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Abstract—We argue that the traditional notion of trust as operation itself (e.g., due to high mobility, privacy measures).
a relation among entities, while useful, becomes insufficient in Moreover, nodes can be unreliable, faulty, or not sufficiently
ephemeral ad hoc networks. In this paper, we address the chal- ¢qyinned for accurate data reporting. To make things worse,
lenge of extending the traditional notion of trust to data-centric th twork f h I A tvpical t f
trust, that is, trustworthiness attributed to node-reported data per € network operation can I}Ep emera ypica ype 0
se. We propose a framework for data-centric trust establishment: €phemeral networks are vehicular networks, featuring short
First, trust in each individual piece of data is computed; then encounters between nodes, high mobility, and large scale.
multiple, related but possibly contradictory, data are combined; Under such conditions, the question remains: How can a
finally, their validity is inferred by a decision component based network node trust node-reported data, especially when contra-

on the Dempster-Shafer Theory. We are especially interested in, dict . f evid ived? Wi luti
yet not restricted to, ephemeralad hoc networks, i.e., highly ICtory pieces or evidence are receiveds Ve propose a solution

volatile systems with short-lived node encounters. We consider for exactly this problem: a data-centric trust establishment
and evaluate an instantiation of our framework in vehicular framework that can be applied in any ad hoc network and, most

networks as a case study. Our simulation results show that our often, ephemeral networks. The logic we propose extends the
scheme is highly resilient to attackers and converges fast to the 5 gjitional notions of trust and methods of trust establishment
correct decision. .
in several ways.
|. INTRODUCTION First, unlike traditional trust, a priori trust relationships in
entities (nodes) represent only one of the default parameters

In all traditional notions of trust, data trust (e.qg., trust in théor establishing data trust. For example, our logic, while using
identity or access/attribute certificates) was based exclusivelydes’ statements on data, does not rely exclusively on such
on a priori trust relations established with the network entitiegatements. Instead, it takes into account dynamic factors, such
producing these data (e.g., certification authorities, netwaoak location and time, as well as the number and type of
nodes) [9], [18], [19]. This was also the case when trugfte statements on data, to derive data trust relations. Second,
was derived via fairly lengthy interactions among nodes, &gyond the traditional time-invariant or slow-evolving trust
in reputation systems [3], [8], [20], [31]. Moreover, any newotions, data-centric trust relations are by definition ephemeral
data trust relationships that needed to be established requiaed have to be established and re-established frequently, based
only trust in the entity that produced those data. All trusin network and perceived environment changes. Just like the
establishment logics proposed to date have been basednetwork itself, data trust relations are ephemeral. For example,
entities (e.g., “principals” such as nodes) making statememts event report (e.g., accident report, weather report) that
on data [3], [7], [9], [14], [18], [19], [26], [27]. Furthermore, must be believed by recipient nodes in real-time cannot last
traditional trust relations were generally time-invariant: ondenger than the lifetime of the event or the network formation.
established, they lasted a long time. Multiple rounds of node interactions are typically not possible

Based on the above observations on exisgngjty-centric in such networks. Third, trust does not stem from a single
notions, this paper approaches trust from a different point séurce of data (e.g., a certification authority) and generally it is
view: we are concerned witllata-centrictrust establishment. not application-independent (e.g., when multiple applications
The problem at hand isow to evaluate the trustworthiness oluse certificates for their access control and authentication
the data reported by other entitigather than ofthe entities policies). In contrast, we derive data-centric trust relations
themselvesThis question is crucial for emerging data-centrirom multiple pieces of evidence, including environmental
networks, including sensor networks, vehicular networks, axdta, and very rarely if at all, from exclusively a single node
environment aware pervasive computing applications. A numeport. Our logic weighs each individual piece of evidence
ber of technical challenges are present. Primarily, the distirmecording to well-established rules, and takes into account
tion among data reporting nodes is blurred by the netwovkarious trust metrics defined specifically in the context of an



application. Then, data and their respective weights serve@sEvent- or Task-Specific Trustworthiness

inputs to a decision logic that outputs the level of trust in this Nodes in general perform multiple tasks that are system-
collection of evidence, and more importantly that the evefhge- and protocol-specific actions, with being the set of
has taken place or not. ) all relevant system tasks. Then for some nodeandv, with

In the rest of this paper, we present our framework in Sec. fefault trustworthiness rankinggv;) = a and(vs) = b and

In Sec. Il we mathematically develop our approach. Then, We < 4, it is possible thab; is more trustworthy that, with
instantiate our framework in the context of vehicular commMyggpect to a task € A.

nication systems in Sec. IV. We evaluate the effectiveness ofreporting data on events is clearly one of the node tasks.

our scheme through simulations in Sec. V, and conclude Wil the sake of simplicity, we talk here about event-specific
a survey of related work in Sec. VI. trustworthiness implying that it is actually task-specific trust-
worthiness. Nevertheless, the two can be easily distinguished,
when necessary; e.g., when tasks include any other protocol-
specific action such as communication.
We consider systems with an authority responsible for with the above considerations in mind, we define the event-
assigning identities and credentials to all system entities thgdecific trustworthinessfunction f : © x A — [0,1]. f has
we denote asiodes All legitimate nodes are equipped withtwo arguments: the type(v;) of the reporting nodey, and
credentials (e.g., certified public keys) that the authority caRe task);. f does differentiate among any two or more nodes
revoke. Specific to the system and applications, we defipgthe same type, and X; = 0 (no specific event or task};
Q = {a1,a9,...,ar}, a set of mutually exclusivevents s the default trustworthinesg = tr(
where Q is by no means the set of all possible events in . .
the system.o; is a perceivable environment, network, of- Dynamic Trustworthiness Factors
application event. There may be multiple applications, eachThe ability to dynamically update trustworthiness can be
having its own set of relevant evenf3;. These sets are valuable, especially for capturing the intricacies of a mobile ad
overlapping, as their events can belong to a basic pool ledc networking environment. For example, nodes can become
events, e.g., regarding location or time. faulty or compromised by attackers and hence need to be
We considerreporters of eventsthat is, nodesy, € V, revoked. In addition, the location and time of report generation
classified according to a system-specific set of node typebange fast and are important in assigning trustworthiness
0 = {a,b,...,z}. We define a functionr : V — © values to events.
returning the type of nodey. Reportsare statements on To capture this, we definesecurity statugunctions : V- —
events, including related time and geographic coordinat@s1]. s(v;) = 0 implies nodevy, is revoked, ands(vy) = 1
where applicable. For simplicity, we consider reports on singieplies that the node is legitimate. Intermediate values can be
events, as reports on composite events are straightforward. ¥8ed by the system designer to denote different trustworthiness
do not dwell on the exact method for report generation, as thévels, if applicable.
is specific to the application. Second, we define a set diynamic trust metridunctions
. M = {pu : V x A —[0,1]} indexed by a selectar indicat-
B. Default Trustworthiness ing dififerent node att[ribu]tés (e.g., location) that dynamically
We define thedefault trustworthinessf a nodev, of type change. That is, for each attribute a different meficis
a as a real valu® < t, < 1, which depends on the attributesdefined.,; takes nodev, € V and task); € A as inputs
related to the designated type of node For all node types, and returns a real value 0, 1]. Metrics are calculated by a
there exists a trustworthiness rankihg< ¢, < ... <t, <t.. nodew, for each of the nodes;,i # k, that have interacted
For example, some nodes are better protected from attackfh (and possibly observedy, within a time window.
more closely monitored and frequently re-enforced, and, over- ] ]
all, more adequately equipped, e.g., with reliable componerfs, Location and Time
As they are less likely to exhibit faulty behavior, they are Among the possiblé for metric u;, proximity either intime
considered more trustworthy. or geographic locations an attribute of particular importance.
We stress here that the data-centric trust establishm@mbximity can increase the trustworthiness of a report: The
framework does not aim to replace or amend source authetoser the reporter is to the location of an event, the more
tication, as in reputation systems, but uses it as an inputlikely it is to have accurate information on the event. Similarly,
the data trust evaluation function. In fact, if a node reputatidghe more recent and the closer to the event occurrence time a
system were in place, its output scores could also be usedggort is generated, the more likely it is to reflect the system
input to the data trust function. Hence, data trust builds on tktate.
information provided by source authentication and reputationCryptographic primitives, such as digital signatures, can
systems without trying to supplant them. The choice of thensure that location and time information cannot be modi-
entity trust establishment system is orthogonal to the scopefiefd if included in a report. However, the accuracy of such
this paper and has been prolifically addressed in the literatiméormation can vary, due to nodes’ differing capabilities or
(Sec. VI). (malicious or benign) faults. This is especially true for reports

II. GENERAL FRAMEWORK
A. Preliminaries
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Evidence Evaluation I
Output: Decision on
Reported Event

. EVIDENCE EVALUATION
The literature on trust in ad hoc networks proposes sev-

Eventspecific eral approaches for trust establishment, which we survey in
||f(r(vk),/]i)|—-|F(s(vk),f(r(vk),Al),,u,(vk,/lj))l—-loecision Logic| Sec. VI. In this work, we look at evidence evaluation for
Weights ) trust establishment as a decision-making process that emulates
(nustlevels) _f Evience human reasoning. More specifically, the lack of knowledge
about an event is not necessarily a refutal of the event. In
Dynamic trust| metric Security status

addition, if there are two conflicting events, uncertainty about
|”'(Vk”]j) " " S | one of them can be considered as supporting evidence for the
Node 3;3(} Node i d other (if not eventa; then maybe event;). The Dempster-
Shafer Theory (DST) [22] addresses the above two issues (lack
of knowledge and conflicts) and hence seems appropriate for

Evont e the type of decision problems we study in this paper. The
ports . . . .
from nodej v, simulation results in Sec. V shown indeed that DST performs
oftype 7, better than the widely used majority voting and Bayesian
inference.
Fig. 1. Data-centric trust establishment framework. To mathematically model our approach, assume a riéde

has to decide whether a hypotheg&isis true? There are two

_ ) _ ) types of evidence that each node can report concerHing,

that depend on fine-grained time and location data. Henggeans that the report of nodeconfirms hypothesis? and
different types of nodes are more or less trustworthy wheeg means that the report of nodeconfirms hypothesigZ (or
reporting such data. In some cases, time- or geo-stampingj@ply does not support hypothesi#). This last distinction

report can be a distinct task. between confirmingd and not supporting? is a distinguish-
) ing property of DST as shown later. In the following, we
F. Scheme Overview mathematically develop the decision logics based on Bayesian

We compute the trustworthiness of a report by using bothference [24] and DST.
() static or slow-evolving information on trustworthiness,
captured by the default values and the event-specific trist
f, and (ii) dynamically changing information captured by In Bayesian inference, the posterior probability of a hypoth-
security status and more so by metrip;. We combine these esisH given new evidence is expressed in terms of the prior

Bayesian inference

as arguments to a function probability P[H] using the Bayes’ theorem:
F:F(s(vk)ﬂf(T(vk)v)‘j)vﬂl(vkvAj)) P[H|€] — PW (1)
(&

that returns values in thf, 1] interval. These values are . ) _
calculated locally for each report received from another nodeCVen & mdependeﬁtmece; of evidencey, (reports from
and are called threights(or trust level3 of the reports. Fig. 1 & distinct nodes), the posterior probability can be computed
illustrates our scheme. iteratively as:

Nonetheless, such a per message assessment may often be
insufficient. It can be hard to decide whether the reported event (H|e] = P[H]T], Ple;|H] @
took place based on a smgl_e message, and |t_|s vulnerable P[H|T1, Plei|H] + P[H]|T], Ple.|H]
to faults (e.g., equipment failures or compromised nodes). ) -
Instead, we propose the collection of multiple reports relatedWherei € {0,1} and Ple;|H] is the probability that node
to the same event and of their weights, i.e., the accompanyfagonfirms hypothesidi, given thatH is true. Using trust
F value, and their combination into a robust decision schenigVels as weights of binary reports (1 or 0 equivalentimr
Then, the reports along with their weights are passed tofh respectively), this probability is equal to thresst level
Decision Logianodule that outputs an assessment on the event” (€| H] is the probability that nodé does not confirmi
in questiont More important, we are interested in a systerf€nce, it confirmd7), given that/7 is true. This is equivalent
that not only decides on an event but also identifies the residf@ malfunctioning or cheating node (ideally, a node would
uncertainty regarding the event (alternative algorithms for th@Port a real event).
decision logic are discussed in detail in Sec. I1I-B). The walleh [ H] =1 — Plej|H].
to use such decisions and inferences is beyond the scope of

. .. e . Multi-valued cases can be derived from the following analysis in a
this paper, as it is specific to particular systems. straightforward way by using several hypotheses.

3The independenceroperty stems from the fact that (i) each node makes
11t is possible that a decision regards not a single evenbut also a local decisions about evidence before transmitting its reports, and (ii) each
composite event, consisting of union(s) and intersection(s) of multiple node operates independently from other nodes.




P[ed|H] is the probability that nodé does not confirmH, {0,1}) that either confirmi (i.e., m},(H)) or do not refute
given thatH is false. In other words, this is the probabilityH (i.e., m{(H)):
that nodek confirms H, given thatH is true. As above, this
is equal to therust level bel(H) = @ bely(H) = EBmi;(H) (6)
Ple;|H] is the probability that nodé confirms H, given & &

that [ is true. As before, this is the probability of malfunc- . . . .
tioning Ior clrj1eatingP[e1|H] :I 1'_ P[e(ﬂﬁ] Y ) m},(H) is the basic belief assignment, reported by néde

k kD that confirmsH. As before, using trust levels as weights of
B. Dempster-Shafer Theory binary reports, this value is equal to threist level

The major difference between Bayesian inference and DST(H) = 0 is the basic belief assignment, reported by node
is that the latter is more suitable for cases with uncertain &rthat refutestf. As explained before, in DST, non-supporting
no information. More precisely, in Bayesian inference a nod¥idence is not refuting evidence.
either confirms or refutes an event, whereas in DST a noden; (H) is the basic belief assignment corresponding to the
does not necessarily refute the event. For example, if a nd#igiversal hypothesi§l. It represents the uncertainty and can
A confirms the presence of an event with probabilityin ~ Support eithett or H. Hencemj}(H) = 1 — mj(H).

Bayesian inference it refutes the existence of the event withSimilarly, m{ (H) is equal to thetrust leve] m (H) = 0,
probability 1 — p. In DST, probability is replaced byelicf. andm}(H) =1—m)(H). )

Hence, in this example, node A hasdegree of belief in the ~ The expressions of the other valugd(H), pls(H) and
event and 0 degree of belief in its absence. 0 in this casepis(H) can be derived similarly.

calledplausibility and means that A provides no support for
the absence of the event (but it does not necessarily refute this
absence as in Bayesian inference). To illustrate the application and utility of the data trust

Belief and plausibility are the upper and lower bound$iamework, we present in the following a case study of a
respectively, of the probability of an event. The frame afal ephemeral ad hoc network instantiation, namely vehicular
discernmentQ2 contains all mutually exclusive possibilitiesnetworks. We first describe the system and adversary models,
related to an observatibnThus, in the case of a hypothesishen explain through examples how the different components
H with a binary state,) = {H,H}. The belief value of data trust can be practically derived.
corresponding to hypothesiH and provided by nodey is

IV. CASE STUDY

computed as: A. Secure Vehicular Communications System
Vehicular Ad hoc NETworks (VANE&nd Vehicular Com-
belp(H) = > mul(eq) (3) munication (VC)systems [29] seek to enhance the safety and
q:eqCH efficiency of transportation systems, providing, for example,

which means it is the sum of all basic belief assignmen(§arnings on environmental hazards (e.g., ice on the pavement)
mi(eq), €, being all pieces of evidence supporting hypothes@d traffic and road conditions (e.g., emergency braking,

H. As the hypothesig{ is binary in our example and hencecongestion, or construction sites). From a networking point of
the only piece of evidence provided by is the affirmative View, the nodes are vehicles and road-side infrastructure units

report, bely, (H) = m}.(H). (RSUs), all equipped with on-board processing and wireless
The plausibility value corresponding to hypothesisrep- modules, enabling multi-hop communication in general.
resents the sum of all evidence that does not refiitand is Authoritiesare public agencies or corporations with admin-

computed as: istrative powers; e.g., city or state transportation authorities
entrusted with the management of nadentitiesand creden-
plsp(H) = Z mz(er) (4) tials. A subset of the infrastructure nodes serves as a gateway
e NH£D to and from the authorities.

. . B _ We assume that each nodg is equipped with a pair
Belief and plau.5|b|I|ty are r.elated w‘S(H) - 1_bel(H)‘ of private/public cryptographic key®r./Puy, and a certifi-
Independent pieces of ewde_nce (prc_)wded by independ rétle issued by an authoritf{ as Certx{Pui}. Nodes are

observing nodes) can be combined using Dempster’s rule uipped with a clock and a positioning system (such as GPS

combination: or Galileo). This allows them to include their time and location
5 (e.yma(er) information in any outgoing reports. Source authentication is
riegne,=H M11\€q)M2(Er required to prevent Sybil attacks and is achieved by digital

m (H) @) ma(H) = 2250 ’ 5) 9 P y Y €19

signatures according to both academic and industrial proposals
2], [21]. In this example, source authentication by digital
ignatures defines the default trustworthiness as explained in
Sec. II-B.
4We use the same notatidd as in Sec. II-A as both sets correspond to Unicast and multicast communication is pOSSible; how-
each other in this case. ever, local broadcast (single hop) and geocast (flooding to

Zq,r:eqﬂeT:Q) mi (eq)mZ (e”‘)

Belief can be computed similarly by iterative combinatio
of independent basic beliefs assignments(H) (wherei €



a given geographic area) are predominantly in use. Vehickmong multiple certified levels of equipment. Similarly, public
specific information (e.g., velocity, coordinates) is transmittecthicles’, as well as RSUs’, trustworthiness varies according to
frequently and periodicalfyin the form of safety messages the level of protection, physical or other, as well as their type
Reports on in-vehicle or network events are included in theséequipment. Police cars are the first responders to accidents
messages. The combined safety and other messages, genegatédhus their reports are the most trustworthy, whereas RSUs
by vehicles and RSUs, can result in an abundant influx ahnounce highly trusted junction warnings.
information about events. It is important to note here that Trustworthiness is also adjusted by metyig according
our approach, based exclusively on local processing, does twtthe reporter’s proximity to the event. However, this is
add any communication overhead and very little computatiaione in different ways, i.e., different functions, according to
overhead in the nodes. The actual overhead is due to frequiat reporter’s type. For example, on the one hand, accident
broadcasting and asymmetric cryptography and is inherentimfiormation is distributed by RSUs as long as the traffic is
VANETs® affected or the attention of the drivers is needed. On the other
B. Adversary Model hgnd, trustworthiness of priva_te vehicles decays. thh their
' distance from the event location. We express this in terms
Nodes either comply with the implemented protocols (i.egf the number of hopsi(v,) = [d(vi)/R], whered is the
they are correct) or they deviate from the protocol definitiogistance of the reporting node from the accident @his a
and become adversaries. The attacks that can be mountechiinal communication range. However, being within radio
either internal (equipped with credentials and cryptographi@mmunication range does not ensure at all times first-hand
keys) or external adversaries vary greatly. In brief, adversari@ntact with the reported event. If this distinction is mandated
can replay any message, jam communications, and modify (§tthe application, then the above definition is meaningful for
in a detectable manner due to the digital signatures) messag@gies beyond those in immediate contact with the event. We
More importantly, they can inject faulty data and reports, Qfse hergu;(0,\) = 1, (1, A) = 0.9, py(h, ) = —0.25h + 1
control the inputs to otherwise benign nodes and induce thefm < » < 4, and y(h, \) = 0 if h > 4. Of course, this is
to generate faulty reports. just an example, and any other function form can be devised.

We assume that at most a small fraction of the nodesThe weight for each report is calculated by the following
is faulty, and accordingly the fraction of the network aregxample rule/expressién

affected by adversaries is bounded. This bound on the presence

of adversaries could be further refined by distinct values F = s(vg) x f(1(vg), Aj) X pi(vg, Aj)

for different node types. However, this assumption does not . o ]

preclude that a few adversarial or faulty nodes surround al© illustrate our instantiation, we consider an example

correct node at some point in time. scenario: a collision at a junction between two vehickes
o and B. After their airbag opening, they start including an
C. Framework Instantiation accident report in their periodic safety messages (typically,

We focus on the use of our scheme on-board a vehictBe periodicity will also increase to 10 messages/s [A]fpr
Clearly, it could be run on RSUs, nonetheless, the challenggample disseminatespt, = “Own accident; locationL 4;
is to design a scheme practical for nodes that are not parttiéhe 74" The system considers the locatiohs, Lz and the
the system infrastructure. times T4, T, which are very close to each other, to be the
The forms of thef (event-specific trust); (security status), same.A and B are at full proximity & = 0) to the event.
w (dynamic trust metric), and” (trust level) functions are rpta andrptp are received by nodes that either relay them
determined by the secure VC system: they are either preloadédjenerate their own reports on the same accident.
at the time the node is bootstrapped, or updated after the nod&low, let us consider a vehicl&” several communication
joined the system. Their values are either provided by theps away from the accident locatiof. receives safety
authorities or distributed by the infrastructure. messages indicating that there is an accident on its route and
We assume that private vehicles are classified in differe@s to decide whether to trust this information (it could have
categories, especially due to the expected gradual deploymie@gén generated by an attacker). The hypoth&sias defined
and diversity in VC systems. For example, different level§ Sec. llI, is: “There is an accident at locatidiy, Lg". If
may be assigned to vehicles of foreign authorities, for internHl receives a safety message containing no information about
administrative or compatibility reasons. Or, vehicles may dbe accident, it assumes this safety message represents the
equipped with hardware and software of differing levels dfncertainty about (in Bayesian inference, it supports the
sophistication. Also, vehicle models may comply with onBypothesisH) (Sec. lll). If there are several hypotheses, the
data trust is computed for each of them. The resulting values
SFor example, typical range and frequency values on a highway are 30@@n be used by the application to decide the consequent action;

and 300ms, respectively. ie . .
51t should be clarified that, although this overhead seems unreasonablet o? SpeCIfIC use of these values by the appllcatlon IS beyond

typical ad hoc networks, VANETs have distinct properties and requirements

(making networking and security infrastructure necessary as in cellular sys?It should be noted that the actual values of trustworthiness have to be
tems) [17] and were shown to be able to support public key cryptograppyovided by the competent authorities once VANETs are deployed; hence,
[21]. the exact choice of these values is out of scope of this paper.



the scope of this paper. For example, a collision avoidange Effect of the Average Trust Level

application can instruct the driver to start braking even when o o

the collision probability is close to 0.5; a traffic jam avoidance We useé a Beta distribution, with its mean equal to the

application may only react if the probability is higher than 0.gVerage trust level, to distribute the trust levels among the
For example, if the security statusis binary (“revoked” or T€POIts received by the observing vehicle. We chose the Beta
“valid”), \; =“Accident Alert’, and geographic proximity in distribution bec_ausp it app_roxmates_ the Normal distribution,

number of hops is used as input to mefic we can compute & common choice in statistics, but with bounds (0 and 1). We

the following valuesF = 0.95 for a police car on the accidentSimulate scenarios with two basic common cases: relatively
spot (if f = 0.95 andh = 0), F = 0.45 for private vehicles NUmMerous nodes/reporters and only a few ones. In each case,

ath =1 (if f=0.5), andF = 0.4 for a RSU ath = 2 from W€ also vary the average trust level between low and high.
the accident (iff = 0.8). Having experimented with several values, we chose the

An important system parameter is the number of messagf¥lowing as sample average trust levels: 0.1 for q_‘)t““_St
and hence the time, needed to make a fast and correct juﬂ@d 0.6 for high trust. The reason behind this choice is _that
ment. Our simulations show that, in a typical VANET scenaridoWer values show the behavior of the system at critical

this can be achieved within merely 100ms (Sec. V-D), which y@lues, whereas higher values of trust in each range provide

enough to transmit a new safety message based on the fre§ifyadditional information.
received input from other vehicles. In Flg 2, we observe that both WEIthEd Voting and DST

behave similarly at both low and high trust levels. Given that
an event happened, the probability of the event as seen by the
V. PERFORMANCE EVALUATION observing vehicle increases as the percentage of affirmative
] . ] reports increases. At low levels of trust, the evolution of DST is
In this section, we examine the performance of the data t”é#?oother than that of weighted voting because DST can output
establishment system described in the previous sections. W& ,es other than 0 and 1. This means that the application logic

compare three decision logics: Bayesian inference, DST, aRgs more available granularity with DST, which helps it make
weighted votinghat computes the difference between the SUfktier informed decisions.

of all supporting evidence (i.e., weights of reports affirming the

f and th f all refuti id it this diff An interesting observation is related to the behavior of the
even ).:.:m the sum of all refuting evidence, 1 this dierencg, o gian inference. At high trust levels (Fig. 2(b)), it exhibits
is positive, it outputs 1, otherwise it outputs 0. The deusm@

ehavior similar to that of the other two methods. But at low

logics based on Bayesian inference and DST are simuIaE? ; ; -
. . . st levels (Fig. 2(a)), it behaves opposite to the other two
using the mathematical frameworks developed in Sec. IlI. Tlﬁg (Fig. 2(a)) Pp

ethods, because Bayesian inference deals with probabilities
results show that DST performs overall better than the othg y P

. i : hd if a report is assigned a 0.3 trust level (i.e., 0.3 probability
tv.vo. meth.ods. First, bOth. [.)ST and weighted vot|n.g. beha\fﬁ‘ being correct), it is assumed to have a 0.7 mistrust level (i.e.,
similarly in terms of decisions on events and resilience

o ) .7 probability of being false). Thus, given a small percentage
attackers whereas Bayesian inference performs poorly in sogje ; Y ng ). Thus, giv s g

) d. DST des fi decisi larity th affirmative reports with low trust levels, there is a high
cases, second, provides hiner decision granulanty Sgrcentage of refuting reports with low trust levels also. In
weighted voting.

) ) Bayesian logic, this high percentage transforms into a high
We assume that a vehicle receives several reports conceriigeentage of affirmative reports with high trust levels (i.e.,

an event. A trust level is computed for each report as illustratggl, opposite). Similar reasoning applies to high percentages
in Fig. 1. The vehicle then locally applies a decision logic th@fs atfirmative reports.

outputs the prohability of the event. , Another interesting parameter to observe is the number of
To study the performance of each method, we varied severaloriers that the observing vehicle can hear. As we can see
parameters, namely theverage trust levelthe percentage of Figs. 2(c) and 2(d), weighted voting does not differ much
affirmative reports and time. The average trust level is the,ynen the number of reporters is small (e.g., 10). But Bayesian
mean of the trust levels assigned to the reports received iRyerence and DST are more sensitive to this parameter.
the observing vehicle. The percentage of affirmative repoggiin a low number of reporters, DST vyields higher output

indicates how many reports affirm the event. We use time foqpapilities only at high trust values and hence represents
study the speed of data trust establishment as the reports arf¥ger the typically cautious human response.

from vehicles. We also study the effect of thercentage of

attackerson the behavior of each decision method and hen Itis also worth noting that changing the value of the prior

th di i hich i . ant i B?obability in Bayesian inference does not lead to significant
€ corresponding restlience, which IS very important in &anges in the results. Bayesian inference also exhibits higher

security cont.ext.. ] _variance than the other two methods and hence it is less
For Bayesian inference we use the neutral prior probabilifyiapie in threshold-based schemes.

value of 0.5 (i.e., no prior knowledge). Simulations were
performed in MATLAB and ns-2 (Sec. V-D), results were av- ,

. . . Such values can result from low values of the security statesg., due
feraged over 100 simulations and plotted witi¥o confidence ;e discovery of a virus in the network. #f= 0.2, f = 0.5, andy = 1
intervals. thenF = s x f x = 0.1 in the example in Sec. IV-C.
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Fig. 2. Performance of the data trust decision logic at different average trust levels and with respect to the percentage of affirmative reports, percentage of

attackers, multihop, and time.

with different means We examine two scenarios: the average
attacker trust is higher than that of honest nodes (Fig. 2(e))

and vice versa (Fig. 2(f)).

It is important to analyze the resilience of the different W& can conclude as a general rule that the higher the
decision logics to attackers. The graphs in Figs. 2(e) a erage trust level of attackers, the smaller their percentage
2(f) and the observations detailed above can provide us wit eded f,o_r success. In Fig. 2(e), .Baye3|an '|nfe.rence is the
valuable insight into the effect of the percentage of attackel§2St resilient to attackers and weighted voting is the most
As mentioned in the adversary model, we assume that ffgSHient among the three methods. But in Fig. 2(f), when
attacker tries to falsify event reports in order to disturb thif'€ average attackers’ trust is low, Bayesian inference never
perception of the observing vehicles. In this case coIIudiﬁ vors their information and thus is more resilient to them. This
attackers report information opposite to that reported by hon&Gservation can be explglned as follows: When the percentage
vehicles. Thus, there are two different pieces of informatidy] attackers is small (Fig. 2(b)), honest nodes influence the
that are conflicting in their content. Both the trust distribution
of honest nodes and that of attackers follow Beta distribution$The case of equal means is represented in Fig. 2.

B. Effect of the Percentage of Attackers



output probability; when their percentage is high (Fig. 2(a)), By examining both cases of small (Fig. 2(h)) and large
Bayesian inference outputs the opposite of their reports. (Fig. 2(i)) percentages of affirmative reports, we can see how
. fast the three decision logics reach their final output values
C. Effect of Multihop as event reports arrive. The obtained graphs show that this
An important factor to study in trust establishment is trustappens within 100 ms, which is fast enough to make a
propagation in space, more specifically the effect of multihogecision and consequently broadcast a safety message. The
We assume that vehicular safety applications decide whethefit@l output values are in concordance with the results of
rebroadcast information about events based on event-spedigs. 2(a) to 2(d).
predefined thresholds (Sec. IV-C). Hence, intuitively only
highly trusted information (i.e., with a trust value higher than VI. RELATED WORK
the threshold) should propagate over multiple hops; in contrast,
untrustworthy information should fade out. In addition, since a Work on trust has produced rich literature in conventional,
safety message without information about an event represeéi®® and ad hoc networks. In the latter, most works share
the uncertainty about this event (Sec. IV-C), this contribut@sumptions that there is no infrastructure and no PKI; trust
to the fading effect. To confirm this intuition, we performeds @ relation among entities; trust is based on observations,
simulations with a message acceptance threshold equal to\gi#h a history of interactions needed to establish trust. To
and 40 of messages confirming an event. The results fhe best of our knowledge, the computation of trust values
Fig. 2(g) show indeed that, on the one hand, data with hidhthe context of ad hoc networks has been considered in only
trust (0.6) propagates well over several hops when the averdye cases: certification [7], [12], [27] and routing [3], [31].
attacker trust is low (0.3) (note here that the attackers do fotherwise, trust evaluation assumes the prior establishment of
propagate information, which means that’%6®f messages trust relations. In both certification and routing, trust values are
represent the uncertainty about the event). On the other ha@stablished in very specific ways that cannot be generalized to
if the propagated data is untrustworthy (with a trust levélther approaches.
of 0.3), it fades out practically after the first hop. Based Eschenauer et. al. [7] introduce the general principles of
on these properties, we can claim that DST-based data triigst establishment in mobile ad hoc networks and compare
establishment can be considered as a resilient data aggregdtiem to those in the Internet. They describe examples of

technique [28]. generic evidence generation and distribution in a node-centric
N authentication process.
D. Evolution in Time Several papers [3], [8], [20], [31] describe the use of

In ephemeral networks, it is important to evaluate data trusfodified Bayesian approaches to build reputations systems
rapidly in order to permit an application logic to use thevith secondhand information to establish trust in routing pro-
resulting values. Hence, a decision logic should be able tiscols. As mentioned throughout the paper, reputation systems
output the final result as fast as possible, based on the fresitlynitor node actions over several interactions to compute node
received reports. This property distinguishes the mechanistngst values. In contrast, data trust, as defined in this work,
explored in this work from other approaches that rely on facuses on evaluating data rather than nodes and based on
longer history of available reports (e.g., reputation systems [3jly one message per node (to cope with the ephemerality
[20], [31]). The results show how fast an observing vehicle caji the network). In addition, all of these works relied on
make a decision once the reporters have detected an evenBdgesian inference to compute reputation scores, whereas we
this section, we are only interested in the networking delay showed that DST is more resilient to attacks (Sec. V) by taking
the event detection as inferred by the decision Bgic uncertainty into consideration. In addition, as mentioned in

To simulate ephemeral networks, we used VANETs witBec. V-C, our approach can be used as a resilient data
highly mobile vehicles. Moreover, decisions in these VANETaggregation technique in the sense defined in [28], a feature
should be made fast because they may incur life-criticelat distinguishes it from the above metioned works.
consequences. We use a highway scenario with 3 lanes in eachhe main approach advanced by Jiang and Baras [13], [14]
direction. Vehicles are moving at speeds between 90 km/h (s based on local voting that is a weighted sum of votes.
56 miles/h) and 150 km/h{ 93 miles/h); the average distanceConflicting votes are mitigated by each other when summed.
between two vehicles on the same lane is 50164 ft). To  \oting cannot properly address conflicts between relative
simulate the networking aspects of VANETs, we assume thagjorities in two distinct groups of voters (e.g., "Which group
vehicles periodically broadcast safety messages every 300 t@srust: 9 out of 10 or 50 out of 100?"). These works also
within a radius of 300 m, according to the DSRC specificatioavor local interactions that we use as well.

[1]. In our simulations, vehicles begin message broadcastingThe main idea behind the work by Sun et. al. [25], [26] is
at second 5 and receive reports from around 43 reporterstfgt trust represents uncertainty that in turn can be computed
average. using entropy. They also introduce the notioncoffidence of

10 _ , , belief to differentiate between long-term and short-term trust.

The total event detection delay by the observing vehicle depends also

n . - .
how fast the reporters detect the event, which in turn depends on the particu]cl,gl\'ls_t can be established through direct observations or through
detection sensors and hence we do not consider it in this work. a third party by recommendations.



Theodorakopoulos and Baras [27] assume the transitivity gg]
trust to establish a relation between two entities without pre-
vious interactions. In this context, they model trust evaluatio#]
as a path problem on a directed graph. Given that nodes sign
certificates for each other without any security infrastructure?!
this work extends PGP [30] by using secondhand evidence.
Routing protocols are the main target of this approach. [6]

Hubaux et al. [12] propose a distributed version of PGP for
ad hoc networks. In their approach, nodes store partial Iocgﬁ]
certificate repositories. When two nodes want to establish a
certificate chain between them, they merge their repositorie&]

The Internet and peer-to-peer (P2P) networks provide a ric[lg]
pool of work on reputation systems. A comprehensive survey
on these systems can be found in [16] and [20].

More closely related to VANETs and thus the case—stu&%/o]
instantiation of our framework, Doetzer et al. [6] introduce a1]
reputation system for VANETSs. A vehicle makes, over time,
opinions of other vehicles based on the consistency of their re-
ports with its own observations. Moreover, vehicles propaggie]
opinions bypiggybackingthem on messages. Another paper
by Golle et. al. [10] proposes a framework for data validatio[rl13]
in VANETS; it consists in comparing received data tmadel [14]
of the VANETand accept their validity if both agree.

There is little work on applying the Dempster-Shafer Theor%}‘s]
to ad hoc networks, the most relevant to our work is thes]
paper by Chen and Venkataramanan [4] that describes how
DST can be applied to distributed intrusion detection iﬁ7]
ad hoc networks. Siaterlis and Maglaris [23] apply DST to
DoS anomaly detection. The notion of belief, disbelief, andgl
uncertainty appears in the work of Jgsang [15]. The paper
describes a certification algebra based on a framework for
artificial reasoning calle@ubjective Logic (19]

The literature on sensor fusion is richer with examples of
DST application. Several works compare DST to Bayesigzv)
inference [5], [11] but they do not consider them in a trust-
related context. [21]

VII. CONCLUSION

In this work, we developed the notion of data trust. WE?2l
also addressed ephemeral networks that are very demancﬂgg?;
in terms of processing speed. We instantiated our genera
framework by applying it to vehicular networks that are botF#4l
highly data-centric and ephemeral. Our approach consists[i'gnj
using the Dempster-Shafer Theory to evaluate data reports
with corresponding trust levels. We compare this approa 2%]
to weighted voting and Bayesian inference. The simulation
results show that the local processing approach, based on DST,
best suits the decision logic requirements and converges f&ét
enough in a time-critical vehicular network.
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