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Abstract—Consider a distributed storage system where parts
of the source file fragments in storage nodes are lost. We denote
a storage node that lost a part of its fragments as a faulty storage
node and a storage node that lost non of its fragment as a
complete storage node. In a process, termed as partial repair, a
set of storage nodes (among faulty and complete storage nodes)
transmit repairing fragments to other faulty storage nodes to
recover the lost fragments. We first investigate the optimal partial
repair in which the required bandwidth for recovering the lost
fragments is minimal. Next, we assume that an eavesdropper
wiretaps a subset of links connecting storage nodes, and overhears
a number of repairing fragments. We then study optimal secure
partial-repair in which the partial-repair bandwidth is minimal
and the eavesdropper obtains no information about the source
file by overhearing the repairing fragments. We propose optimal
secure codes for exact partial-repair in a special scenario.

I. INTRODUCTION

Distributed storage systems include cloud storage systems,
peer-to-peer storage systems and private/public data centers.
In these systems, particularly in cloud storage systems, users
can store, archive, or back up their data on (geographically)
distributed storage nodes; DropBox, Google File Systems,
and AmazonS3 are examples. The availability of stored files,
anywhere, anytime is one of the main advantages of these
systems. Yet, there are two main concerns: reliability and
security (privacy).

Storage at each computing system (machine, or set of
collocated machines, termed here as node) can suffer failures
and most likely those would be partial. For example, for a
single disk, a partition could fails [1]; or for a file server a
subset of its disks could fail. This implies that a subset of
data would be lost at each node. Encoding fragments of a file
and storing them in storage nodes make storage systems more
robust against data loss, particularly when storage nodes are
unreliable. Maximum distance separable (MDS) codes provide
the highest reliability against data loss. A file when coded
by an (n, k)-MDS code is divided into k equal-sized blocks1
which are then coded to n blocks such that any set of k blocks
can reconstruct the whole stored file. Most of the existing
studies provide codes considering node failure, where all data
in storage is lost. Then, in a process, termed as the repair
process, a new node in generated by the help of surviving
nodes. The optimal repair-bandwidth has been well studied
in [2], where the use of network coding has been proposed
1Here, a block may contain a number of equal-sized fragments of informa-

tion.

in the repair problem of distributed storage systems. After
repair, the new node might contain different data compared
to the failed node. But, it keep the property that every k
storage nodes can reconstruct the source file. This repair is
termed as the functional repair. In contrast, in exact repair the
content of the new node is the same as the failed node. Exact
repair have been studied in [3]. To further decrease the repair
bandwidth, cooperative repair has been proposed in [4] when
multiple node fails. In all these works, the repair has been
studied when a storage node completely fails. Applying the
existing repair methods for the case of partial loss might be
suboptimal, as we will show it later in a motivating example.
Recently, in [1], partial-MDS codes have been studied over the
systems that parts of data in storage node are lost. However,
in [1] the number of transmissions (bandwidth) in partial-repair
has not been considered. In this paper, we focus on designing
partial-MDS codes that require the minimum partial-repair
bandwidth. Our proposed codes efficiently exploit the available
side information in faulty nodes to achieves the optimal partial-
repair. We also propose codes for exact partial-repair in a
special scenario.

We then investigate a method to secure the bandwidth-
optimal partial-repair codes. Security in the repair problem,
when a node completely fails, has been studied in [5]. In
a recent work, the authors in [6] studied security in partial
repair in wireless caching networks in which storage nodes
use broadcast channels in repair. The study in this paper
differ from [6] in the senses that i) the studied network is a
wireline network and there is no broadcast channels, and ii) the
eavesdropper wiretaps a subset of links instead of overhearing
all the repairing fragments. To provide security, we encode the
source file prior to MDS encoding and show that the secrecy
capacity (the maximum amount of data that can be stored in
the system while preserving security in partial repair) can be
achieved.

Motivating Example: Consider a partial repair process
illustrated in Fig. 1, where a distributed storage system stores a
file containing four fragments a1, a2, b1, b2 by an (4, 2)−MDS
code over the finite field F3. Suppose that, fragments a1+a2 in
node 3 and b2 in node 4 are lost. To recover the lost fragments,
we can consider the faulty nodes as completely failed node.
Then by a method in [2], we must transmit the entire file (four
fragments) to each faulty node. This requires eight fragment
transmissions in total. A better approach, proposed in [4], is to
allow the completely failed nodes to cooperate. In this case, six
fragment transmissions in total are required (for details, please
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Fig. 1: A distributed cloud storage system. Parts of stored data are lost. The lost data is recovered in a partial repair process.
Here, an eavesdropper is overhearing the communicated information between storage nodes during the partial repair process.

see [4]). Alternatively, one can consider each fragment in the
system as a (virtual) node; then each lost fragment requires two
fragment transmissions (e.g., for recovering b2 in node 4, node
1 sends b1 and node 2 sends 2b1+b2 to node 4). Thus, in total
four fragment transmissions are required to recover all lost
fragments. In our proposed approach, we efficiently exploit the
available side information in the faulty nodes. Then, node 1 and
2 respectively send a1+b1 and 2(a1+b1)+a2+b2 toward node
4. Then, node 4 can recover its lost fragments by the received
fragments and its side information, after performing simple
operations over F3 as 2(a1+b1)+a2+b2−2(a1+b1)−a2 = b2.
Node 4 then sends coded fragment a1+b1+a2+b2 to the node
3. Then, node 3 recovers its lost fragment by an operation in
F3 as a1 + b1 + a2 + b2 − (b1 + b2) = a1 + a2. Therefore, the
lost fragments are recovered by three fragment transmissions.
We show later that the proposed approach is optimal in terms
of partial-repair bandwidth. To make the partial-repair secure,
instead of b1 and b2, source file fragments, we substitute two
symbols z1 and z2, which are randomly and uniformly selected
from F3. Then the eavesdropper cannot obtain any information
about the source by overhearing the repairing fragments. Thus,
security is provided by the cost in reducing the storage space
(here, to two fragments) for storing the source file.

The organization of the paper is as follows. In Section II,
we formulate the optimal secure partial-repair problem. In
Section III, we provide our main results. In Section IV, we
present explicit code construction for exact optimal-secure
partial-repair. Finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

Notation: We use a bold lowercase letter to denote a
column vector, and a bold uppercase letter to denote a matrix.
Superscript T denotes matrix transpose. The set [n] denotes
{1, 2, · · · , n}. |P| denotes the cardinality of set P . For a
random variable X , we denote H(X) as the entropy of
X . For a set X = {X1, X2, . . . , Xi}, we have H(X ) =
H(X1, X2, . . . , Xi).

We consider a distributed storage system with n storage
nodes; the source file encoded by an (n, k)−MDS code, that
is, any set of k storage nodes can reconstruct the source file.
Suppose that the source file contains M fragments, elements
of Fq , where q denotes the code alphabet size. Let us denote
the source file by a column vector s of M elements. Then, a
coded fragment, x, is computed by x = gT s, where g is the
global encoding vector [7] of M × 1 dimension with elements
from Fq . A fragment, x1 = g1

T s, is innovative to a storage

node if g1 is not in the span of the global encoding vectors of
the fragments that already exist in the node. Two fragments,
x1 = g1

T s and x2 = g2
T s, are independent when their global

encoding vectors g1 and g2 are independent.

When parts of the stored fragments in one or more storage
nodes are lost and the faulty storage nodes have no access to
the source file, storage nodes (including faulty and complete
storage nodes) exchange information to recover the lost frag-
ments. Note that in our model, storage nodes transmit coded
fragments over error-free channels2 to other storage nodes.
The process of recovering the lost fragments is termed as the
partial repair. Suppose that node i, i ∈ [n], has access to set
Pi = {X1, X2, . . . , X|Pi|} of independent coded fragments;
|Pi| is the amount of information that node i has access as side
information. For a given P = {P1,P2, . . . ,Pn} , a fault, i.e.,
partial loss of fragments, results in M/k− |Pi| lost fragments
in node i, for i ∈ [n].

Clearly, to recover all the lost fragments in partial-repair
process, the available information in the system must not be
less than M . We formally state the necessary condition over
a given loss pattern P = {P1,P2, . . . ,Pn} as

H(P1,P2, . . . ,Pn) ≥ M. (1)

Otherwise some information is permanently lost and thus the
repair is not possible. In the rest of the paper, we assume (1)
holds.

In partial repair, node i transmits βij fragments to storage
node j for i, j ∈ [n] and i �= j. The transmission schedule
in partial repair can be explicitly stated in the following two
steps:

1) Complete storage nodes transmit fragments (func-
tions of their stored fragments) to the faulty storage
nodes;

2) Faulty storage nodes transmit fragments (functions of
their stored fragments and their received fragments)
to other faulty storage nodes.

We formally define the partial-repair bandwidth, Γ:

Γ �

n∑
i,j=1

βij . (2)

2Error-free transmission can be achieved by complete channel coding or
re-transmission. The impact of transmission errors to partial repair is beyond
the scope of this paper.



We can characterize the necessary and sufficient conditions
over βijs such that partial-repair is done successfully.

Definition 1: Consider a distributed storage system that
stores a file coded by an (n, k)-MDS code. Suppose some
fragments are lost and the available data on storage nodes
is given by set P = {P1,P2, . . . ,Pn}. Define the region
R(P) ⊂ R

n×1 to be set of all {βij} satisfying

∑
j∈Q

∑
i∈Qc

βij ≥ M −
∑
j∈Q

|Pj|, (3)

for every Q ⊂ [n] and |Q| = k storage nodes. In next
section, we formally state that R(P) is the feasible region
for successful partial-repair.

We investigate security in partial repair. Let Y1, Y2, . . . , YΓ

denote the random variables representing Γ transmitted
repairing-fragments. Now assume that there is an eavesdropper
who overhears a subset E of links and has access to μ ≤ |E|
repairing fragments with independent encoding vectors. We
aim to design bandwidth-optimal codes in the repair problem
at hand such that there is no leakage of information to the
eavesdropper. This is formally defined, as follows.

Definition 2: Consider a distributed storage system in
which a source file is distributed among n storage nodes.
Let the source file be denoted by a set S which contains
|S| fragments, i.e., S = {s1, s2, . . . , s|S|}. Assume an eaves-
dropper has access to a subset of links carrying fragments
E = {e1, . . . , e|E|}. The code is secure, if

H(S|E) = H(S) (4)

A fundamental question is that how much is the maximum
amount of information that can be stored in the storage system
such that an eavesdropper obtains no information about the
source file by overhearing the repairing fragments in a partial-
repair process. More formally, suppose that we use an (n, k)-
MDS code for storing the source file in the storage nodes,
then a set of k nodes, which is denoted by D, contains M
independent fragments. For security in partial repair, we may
store some random symbols taking uniformly from Fq . This
random variables occupy some space in storage nodes and
thereby the space for storing the source file is reduced. Hence,
every k storage nodes may have smaller than M fragments of
data from the source. That is |S| ≤ M , and M − |S| random
symbols is stored in every set of k storage nodes for providing
security in partial repair. The eavesdropper overhearing frag-
ments Y1, . . . , Y|E| obtains no information about the source if

H(S|Y1, . . . , Y|E|) = H(S). (5)

Since every k nodes should be able to reconstruct the source
file, we have

H(S|D) = 0, for ∀D ⊂ [n], |D| = k. (6)

We may refer to this as the complete reconstruction condition.
We formally define the secrecy capacity (which is here denoted
as Css) as

Css � max H(S),

subject to: H(S|Y1, . . . , Y|E|) = H(S),

H(S|D) = 0, for ∀D ⊂ [n], |D| = k. (7)

We shall derive the secrecy capacity in the next section.

III. MAIN RESULTS

We first derive the minimum required bandwidth in partial-
repair. Then, we derive the secrecy capacity for the bandwidth-
optimal partial-repair. We note that the results in this section
is valid for functional partial-repair. Since, exact partial-repair
has more constraints than functional partial-repair, then the
minimum bandwidth for functional partial-repair serves as
a lower bound for exact partial-repair. Based on the same
argument, the secrecy capacity derived for functional repair
serves as an upper bound for exact partial-repair. For the ease
of notation, we drop the term functional whenever it is clear
that we are analysing functional partial-repair. The following
theorem states the necessary and sufficient conditions for
partial repair.

Theorem 1: Consider a distributed storage system using an
(n, k)-MDS code. Suppose that the storage nodes have access
to parts of their stored data based on P = {P1,P2, . . . ,Pn}.
For given βij’s, then all the lost fragments can be recovered
if and only if {βij} ∈ R(P).

The proof is based on formulating the partial-repair problem
into a multicast problem. The detail proof is provided in
Appendix A of the extended version [8]. Next, we will apply
this theorem on our motivating example in Fig. 2.

Example 1: Examining Theorem 1 on the four-node stor-
age network in motivating example provides us the following
conditions for partial repair:

S induced constraint
{1, 3} β23 + β43 ≥ 1
{1, 4} β24 + β34 ≥ 1
{3, 4} β13 + β23 + β14 + β24 ≥ 2
{2, 3} β43 + β13 ≥ 1
{2, 4} β34 + β14 ≥ 1

Summing both sides of the above inequalities gives 2(β43+
β34 + β23 + β13 + β14 + β24) ≥ 6. This turns out that Γ =
β43+β34+β23+β13+β14+β24 ≥ 3, and thus the minimum
total number of fragment transmissions for partial repair is 3.
Thus the code presented in Fig. 1 is optimal.

Example 2: In a more general case than the previous
example, consider a distributed storage system where a file
of size M is encoded by an (n, k)−MDS code. Suppose that
n− k storage nodes have equally lost ξ number of fragments
of their stored fragments, where 0 ≤ ξ ≤ M/k. We assume
that there are always k complete storage nodes in the system.
This assumption assures us that the file availability condition
in (1) is always satisfied, for any value of ξ, e.g., for ξ = M/k.
Without loss of generality, we assume that nodes 1, 2, . . . , k are
complete storage nodes and the other (n−k) storage nodes are
faulty storage nodes. That is, |Pi| = M/k, for i ∈ {1, . . . , k},
and |Pi| = M/k − ξ, for i ∈ {k + 1, . . . , n}. The following
corollary states a lower bound on the required total number of
fragment transmissions (Γ) for the partial-repair.

Corollary 1: A lower bound on the required total number
of fragment transmissions for partial-repair in the above prob-
lem is

Γ ≥ (n− 1)ξ (8)
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Fig. 2: Optimal partial repair.

Proof: The proof is provided in Appendix B of the
extended version [8].

In general, we aim to minimize the total number of
fragment transmissions, Γ =

∑n
i,j=1 βij , for the points in the

feasible region. Formally, we aim to

min
βij

Γ =
∑n

i,j=1 βij

subject to:
∑

j∈Q

∑
i∈Qc βij ≥ M −

∑
i∈Q |Pi|,

Q ⊂ [n], |Q| = k,

βij ∈ R
+, (9)

where R+ is the set of non-negative real numbers. This prob-
lem is a linear programming problem and can be efficiently
solved [9].

For a given loss pattern P = {P1,P2, . . . ,Pn}, we can
derive the secrecy capacity, as follows.

Theorem 2: Suppose an (n, k)-MDS-coded distributed
storage system has the capacity of storing M fragments. Sup-
pose that some fragments in storage nodes are lost and storage
node i, for i ∈ [n], has access to |Pi| (0 ≤ |Pi| ≤ M/k)
fragments. If an eavesdropper overhears a subset E of links
with rank μ ≤ |E| repairing fragments (that is, the eavesdrop-
per overhears μ fragments with independent encoding vectors).
Then the secrecy capacity is

Css = max{M − μ, 0}. (10)

Proof: The proof is provided in Appendix C of the
extended version [8].

Examining Theorem 2 over Example 1 where an eaves-
dropper overhears three repairing fragments gives that Css =
4 − 2 = 2, noting that the number of independent fragments
overheard by the eavesdropper is μ = 2. In the next section,
we propose an explicit code construction for the exact partial
repair in which the repair bandwidth is minimal and the partial
repair is secure.

IV. OPTIMAL AND SECURE CODES FOR EXACT
PARTIAL-REPAIR

In this section, we provide an explicit code construction
for the exact partial-repair that achieves the lower bound

in Corollary 1. We note that the lower bound derived in
Corollary 1 is valid for functional and exact partial-repair,
due to the fact that exact partial-repair is a specific case of
functional partial-repair. This implies that the proposed code,
which achieves the lower bound, is optimal in partial-repair
bandwidth. Next, we construct the secure code by encoding
the source file fragments prior to this bandwidth-optimal code.

We first divide the source file into M = k2 fragments3,
meaning that each node stores M/k = k fragments before
data loss. We construct a k × k-matrix S which contain the
source file fragments as

S =

⎛
⎜⎜⎝
s11 . . . s1k
s21 . . . s2k
...

. . .
...

sk1 . . . skk

⎞
⎟⎟⎠ . (11)

We assume there are k nodes that store the uncoded
fragments. These nodes are termed as systematic nodes. In
addition, there are (n− k) parity nodes that store coded frag-
ments. Without loss of generality, assume that nodes labeled
as 1, . . . , k are systematic nodes and nodes k + 1, . . . , n are
parity nodes. We store in k systematic nodes the symbols in
rows of matrix S. That is, the i-th systematic node stores k
fragments in the i-th row of matrix S. Next, we store coded
fragments in n− k parity nodes. To get the coded fragments
in parity nodes, we construct matrix P as

P = ΦS, (12)

where Φ is a (n − k) × k-dimensional Cauchy matrix [10],
with elements from a finite field Fq, for q > n. We store in
node i, for i = k+1, . . . , n the symbols in the (i− k)-th row
of matrix P. If Pi denotes the vector in the i-th row of matrix
P, then the coded fragments in node i are elements of vector
Pi−k as

Pi−k = Φi−kS, for i = k + 1, . . . , n. (13)

Here, Φi denotes the i−th row of matrix Φ. By this construc-
tion, the code on the storage nodes is an (n, k)-MDS code.

Proposition 1: The above code is an (n, k)-MDS code.

Proof: The proof is provided in Appendix D of the
extended version [8].

Now, we describe the process of exact partial-repair. There
are n − k faulty storage nodes, each of which has lost ξ
fragments. Let us first assume n − k faulty storage nodes
are parity nodes, and thereby, k complete storage nodes are
systematic nodes. Let Pij denotes the element in row i and
column j of matrix P. The partial repair proceeds as the
following steps:

Step 1) Systematic node i transmits fragments
v1i,k+1, . . . , v

u
i,k+1, . . . v

ξ
i,k+1 to node k + 1, where

vu(i,k+1) = Sibu for u = 1, . . . , ξ. (14)

Here, b1, . . . ,bξ are rows of a ξ × k Cauchy matrix, where
each element is taken from Fq. This Cauchy matrix requires
q ≥ k + ξ. This step runs for all i ∈ {1, . . . , k}.

3For this, we should properly design the fragment size. For example if
M = 1 mega-bits, and q = 2, k = 4, the fragment size=�220/42 =� = 2

16

bits.



Step 2) In node k+1, if fragments P1j1 , . . . ,P1jξ are lost,
then the node calculates

Φ1

⎛
⎜⎜⎜⎜⎝

v1(1,k+1) v2(1,k+1) . . . vξ(1,k+1)

v1(2,k+1) v2(2,k+1) . . . vξ(2,k+1)

...
... . . .

...
v1(k,k+1) v2(k,k+1) . . . vξ(k,k+1)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Z

(15)

and obtains
Φ1Z =

(
Φ1S

T
j1
. . .Φ1S

T
jξ

)
⎛
⎜⎜⎝
b
(1)
j1

. . . b
(1)
jξ

...
. . .

...
b
(ξ)
j1

. . . b
(ξ)
jξ

⎞
⎟⎟⎠

︸ ︷︷ ︸
B︸ ︷︷ ︸

the desired term

+
(
Φ1S

T
r1
. . .Φ1S

T
rk−ξ

)
ri �∈1,...,ξ

⎛
⎜⎜⎝
[b

(1)
jl

]l �∈1,...,ξ

...
[b

(ξ)
jl

]l �∈1,...,ξ

⎞
⎟⎟⎠

︸ ︷︷ ︸
the interfering terms

. (16)

Node k + 1 cancels the interfering terms in (16) by using
its side information. Then the lost fragments can be retrieved
since matrix B is invertible (due to the fact that any square
submatrix of a Cauchy matrix is invertible).

Step 3) In the next step, node k + 1 calculates

Φi−kZ (17)

and sends ξ elements of the above vector to node i, for all
i ∈ {k + 2, . . . , n}.

Step 4) Suppose fragments jir for r ∈ {1, . . . , ξ} are lost
in node i. Parity node i recovers its lost fragments similar to
node k + 1 by removing the interfering terms. This operation
is performed for all i ∈ {k + 2, . . . , n}.

Step 5) If there are systematic nodes among faulty nodes,
then we first change the variables such that again we have k
systematic nodes and n − k parity nodes. Then we proceed
through steps (1)-(4).

Proposition 2: The proposed code is optimal in the band-
width for partial repair.

Proof: For the recovery of the lost fragments, we transmit
kξ fragments in Step 1 and (n − k − 1)ξ fragments in Step
3. Thus, in total, we transmit kξ + (n − k − 1)ξ = (n − 1)ξ
fragments, meaning that the proposed code achieves the lower
bound in Corollary 1. Thereby, it is optimal.

In the distributed storage system studied in this section,
assume that the eavesdropper overhears Γ = (n − 1)ξ trans-
mitted repairing fragments. When the above code is used in
partial repair, then the number of independent fragments that
the eavesdropper can access is μ = kξ (note that the trans-
mitted fragments in partial repair are linear combination of kξ
transmitted fragments in Step 1). Hence, for the exact partial-
repair, we have the upper bound as Css ≤ max{M − kξ, 0}.

We present the codes that achieve the upper bound. For that, we
can precode the source code prior to MDS encoding. A simple
precoding can be applied for this specific case by substituting
kξ random symbol taking uniformly from Fq in the source
matrix as the following
S =⎛

⎜⎜⎝
s11 . . . s1(k−ξ) z1 . . . zkξ−k+1

s21 . . . s2(k−ξ) z2 . . . zkξ−k+2

...
. . .

...
...

. . .
...

sk1 . . . sk(k−ξ) zk . . . zkξ

⎞
⎟⎟⎠ . (18)

The partial repair process remains the same as before.

Proposition 3: The above code is optimal secure code,
achieving secrecy capacity Css = max{M − kξ, 0}.

Proof: The proof is provided in Appendix E of the
extended version [8].

The proposed code requires the code alphabet size to be greater
than max{k+ ξ, n}. This implies that the code is quite simple
for implementation.

V. CONCLUSION

We studied optimal bandwidth partial-repair in distributed
storage systems. We investigated the security of partial repair
where an eavesdropper has access to a subset of repairing
fragments, and derived the secrecy capacity of the system. We
derived the minimum required bandwidth for partial repair. In a
scenario, we showed that the optimal bandwidth is achievable
for exact partial-repair, and then we made this exact partial
repair secure. In future, we study security in partial repair
where the storage nodes store the file by non-MDS codes.
We also studty weakly secure codes for partial repair.
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