate our algorithm on realsocial network topologies.

1 Introduction

Social Networks have proliferated over the past few years, offeringnumerous services that attract
millions of subscribers. In fact, Social Networking Sites are among the most frequently visited
Internet sites (e.g., Myspace, Facebook). Their novel functionality and the ways of personal inter-
action they offer fuel their tremendous success.

A fundamental feature of social networks is therelationship graphthat connects users. This
graph enables two individuals to find the relationship paths that connect them. These paths are
useful to express trustworthy users: nearby people (with short relationship paths connecting them)
often deserve a higher level of trust. The path discovery mechanism canbe used as a building block
for many social networking applications: (1) discovering a relationship path to a recruiter may boost
the chances of a job applicant to get the position; vice-versa, discovering a relationship path to an
applicant could help the recruiter get a more trusted judgment on the applicant; (2) relationship
path discovery can provide a basis for access control mechanisms suitable for Social Networks,
where users determine the authorized users based on their distance to themselves in the social
network; (3) a path to a person submitting an online review can boost confidence in the review; and
(4) ensuring the receiver of an email that the sender is nearby in her social network can help avoid
falsely flagging the email as spam.

Although the relationship graph is at the core of the usefulness of social networks, personal
relationships represent sensitive, private information that can also be misused. A primary concern
is the unwelcome linkage among users. For example, two professionals employed by rival com-
panies that have a connection may trigger suspicion. Or, connections of innovators and venture
capitalists could alert the competition by giving leads to upcoming technological developments.
Or, simply, a social relationship can correspond to a sensitive personalreal-world relationship. Of
greater concern is the discovery of entire relationship paths and, in the end, of the entire graph. A



significant negative consequence of this discovery is the large-scale targeting, tracking, and mon-
itoring of multiple individuals in real life based on discovered relationship paths. Other privacy
concerns can arise from graph operations; e.g., user de-anonymization through merging of rela-
tionship graphs [15].
Problem Scope. Protecting the privacy of relationship paths in a social network is a separate
concern from that of protecting the privacy of (1) other content of individual users, (2) pairwise
inter-user relationships, or (3) inter-user relationships based on a single intermediary contact. The
stored content of a social network site can be protected using cryptographic primitives [4, 10, 13].
Pairwise-private relationship protection arise in practical settings such asinstant messaging [12].

The protection of a user’s pairwise private relationships has receivedextensive coverage out-
side social networks; e.g., “trust-negotiation” between a client and a server. In trust negotiations,
a client’s relationships-revealing credentials could not be disclosed to a server, and the server’s
relationship-revealing access policies could not be disclosed to the client. In other settings, private
set-intersection protocols (viz., Section 3) can maintain a limited type relationship privacy, namely
help discover one intermediate contact between two users privately.

In all these examples, enforcement of privacy protection is a matter oflocal user policies; e.g.,
client-server policies, pairwise-private policies. In contrast, protectingrelationship paths among
users in social networks requires (uniform) enforcement ofglobalprivacy policies because all users
are affected by unauthorized privacy breaches. This is a significantlymore challenging problem,
whose solutions, nevertheless, present opportunities for novel use ina variety of other applications.
Decentralized Access. Any effective solution to relationship-path privacy would be based on
decentralized access control mechanisms and policies. Decentralized access control is required by
both privacy and robustness concerns. First, mobile users should be able to discover other mobile
users with whom they have a relationship without having to connect to a centrally administered
social network site, which could track their movement or which would be unreachable without net-
work access. For example, two nearby users should still be able to discover their private relationship
paths even in the absence of Internet connectivity.

Second, perhaps more important, a single point of privacy failure shouldbe avoided. The cen-
tralized, full access that Social Networking Sites have over relationship data pose serious privacy
threats. Some Social Networking Sites have permissive privacy policies that enable them to use
such data for commercial purposes. Moreover, even sites with strict privacy policies can be subject
to disclose private information disclosure. For example, sites can be subpoenaed to disclose user
information indiscriminately, which would be ineffective whenever such information would be
decentralized; i.e., subpoenas would have to be network-node selective, need-to-know based and
would yield limited user information. Another risk are malicious insiders with access to private
information that can disclose private information. Finally, administrator errors or security vulnera-
bilities can also lead to privacy disclosures, as we have frequently witnessed recently in the case of
leaked databases containing credit card and social security numbers.
Design Challenges. Implementing decentralized access control to protect relationship-path pri-
vacy poses significant challenges, and obvious approaches do not address the problem. An ap-
proach where people make their relationships list visible to their neighbors is not viable because



that would disclose sensitive information. Another approach would be to flood relationship path
discovery messages throughout the social network, but that would incur high overhead and latency,
especially if some users are offline; they would delay path discovery until they are online. Fur-
thermore, these challenges are exacerbated during relationship-path discovery. For example, if two
users want to discover private relationship paths to each other, the path-discovery protocol could
not rely on all intermediate users sites to be on-line and help find relationship paths. In other words,
two users should be able to discover private relationship paths to each other based only on their
local communication.
Contributions. In this paper we propose a system that enables users to benefit from social net-
working applications without the privacy exposure associated with havingall their data stored at a
central site. The key contribution of this paper is thus our privacy-preserving multi-hop relationship
path discovery mechanism. Our design enables new access control policies based on social rela-
tionships, new trust establishment policies, and new ways to manage communication applications
(e.g., e-mail spam).

2 System Model and Problem Statement

A relationship pathbetween two usersu andv is a sequence of users whose pairwise relationships
(i.e., friendship) connect the two users. We call the two users theend usersof the relationship path.

Thedistance(depth)d between two users on a relationship path is the number of edges (aka
hops) from one user to the other on that relationship path.

A bridge contactuserui , of useru to a userv on some relationship path is the direct relationship
(i.e., edge) of useru to userv on that relationship path.

A private relationship pathfrom useru to userv is a tuple(u,ui ,d,v) encoding a relationship
path (u,ui , ...,v j ,v) of distanced. By symmetry,(v,vi ,d,u) is the private relationship path from
userv to useru of distanced. Whenever a relationship path(u,ui , ...,v j ,v) is private, neither user
(u, v) can discover any intermediate users on that path to the other user beyondits respective bridge
contact (ui , v j ). Of course, there may be multiple private relationship paths fromu to v with the
same bridge contact and different distances, and an user may have multiplebridge contacts each
on a different private relationship path to the other user.

A bridge contactui has different roles: (1) it can facilitate the introduction ofu to v. This can
be relevant, for example, in a job search scenario. (2) It helpsu assign a trust value tov, which
can be useful when the private relationship paths are used to enforce access control. (3) It helps
u track/blacklist misbehaving users. Assume that in the email whitelisting scenario, many ofui ’s
friends send spam messages tou. u may no longer want to whitelist a userv to whichu has a private
relationship path(u,ui ,d,v). Whenever there are multiple private relationship paths(u,ui ,di ,v),
thenu would assign trust valuev based on the shortest private relationship path.

An obfuscated private relationship path(u,ui ,d,?) is a private relationship path, where the
identity of one end user is unknown.

The example topology of Figure 1(a) is provided to illustrate the use of our system entities
defined above. In that figure, usersA andM discover private relationship paths to each other at



distancesd ≤ 3. A discovers the two private relationship paths(A,B,3,M) and(A,D,3,M), where
B andD are the bridge contacts and 3 is the distance of the private relationship paths. These private
relationship paths captured by graph edgesA−B−?−M andA−D−?−M, depicted in Figure 1(b),
where “?” means that userA does not know the identity of the corresponding user. UserM discovers
the two private relationship paths(M,J,3,A) and(M,K,3,A), corresponding toM−J−?−A and
M−K−?−A depicted in Figure 1(c).
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Fig. 1. Example topology and private relationship paths of distanced ≤ 3 discovered by A(lice) and M(ary).

2.1 Assumptions

We assume that each userv is free to choose the users with whom she wishes to establish a re-
lationship, but that relationships can only be established based on the consent of both users. We
assume the existence of a secure and authenticated channel between each pair of friends. We as-
sume that friends can communicate anonymously, for example using Tor. We assume thatv has a
public-private homomorphic key pair. We also assume that two users who want to discover private
relationship paths can authenticate each other’s homomorphic public keys.

In this work, we also assume the typical case where relationship paths decline in value with
increasing length. Hence, users do not gain any benefits from increasing the length of their own
relationship paths. This assumption is based on the observation that for all social network applica-
tions in use today, shorter paths are more desirable and take precedence over longer paths.

2.2 Desired Properties

Privacy. The central goal of our protocol is to enable two parties to discover private relationship
paths to each other in an efficient manner while minimizing the additional informationabout rela-
tionships that users can learn. We will compare our approaches to anideal scheme, which returns
private relationship paths without disclosing any additional information. We say that our approach
provides privacy if it does not leak any more information than the ideal scheme.
Path Integrity. The protocol needs to providepath integrityfor the discovered paths, i.e., an
adversary cannot alter discovered paths. An adversary may attempt to violate path integrity in two
ways: alter the bridge contact, or shorten the discovered path.



Completeness. Our protocol should also becompletein the sense that each party discovers all the
discoverable private relationship paths. On a discoverable private relationship path, all users on the
corresponding relationship path do not object the discovery.
Offline discovery. Our protocol should enable two users to discover private relationship paths
offline, i.e., based only on their physical interaction and without the help of intermediate users.
Not requiring intermediate users to be online during the discovery phase is very appealing for most
situations. The ability of two users to discover private relationship paths based exclusively on their
local interaction, without being connected to the Internet, is particularly relevant for mobile users.
Low overhead. We aim for low communication and computation overhead.

2.3 Adversary Model

We distinguish between two kinds of adversaries: internal and network adversaries. An internal
adversary sets up an account and creates relationships with users theycan e.g., her friends in real
life. The network adversary controls the communication channel between users, can eavesdrop,
stop or inject messages. This adversary is, however, not part of the social network, and does not
participate in our protocol.

The internal adversary is free to arbitrarily deviate from our protocols.The adversary may wish
to alter the topology of the social network to bring more value to themselves. Forexample, an
adversary may want to make other users see her nearby (i.e., at a small distance from them). The
adversaryM may also want to alter the bridge contact in a private relationship path discovered
by some useru to M. v may trust one bridge contact more than other. Similarly, the adversary
may try to deny value to honest users. The adversary may also want to break the privacy of the
social network by discovering the relationships of other users. A misbehavior is not considered an
attack if it only results in an outcome permitted in social networks as described inSection 2.1. For
example, a user may not want an extremely sensitive relationship to be leaked. This user suppresses
all private relationship paths corresponding to a relationship path containing that relationship.

The network adversary can observe the network traffic of users in order to learn about their
relationships. It should be noted that people who use regular e-mails or encrypted e-mails are
already vulnerable to having this kind of adversary learn their relationships. The network adversary
can observe the source and destination of their e-mails, as well as the frequency at which they send
and receive e-mails from each person. This combined information enablesthe network adversary
to infer the friends of a user as the people with whom the user has many e-mailexchanges. People
concerned about this kind of adversary usually use some form of anonymous communication. We
do not discuss this kind of adversary further in the paper.

3 Background on Privacy-Preserving Cryptographic Techniques

In this section, we present background on privacy-preserving cryptographic techniques that we will
build on. Private set intersection protocols [3,8,11] enable two or more parties that each hold a set
of inputs drawn from a large domain to jointly calculate the intersection of their inputs, without



leaking additional information. The private set intersection proposed by Freedman et al. [8]1 is a
two-party protocol between a clientC and a serverS. C’s input is a set of sizekC, drawn from some
domain of sizeN; S’s input is a set of sizekS drawn from the same domain. At the conclusion of
the protocol,C learns which specific inputs are shared by bothC andS. That is, ifC inputsX =
x1, . . . ,xkC andSinputsY = y1, . . . ,ykS,C learnsX∩Y : {xi |∃ j, xi = y j}. The protocol is based on the
presentation of sets as roots of a polynomial and on the use of homomorphic cryptosystems. The
protocol follows the basic structure.C defines a polynomialP whose roots are her inputs:P(y) =
(x1−y)(x2−y) · · ·(xkC−y)= ∑kC

w=0 αwyw.C sends toShomomorphic encryptions of the coefficients
of this polynomial.S uses the homomorphic properties of the encryption system to evaluate the
polynomial at each of her inputs. She then multiplies each result by a fresh random numbern to get
an intermediate result, and she adds to it an encryption of the value of her input. That is,Scomputes
Enc(n.P(y j)+y j) for each of her inputsy j ∈Y. S randomly permutes this set and returns it toC.
C decrypts each element of this set. For each element in the intersection of the two parties’ inputs,
the result of this computation is the value of the corresponding element, whereas for all others the
result is random. The computation overhead forC mainly consists ofkC homomorphic encryptions
andkS homomorphic decryptions. ThekC homomorphic encryptions only need to be computed
once per input set. The computation overhead forS is mainly due to the evaluation of each of her
inputs on a degree-kC polynomial. The use of multiple-low degree polynomials and Horner’s Rule
make the asymptotic computation overheadO(kC +kSln lnkC) exponentiations.

A slight variation of the above protocol is provably secure in the random oracle model against
malicious adversaries, where a malicious adversary may behave arbitrarily. The security definition
of private set intersection protocols is based on a comparison between anideal and a real imple-
mentation. In an ideal implementation, a trusted third party receives the inputs ofthe two parties
and outputs the result of the intersection, whereas in the real implementation there is no trusted
third party. The security model requires that in the real implementation of the protocol, each party
does not learn more information than the ideal implementation. Such a security model does not
deal with attacks that apply to the ideal model. For example, a party may lie abouther input set.

4 Protocol Overview

The goal of our protocol is to enable two users to discover private relationship paths to each other
offline, without disclosing superfluous relationships. This requires users to store topology infor-
mation that enables the discovery, without revealing relationships. Our protocol operates in two
phases: atoken flooding phaseand apath discovery phase.During the infrequent token flooding
phase, we assume that users are online so they can exchange obfuscated topology information. The
path discovery phase runs when two users want to discover private relationship paths to each other,
offline based on the collected obfuscated topology information; it returns tothe two users private
relationship paths.

1 The paper refers to the protocol both by private set intersection and private matching. We only refer to the protocol
as private set intersection in order to avoid confusion with matchmaking protocols.
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Fig. 2. Basic scheme. Extended hexagonal topology and obfuscated tokens propagated for originatorA.

During the token flooding phase, users disseminate cryptographic tokensthat become associ-
ated with obfuscated relationship paths. Each user issues tokens to her neighbors to explore rela-
tionship paths starting from herself. Other users will cryptographically obfuscate these tokens and
continue the flooding process up to a pre-determined number of hops. Theobfuscation operation
is deterministic and independent of the identity of the user. This enables the originator to compute
the value of all possible tokens at any distance. The originator will in fact simulate the flooding
and compute the obfuscated token values at all distances up to the maximum flooding depth. The
originator associates each computed token with an obfuscated relationship path. The path discov-
ery phase runs when two users want to discover private relationship paths to each other. The two
users perform a private set intersection protocol: one user plays the role of a client and enters the
tokens she has computed as originator, and the other plays the role of a server and enters the tokens
received. The first user learns the existing private relationship paths based on the common tokens.
A second run of the private set intersection protocol with the roles of the two users inverted en-
ables the second user to learn existing private relationship paths. The second private set intersection
protocol does not run ifv is not interested in discovering private relationship paths.

We now explain some more details based on the example in Figure 2(a). We consider the token
flooding phase where nodeA is the originator and floods her tokens through the network. To limit
the flood up to a maximum distance, each token is accompanied with the distance from the origi-
nator. Figure 2(b) depicts the hash tree that is created during the floodingprocess forA’s tokens.
To initiate the token flooding process,A picks a random numberz. To prevent nodes from inferring
relationship topology information during the flooding process, each token isobfuscated through
a one-way hash functionH and a counter value – through this approach each token represents a
unique sequence of users. As Figure 2(b) shows,A sends tokenT1 = H(z || 1) to userB, and token
T2 = H(z || 2) to userC, along with the distance 1.B andC obfuscate the token through another
application of the one-way hash function and a counter value, and forwards the unique token values



to their neighbors along with the distance value 2. Users store the receivedtokens in their list of
received tokens.

Figure 2(b) only shows the tokens that are distributed for userA; in practice each user distributes
her own set of tokens. Due to the deterministic operation of the token obfuscation process, the token
originator can simulate the token flooding phase and compute all tokens depicted in the hash tree
in Figure 2(b).

To demonstrate the discovery of a private relationship path, consider the case where usersA
andF meet. One user will use the computed list of obfuscated tokens, and the otheruser will use
the list of all received tokens. In our example in Figure 2(b),A will compute tokensT1,T2, . . . ,T8,
andF will use all received tokens, which include tokensT6 andT8. After performing private set
intersection of the two lists, they find a match with tokensT6 andT8. SinceA knows that token
T6 was derived from tokenT1 which was handed to userB, B is the bridge contact for that private
relationship path.A further knows thatT6 is at distance 3 hops. Analogously,A knows thatC is the
bridge contact for the 3-hop long path represented byT8.

5 Protocol Description

We describe next our protocol in more detail, assuming all users follow the protocol. Sections 6.1,
and 6.2 discuss protocol deviations. Table 1 describes our notation.

Table 1.Notation.

o originator
r relay node
v, u users in the social network
xi ith friend ofx
|x| number of friends of userx
d distance
dmax maximum distance of private relationship paths
degmax maximum number of neighbors of any node

5.1 Basic Scheme

In this section, we first describe a basic version of our protocol and extend it in Section 5.2.

Token Flooding Phase.As we describe in Section 4, the originator floods tokens that represent
obfuscated paths and that can later be used to discover private relationship paths. Algorithm 1
is used by the originatoro to construct and send tokens to her friends. To start, the originatoro
generates a random numberz and uses it as a seed to compute nodes at depth 1 of a hash tree.o
computesTi = H(z||i), i = 1, ..., |o| and sends(d = 1,Ti) to each friendoi .



Algorithm 1 Basic scheme. Token propagation. Originatoro.
Generate a random numberz
Send(d = 1,Ti = H(z||i)) to oi , i = 1, . . . , |o|

Algorithm 2 Basic scheme. Token propagation. Relayr.
for reception of(d,T) from r i do

Insert(r i ,d,T) into list of received tokens

if d < dmax then
Send(d+1,Tj = H(T|| j)) to r j , j = 1, . . . , |r|, j 6= i

end if
end for

Algorithm 3 Basic scheme. Hash tree construction. Originatoro.
Insert(oi ,1,Ti = H(z||i)), i = 1, . . . , |o| into hash tree
while Unmarked(oi ,d,T) do

Mark (oi ,d,T)

if d < dmax then
Insert(oi ,d+1,Tj = H(T|| j)), j = 1, . . . ,degmax in hash tree

end if
end while

Algorithm 2 is used by the friends of the originator to construct and send tokens to their friends.
This propagation continues hop-by-hop up to distanced = dmax from the originator. A user per-
forming this propagation is termed arelay r. Whenr receives(d,T) from her friendr i , she inserts
T into her list of received tokens. The relayr i computesTj = H(T|| j), j ∈ {1, ..., |r|}, j 6= i, and
sends(d+ 1,Tj) to each of her friendsr j 6= r i . Figure 2(b) presents the hash tree spanned byA’s
token propagation, whereA plays the role of an originator.

The originatoro can reconstruct the hash tree created during the token flooding phase byusers
at distanced < dmax. This way, the originator has a common token with each user at distance
d ≤ dmax. Each of these tokens is associated with an obfuscated relationship path. The tokens
that are common between the originator and users at distanced ≤ dmax constitute the basis for
discovering private relationship paths during the path discovery phase (explained in detail below).
Algorithm 3 is used by the originator to reconstruct all tokens from the hashtree. The originatoro
constructs a hash tree based on the seedz, the maximum degreedegmaxand depthdmax. Each token
of the hash tree is associated with an obfuscated private relationship path.A tokenTi at depth 1 is
a token associated with the trivial obfuscated private relationship paths(o,oi ,1,?), as the tokenTi

was sent to the friendoi . A nodeT at depthd with ancestorTi is associated with the obfuscated
private relationship path(o,oi ,d,?).

Path Discovery Phase.The path discovery phase runs when two usersu andv want to discover
private relationship paths. Usersu andv run a private set intersection protocol (as described in



Section 3) whereu plays the role of the client entering the tokens in her hash tree andv plays
the role of the server entering the tokens in her list of received tokens. The private set intersection
outputs tou the tokensTk in u’s hash tree corresponding to the entries(uk,dk,Tk) in u’s hash tree.
This enablesu to discover private relationship paths(u,uk,dk,v). A second private set intersection
protocol with the roles ofu andv inverted. That is,v plays the role of the client and enters the
tokens in her hash tree as input, andu plays the role of the server and enters the tokens in her
list of received tokens as input. This second private set intersection enablesv to discover private
relationship paths tou.

We consider the extended hexagonal topology, with usersA andF running the path discovery
phase.A andF run a private set intersection protocol whereA enters the tokens in her hash tree
as input, whileF enters the tokens in her list of received tokens as input.A’s hash tree contains
tokensT1, · · · ,T8 depicted in figure 2(b). During the token flooding phase,F received tokensT6,T8.
The private set intersection protocol outputsT6,T8 for A. T6 enablesA to learn(A,B,3,F). A knows
that B is the bridge contact sinceA knows thatT6 was derived fromT1 that was handed toB. A
further knows thatF is at distance 3 sinceT6 was derived fromT1 by applying three times a hash
function to the seedz. Analogously,A discovers the private relationship path(A,C,3,F) from T8.
A second private set intersection protocol is run with the roles ofA andF inverted.F learns the
private relationship paths(F,D,3,A) and(F,E,3,A).

5.2 Extended Scheme

The basic scheme, unfortunately, suffers from a privacy leak: it is possible to learn whether dis-
covered private relationship paths intersect at specific intermediate users. Assume that in the ex-
tended hexagonal topology,A runs the path discovery phase withF and subsequently withD. A
discovers the private relationship paths(A,B,3,F), (A,C,3,F) based onT6,T8 and later(A,B,2,D),
(A,C,3,D) based onT3,T7. SinceA knows thatT3 is the ancestor ofT6 in the hash tree,A learns
thatD is the user at distance 2 in the private relationship path(A,B,3,F). Similarly, sinceT7 andT8

have the same ancestor,A learns that(A,C,3,D) and(A,C,3,F) have the same intermediate user
at distance 2. The basic scheme also has a very large overhead since anoriginator computes a hash
tree of degreedegmax. Since most users have fewer thandegmax friends, the basic scheme computes
and stores many unnecessary tokens in the hash tree.

We present an extended scheme to address these shortcomings. The extended scheme utilizes
a randomization technique to seal the privacy leak and an optimization to reduce the overhead
associated with the computation of unnecessary tokens. The goal of the randomization technique is
to prevent an originator from learning information about intermediate userson a private relationship
path beyond what can be directly inferred from discovered private relationship paths. This holds
even after the originator runs a path discovery phase with multiple users. Inthe extended scheme,
we separate the computation of the token of a userv from the computation of tokens of intermediate
users betweenv and the bridge contact. More specifically, for a given bridge contact, weseparate
the computation of tokens based on the distance to the originator. A user at distance 2≤ d ≤ dmax

receives a token randomly chosen from the set of tokens computed ford.



Algorithm 4 Extended scheme. Token propagation. Originatoro.
Generate a random numberz
Send(d = 1,T1

i = H(z||′1′||i)) to oi , i = 1, . . . , |o|

Our basic observation towards designing the extended scheme is that sincethe bridge contact
is disclosed with the private relationship path, the bridge contact can directlycreate tokens for
all subsequent users atd ≤ dmax. Since in practicedmax = 3, the bridge contacts creates tokens
for distances 2 and 3. The bridge contact obtains the number of tokens for distance 3 by asking
her friends about their degrees and summing these degrees. Tokens for distance 3 are computed
separately from the ones for distance 2. The bridge contact sends to each of her friends one token
for distance 2 and a number of tokens for distance 3 proportional to the friend’s degree. The tokens
transmitted are randomly chosen from the computed tokens. The friend stores the token for distance
2 and to each of her friends one of the received tokens for distance 3.This approach addresses the
inefficiency of the basic scheme, because each bridge contact can inform the originator of how
many tokens were distributed.

We now describe the extended scheme in more detail for the case ofdmax= 3, which we con-
sider to be the largest value fordmax that is viable in practice. Algorithm 4 presents the algorithm
used by the originatoro to construct and forward tokens to her friends. o generates a random
numberz and uses it to create tokens for her friends asT1

i = H(z||′1′||i), i = 1, · · · , |o| and sends
(1,T1

i ) to each of her friends. These friends constitute the bridge contacts. Algorithm 5 presents
the algorithm used by a bridge contactb = oi to construct and send tokens. The algorithm assumes
that b previously received the value of|bi | from each of her friends. Whenb receives a tokenT
from o, b computes tokens for all subsequent users at distances 2 and 3. Tokens for distance 2
are computed asT2

i = H(T||′2′||i), i = 1, · · · , p = |b| −1. Tokens for distance 3 are computed as

T3
j = H(T||′3′|| j), j = 1, · · · ,q = ∑|b|

i=1,bi 6=o(|bi |−1). Similarly to the basic scheme, each token en-
codes the distance to the originator.b sends to each of her friendsbi a token for distance 2 and
|bi | −1 tokens for distance 3. These tokens are randomly chosen from tokenscomputed for dis-
tances 2 and 3 respectively. At the end,b informso about(p,q) the number of tokens computed for
distances 2 and 3. A subsequent user on the relationship path is termed as arelay r. Algorithm 6
presents the algorithm used byr to forward tokens to her friends. Whenr receives from a bridge
contact((2,T2), T3

i , i = 1, · · · , |r|−1), r storesT2. r sends to each of her friends(3,T3), whereT3

is randomly chosen from the received tokensT3
i . Figure 5.2 presents the hash tree spanned byA’s

token propagation.
Similarly to the basic scheme, the originator computes the hash tree of tokens received in the

network, where each token is associated with an obfuscated private relationship path. Algorithm 7
presents the algorithm used by the originator. The algorithm takes as input(pi ,qi), the number of
tokens computed for distances 2 and 3 by each bridge contactoi . For each bridge contactoi , the
originator constructs a token for distance 1 asT1

i = H(z||′1′||i), wherez is the previously generated
seed. The originator constructs tokens for distance 2 asT2

j = H(T1||′2′|| j), j = 1, · · · , pi and asso-
ciates them with obfuscated private relationship paths(o,oi ,2,?). Similarly, tokens for distance 3



Algorithm 5 Extended scheme. Token propagation. Bridge contactb.
Require: |bi |, i = 1, · · · , |b|

for reception of(1,T) from o do
InsertT in list of received tokens

p = |b|−1
T2

i = H(T||′2′||i), i = 1, · · · , p

q = ∑|b|
i=1,bi 6=o(|bi |−1)

T3
j = H(T||′3′|| j), j = 1, · · · ,q

ShuffleT2
i

ShuffleT3
j

Send(2,T2
i ) and(|r i |−1) values fromT3

j to r i

Send(p,q) to o
end for

Algorithm 6 Extended scheme. Token propagation. Relayr.
for reception of((2,T),T3

i , i = 1, . . . , |r|−1) from bridge contactb do
InsertT in list of received tokens
ShuffleT3

i
Send(3,T3

i ) to r i , i = 1, . . . , |r|, r i 6= b
end for

for reception of(3,T) from r i do
InsertT in list of received tokens

end for
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Fig. 3.Extended scheme. Obfuscated tokens propagated for originatorA in the extended hexagonal topology.

are constructed asT3
j = H(T1||′3′|| j), j = 1, · · · ,qi and associated with obfuscated private relation-

ship paths(o,oi ,3,?). The hash tree constructed by this algorithm has a different structure than the



Algorithm 7 Extended scheme. Hash tree construction. Originatoro.
Require: (pi ,qi) number of tokens for distances 2 and 3 computed by bridge contactsoi , i = 1, · · · , |o|

for i = 1, · · · , |o| do
Insert(oi ,1,T1 = H(z||′1′||i)) in hash tree
Insert(oi ,2,T2

j = H(T1||′2′|| j)), j = 1, · · · , pi in hash tree

Insert(oi ,3,T3
j = H(T1||′3′|| j)), j = 1, · · · ,qi in hash tree

end for

one for the basic scheme. The depth of the tree is 2. The rootz has degree|o|, whereas a token for
distance 1 handed tooi has degreepi +qi . For example,T1 has 3 children:T3, T4 andT5.

The path discovery phase runs similarly to the basic scheme. A private set intersection between
u andv enablesu to discover common tokens and learn private relationship paths.

In practice, a user does not inform others about her exact degree.Instead, the user adds to it a
positive noise in order to further hide the network topology. To be consistent with the noise added,
the user creates and sends dummy tokens as if she had additional friends.The amount of the noise
to be added in order to appropriately hide the network topology is beyond thescope of this paper.
It should be noted that the extended scheme does not require additional trustworthiness from the
bridge contact. The bridge contact is free to deviate from the protocol in order to suppress private
relationship paths containing her relationships, as any other intermediate user.

In our discussion, we considereddmax = 3. However, the scheme can be easily extended to a
largerdmax.

6 Evaluation

In this section, we evaluate the extended scheme. Sections 6.1 and 6.2 provide a security and
a privacy analysis. Section 6.3 analyzes the scheme overhead. Simulationsbased on real social
network topologies are presented in Section 6.4. We considerdmax= 3.

6.1 Security Analysis

Completeness. Assume there exists a relationship path(u,ui , · · · ,v j ,v) of distanced ≤ dmax.
Completeness requires that whenu andv run a path discovery phase,u discovers(u,ui ,d,v) andv
discovers(v,v j ,d,u) in case all users on the relationship path consent to the discovery. In ourpro-
tocol, a user is provided with the flexibility to suppress all private relationshippaths corresponding
to paths containing one of her relationships. This relationship may be extremelysensitive.

We focus on relationship paths with distance 3. The discussion can be easilyadapted to rela-
tionship paths with distance 2. We consider the discovery byu, the one byv being very similar. We
list sufficient conditions foru’s discovery: (1) during the token flooding phase,v receives a well
constructed tokenT originating fromu andu computesT as part of her hash tree and associates it
with the obfuscated private relationship path(u,ui ,d,?); and (2) during the path discovery phase,
both u andv enterT to the private set intersection protocol instance whereu plays the role of a
client andv plays the role of a server.



The first condition holds ifu sends a token associated withd = 1 to ui , ui receives an upper
bound on|v j | from v j , constructs and forwards as many tokens ford = 3 (one of these tokens being
T) to v j , andv j forwardsT to v. The second condition holds ifu computes all tokens encoding
d = 3 forwarded byui to v j , and associates them with the obfuscated private relationship path
(u,ui ,3,?). u can perform such computation ifui informs her about the total number of constructed
tokens encodingd = 3. It can be seen therefore that the first condition holds if all users on the
relationship path consent to the discovery by performing the required actions. Similarly, the second
condition only depends on the consent ofu andv.

In order to further clarify why completeness holds in our protocol, we consider one specific
protocol deviation. Assume an intermediate user on the relationship path(u,ui , · · · ,v j ,v) does not
forward tokens to subsequent users.u andv will not be able to discover the corresponding private
relationship paths. This, however, does not break the completeness property. In our protocol, a
user is provided with the flexibility of suppressing private relationship pathscorresponding to a
relationship path containing one of her relationships.
Path Integrity. Path integrity requires than an adversaryM cannot alter the bridge contact or
shorten the discovered path. In our protocol,u discovers a private relationship path(u,ui ,d,M)
when running a path discovery phase withM if: (1) M owns a token thatu associates with the
obfuscated private relationship path(u,ui ,d,?) and (2) bothu andM enter that token to the private
set intersection protocol.

When M is at distanced > dmax from u, M does not receive any token originating fromu.
M is only left with the option of generating random tokens. This attack is considered of limited
scope. We now consider the existence of one relationship path(u,ui , · · · ,M) of distanced ≤ dmax.
M receives a tokenT corresponding to the private relationship path(u,ui ,d,M). Additionally, M
has access to tokens corresponding to longer private relationship pathswith the same bridge contact
because of the hop-by-hop token propagation.T cannot be used to compute tokens corresponding to
shorter obfuscated paths with a different bridge contact, thanks to the preimage resistance property
of a cryptographic hash function. When there are multiple relationship pathsof distanced ≤ dmax

from u to M, M receives a token originating fromu for each of these relationship paths. Here also,
the preimage resistance property of a cryptographic hash function prevents these tokens from being
used to compute a token corresponding to a shorter obfuscated private relationship path or one with
a different bridge contact.

In our protocol,M can make a userv appear at a shorter distance to another useru. Consider a
relationship path(u,ui ,M,v). M can forward its own token tov, makingv appear at distance 2 tou.
This misbehavior causes disturbance to the system, but does not directly benefitM.

6.2 Privacy of the Network Topology

We compare our protocol to an ideal scheme, which returns private relationship paths without dis-
closing any additional information. we first consider an honest but curious adversary that follows
our protocol, but performs all possible computation on available data. Later, we consider a mali-
cious adversary that deviates from our protocol.



Honest but Curious Adversary. During the token flooding phase, users learn no information
about the network topology in an ideal scheme. In our protocol, we distinguish between the three
roles played by each userv: an originator, a bridge contact and a relay. As an originator,v learns
a noisy version of the number of users at distances 2 and 3, for each ofher bridge contacts. We
clarify that a user having two distinct relationship paths of distance 2 or 3 tov is counted twice in
the number learnt byv. v receives this information directly from the bridge contacts as described
in Algorithm 5. As a bridge contact,v does not learn additional information, compared to what
v already learnt as an originator. As a relay,v can infer the number of users at distances 2 and 3
through a simple count of the received tokens.v already learnt this information as an originator.
v does not learn whether two received tokens have the same originator, when v did not originate
any of the two tokens. This is achieved thanks to the way tokens are constructed. However,v can
recognize that she is the originator of a received token.v receives one of her tokens whenv is on
a cycle of distanced ≤ dmax = 3. Cycles of distances 1 and 2 are trivial. The ones of distance 3
are the only interesting case. These cycles enablev to learn about the existence of a friendship
relationship between any two of her friends. Although, in the ideal scheme,v does not learn about
the existence of these relationships during the token flooding phase,v can easily learn about them
by running a path discovery phase with her friends. Similarly,v does not know whether the same
intermediate user (beyond direct friends) was involved in the forwardingof two received tokens, if
v was not involved in the forwarding of any of the two tokens.v can be involved in the forwarding
of a token either as a relay, bridge contact or originator. We consider again the example topology
in Figure 1(a). Figure 6.2 presentsA(lice)’s perception of the social network topology by the end
of the token flooding phase. The figure does not depict the noise addedby users to their degrees.

During the path discovery phase, the two partiesu andv exclusively learn existing private rela-
tionship paths, in an ideal scheme. In our protocol,u learns the common tokens between her hash
tree andv’s list of received tokens. The construction of these tokens and the randomization tech-
nique prevent these tokens from leaking information beyond existing private relationship paths tou.
However, the perception of the social network topology gained byu by the end of the token flood-
ing phase may help her gain some additional knowledge. Such knowledge is limited in case users
have a large number of friends. It is further reduced by the noise added by users to their degrees.
We consider the example topology in Figure 1(a). Assume thatA(lice) runs a path discovery phase
with M(ary) and subsequently withG(ary).A discovers(A,B,3,M), (A,D,3,M) and subsequently
(A,D,2,G). The tokens ofM andG were randomly chosen from the total set of tokens computed
by D for distances 2 and 3 respectively. This preventsA from learning whetherG is D’s friend
present in(A,D,3,M). However, from Figure 6.2,A knows that|D| = 3. A gains more confidence
up to whetherG is D’s friend present in(A,D,3,F), compared to the ideal scheme, whereA does
not know|D|. This confidence is limited in typical social network topologies where|D| would be
much larger. It is further reduced by the noise added byD to |D|.

Malicious Adversary. We examine relationship information that can be leaked to a malicious
adversary, but not to a honest but curious one. More specifically, we are interested in misbehaviors
that aim at breaking relationship privacy. In our protocol, relationship information can be learnt in



A

6 friends

11 friends

? 3 friends

?
?
?
?

?

?

B

C

D

Fig. 4.A’s perception of the topology by the end of the token flooding phase for thetopology from Figure 1(a).

two ways:(1) during the token flooding phase, through analysis of data received from friends; and
(2) by running a path discovery phase with other users. During the tokenflooding phase, a malicious
adversaryM learns additional relationship information compared to an honest but curious one if it
can influence the received data in a way that leaks private information. However, the only data that
M can both influence and receive is the one propagated through cycles ofdistanced ≤ dmax = 3
containingM. Even ifM associates the smallest possible distance 1 with a transmitted token, other
users will stop the propagation afterdmax hops fromM. Such misbehavior can helpM discover
friendship relationships between any of her friends. However, an honest but curious adversary
already knows about these relationships, as was already discussed. During the path discovery phase
with a userv, a malicious adversary can enter to the private set intersection protocol more or less
tokens than prescribed in our protocol. WhenM plays the role of a server, this kind of misbehavior
is not beneficial as the private set intersection protocol does not output anything to the server. As a
client, M does not gain anything from entering less tokens to the private set intersection protocol.
WhenM enters additional tokens,M learns whether these tokens are inv’s list of received tokens.
Because of the large space of tokens, we assume thatM has a tokenT that is inv’s list of received
tokens only whenM was involved in the construction or the propagation ofT. We first consider
whenM does not deviate during the token flooding phase. Beyond tokens in its hash tree,M has
access to the tokens it received and to the ones that can be constructed from them. Entering these
tokens to the private set intersection protocol makesM discover private relationship paths tov of
distanced ≤ dmax−1. These private relationship paths are also discovered in the normal runof the
protocol. By deviating during the token flooding phase,M can only receive maliciously constructed
tokens through cycles of distanced ≤ dmax, as was already explained. Tokens propagated through
these cycles do not helpM learn additional information.

6.3 Overhead Analysis

We distinguish the overhead of the token flooding phase and that of the pathdiscovery phase. The
token flooding phase needs to run very infrequently. The path discovery phase runs when two users
u andv need to discover private relationship pathsfor the first time. We introduce a new variable for



the purpose of simplifying the notation for this section.F i
v is the fan-out of a userv at depthi. That

is F i
v is the number of relationship paths starting atv, of distanced ≤ i. In the extended hexagonal

topology,F1
A = 2, F2

A = 4 andF3
A = 8.

Token Flooding Phase. As an originator,v computesF3
v tokens in constructing the hash tree

and transmitsF1
v tokens. As a bridge contact,v computesO(F1

v .F2
v ) tokens and transmits a similar

number of them.v receivesF1
v tokens. As a relay,v does not perform any computation.v receives

O(F3
v + F1

v .F2
v ) and transmitsO(F1

v .F2
v ) tokens. Therefore, during the token flooding phase, the

overhead isO(F3
v +2F1

v .F2
v ) hash computation and exchange.

Path Discovery Phase. We evaluate the overhead whenu discovers private relationship paths
to v. The overhead originates from the private set intersection protocol run whereu plays the role
of the client and enters theF3

u tokens in her hash tree andv plays the role of the server and en-
ters theF3

v tokens in her list of received tokens. From Section 3, the computation overhead ofu
consists ofF3

u homomorphic encryptions andF3
v homomorphic decryptions. TheF3

u homomorphic
encryptions only need to be computed once per input set. The computation overhead ofv con-
sists ofO(F3

u +F3
v ln lnF3

u ) exponentiations. The communication overhead of this step consists of
O(F3

u +F3
v ) exchange of homomorphic ciphertexts. The overhead forv’s discovery can be obtained

through a similar analysis.

6.4 Simulations

We carried out our overhead analysis based on graphs of major socialnetworking sites: Flickr,
LiveJournal, Orkut, YouTube. The graphs were crawled by Mislove et al. [14] in late 2006. Table 2
presents statistics about the social network topologies used.
Token Flooding Phase. Figure 5 presents the computation and communication overhead during
the token flooding phase to an individual user. It presents the cdf of thenumber of tokens computed
and exchanged in logarithmic scale. For Flickr, LiveJournal and YouTube, about 90% of users
exchange less than 105 hash values, which is equivalent to 2 MB, given that a hash value consists
of 20 B. For Orkut, more than 75% of users exchange less than 106 hash values equivalent to 20
MB and more than 90% of users exchange less than 107 tokens, equivalent to 200 MB. Similar
trend applies to the computation overhead.
Path Discovery Phase. We considerF3

u = F3
v . Figure 6 presents the computation overhead when

useru discovers private relationship paths to userv. The overhead follows a similar trend compared
to the token flooding phase. The main difference is thatu performs homomorphic decryptions
and v performs exponentiations. These operations are more expensive than hash computations.
The communication overhead is not depicted. It follows a similar trend compared to the token
flooding phase. The difference is that the items transmitted are homomorphic ciphertexts and not
hash values. It should be noted, however, that the path discovery phase only needs to run once
between two particular usersu andv. After the first run,u andv can mark the common tokens with
the identity of the other party.u andv can also establish a shared symmetric key for future use.



Flickr LiveJournal Orkut YouTube
Number of users 1,846,198 5,284,457 3,072,441 1,157,827
Estimated fraction of user population crawled26.9 % 95.4 % 11.3 % unknown
Number of friend links 22,613,98177,402,652223,534,3014,945,382

Table 2.Statistics about the social network topologies used.
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Fig. 5.Token flooding phase. Overhead per user in the number of hash values computed and exchanged.
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Fig. 6.Path Discovery phase. Computation overhead when useru discovers private relationship paths to userv.

7 Related work

In this section, we discuss decentralized social networks that were proposed. We then discuss pre-
vious schemes to discover relationship paths between users.



Several centralized social networking sites enable users to find relationship paths. For instance,
LinkedIn, a professional social networking site, enables users to findprivate relationship paths to
others. Unfortunately, these centralized sites know the entire topology andoffer no privacy.

Decentralized social networks were proposed [1, 2] to circumvent the lack of interoperability
among current social networking sites, where users store their profileslocally and directly com-
municate with their friends. We did not find any support for a discovery ofprivate relationship
paths in a fully decentralized manner in any of these works. A decentralizedsocial network was
also proposed by Popescu et al. [16] to resist government monitoring. The social network provided
search capabilities for sensitive items, but unfortunately, discovery of private relationship paths is
not supported.

The most closely related work is by Freedman and Nicolosi [7], and their preceding paper [9].
Techniques to verify social proximity between users are presented as a mechanism to whitelist
emails from the social network of the recipient. The paper mainly focuses onverifying friend of
friend relationships, i.e., a relationship path of distance 2, while only disclosing common friends to
one party. The paper suggests an extension to check for longer relationship paths, but unfortunately,
their extension discloses all the relationships on the relationship path at the time of verifying the
social proximity.

Carminati et al. [5] propose techniques to discover relationship paths between users in a decen-
tralized social network. The paper assumes an untrusted central node,and discloses to one party
all the relationships on the discovered relationship paths. Domingo-Ferrer[6] propose a mecha-
nism to discover private relationship paths in a decentralized social network. Whenu wishes to
discover paths tov, u floods her social network at that time. A major issue of this approach is that
the discovery to be arbitrarily delayed if intermediate users are offline. Moreover, after some time
has elapsed,u cannot know whether there does not exist a relationship path, or simply that some
intermediate user did not happen to be online.

Conclusion

Social networks are increasing in importance. The majority of current social networking sites rely
on a centralized server, which unfortunately offer no privacy for users’ sensitive data. Given the
highly privacy-sensitive nature of social networking topology (i.e., friendship relationships), a chal-
lenge is how to construct privacy-preserving social networks that provide the ability to find rela-
tionship paths without disclosing superfluous relationships. We take this problem one step further
and consider decentralized social networks, where users can discover relationship pathsoffline(in
a privacy-preserving manner) with people they meet. Our proposed approach provides the property
to users who casually meet to discover relationship paths without disclosing their private relation-
ships. More efficient schemes are the subject of our future research.
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