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Abstract—The effectiveness of frequency hopping for anti-
jamming protection of wireless channels is analyzed from an
information-theoretic perspective. The sender can input its sym-
bols into one of several frequency subbands at a time. Each
subband channel is modeled as an additive noise channel. No
common randomness between sender and receiver is assumed.
It is shown that capacity is positive, and then equals the
common randomness assisted (CR) capacity, if and only if the
sender power strictly exceeds the jammer power. Thus compared
to transmission over any fixed frequency subband, frequency
hopping is not more resilient towards jamming, but it does
increase the capacity. Upper and lower bounds on the CR
capacity are provided.

I. I NTRODUCTION

A wireless channel is open to inputs from anybody oper-
ating on the same frequency. Therefore communication has
to be protected against deliberate jamming. This means that
communication protocols have to be devised whose applica-
tion enables reliable data transmission even if attacked bya
jammer.

If a sufficiently broad frequency band is available, and if the
jammer does not have simultaneous access to the complete
band, a method which suggests itself is frequency hopping
(FH). The frequency spectrum is divided into subbands. In
each time slot, the sender chooses a subband in a random way
and uses only that frequency to transmit data in that time slot.
In some models [4], [6], the receiver hops over frequencies,
too, and only listens to one subband at a time. The idea is that
in this way, the channel will not be jammed all the time with
positive probability, and some information will go through.

To succeed, the basic FH idea requires common randomness
known to sender and receiver, but unknown to the jammer. A
careful analysis of that situation has been performed in [4]. It
is clearly necessary that the common randomness realization
be known before transmission starts. As the channel cannot be
used to distribute this knowledge, this leads to a circle called
anti-jamming/key-establishment dependency in [6].

In [6] it has been investigated for the first time whether
FH can be used for data transmission without the availability
of common randomness. Moreover, the jammer is allowed to
distribute its power arbitrarily over all frequency subbands
and use these simultaneously. It is assumed that whether the
jammer inserts, modifies or jams messages only depends on
the relation of its own and the sender’s power. A protocol

is found which achieves a positive throughput whose value
depends on the jammer’s strategies, e.g. whether or not it can
listen to the sender’s signals.

We take a different perspective in this work. The central
figure of merit for our communication system is the message
transmission error incurred under a jamming attack. A good
FH protocol should make this error small. We assume that
the jammer cannot listen to symbols sent through the channel
(this in particular differs from [6]), that it knows the channel
and the code, but not the specific message sent, and that it
knows when the transmission of a new codeword begins. It
can input symbols into any frequency subset of a given size.
We also assume that the receiver listens to all frequencies
simultaneously.

Within these boundaries, any jammer strategy is allowed.
The jammer is successful if no coding strategy can be found
making the transmission error vanish with increasing coding
blocklength for any jamming strategy. This is an operational
approach to measure the success of jamming, in contrast to
the approach of [6] described above.

Using the information-theoretic model of an additive Arbi-
trarily Varying Channel (AVC) and the analysis in [2], we
find that the success of a jammer indeed depends on the
relation between its own and the sender’s power. In fact, if
the sender power is strictly larger than the jammer power,
the same, positive capacity is achieved as in the case where
sender and receiver have access to common randomness which
is unknown to the jammer. If the converse relation between
sender and jammer power holds, then no data transmission
at all is possible. This is independent of the numberJ of
subchannels the jammer can influence at the same time.

On the other hand, it is known that for each frequency
subband the same holds: If the jammer has more power than
the sender, no communication is possible over this band,
whereas the common randomness assisted capacity is achieved
in case the sender power exceeds the jammer power. Thus
in the case that no single frequency subband has a positive
capacity without common randomness, then no FH scheme
achieves a positive capacity either. Seen from this perspective,
FH does not provide any additional protection against jamming
compared to schemes which stick to one single frequency.
However, FH does in general increase the common random-
ness assisted capacity compared to the use of one single
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subchannel, and hence also the capacity without common
randomness if positive – the FH sequence may depend on
the message and thus reveal additional information. (In [8],
[7] this is called message-driven frequency hopping.)

The common randomness assisted capacity will in general
depend on the numberJ of subchannels the jammer can
simultaneously influence. Thus the capacity achievable without
common randomness, if positive, also depends onJ . We give
a lower bound for the common randomness assisted capacity.
If the noise is Gaussian andJ is sufficiently large, we also
provide an upper bound which differs from the lower bound
by the logarithm of the number of frequency bands. The
bounds involve a waterfilling strategy for the distributionof
the jammer’s power over the frequencies.

Notation:For any random variableξ, we denote its distribu-
tion by Pξ. The conditional distribution of a random variable
ξ given another random variableν is denoted byPξ|ν .

Organization of the paper:Section II presents the channel
model and the main results. Sections III-VI contain the proofs
of these results. A discussion concludes the paper in Section
VII.

II. SYSTEM MODEL AND MAIN RESULTS

The total frequency band available for communication is
divided into K frequency subbands. These are modeled as
parallel channels with additive noise. The receiver listens to all
frequencies simultaneously. Frequency hopping (FH) means
that the sender at each time instant chooses one of theK
subchannels into which it inputs a signal. For a fixed number
J with 1 ≤ J ≤ K, the jammer can at each time instant
choose a subsetI of the K subchannels with|I| = J and
input its own signals in subchannels belonging to this subset.

The overall channel, called FH channel in the following,
can be described as an additive Arbitrarily Varying Channel
(AVC) with additive noise. For anyk ∈ K = {1, . . . ,K}, we
set (ek1, . . . , ekK)⊤ = ek to be the vector withekk = 1 and
ekl = 0 for l 6= k. Further for anyI with |I| = J , we set
(eI,1, . . . , eI,K)⊤ = eI to be the vector satisfyingeI,l = 1 if
l ∈ I andeI,l = 0 else.

If the sender chooses symbolx ∈ R to transmit over
subchannelk, it inputs xek into the channel. We denote the
set R × K by X . The jammer choooses a subsetI ⊂ K
of subchannels for possible jamming (|I| = J) and a vector
(s1, . . . , sK)⊤ = s ∈ R

K of real numbers satisfyingsl = 0
if l /∈ I. Then it inputss ◦ eI into the channel, where the
symbol◦ denotes component-wise multiplication. We denote
the set of possible jammer choices by

S :=
⋃

I⊂K:|I|=J

{I} × {s ∈ R
K : l ∈ I ⇒ sl = 0}

The noise on different frequencies is assumed to be in-
dependent. Thus the noise probability distribution of the
overall channel is determined by the noise distributions onthe
subchannels. For subchannelk, let Nk be the noise random
variable. Its mean is assumed to be zero and its variance is

denoted byσ2
k. The random vector(N1, . . . , NK)⊤ is denoted

by N.
Given sender inputxek and jammer inputs◦eI, the receiver

obtains a realK-dimensional output vector(y1, . . . , yK)⊤ =
y through the FH channel which satisfies

y = xek + s ◦ eI +N.

In particular, on frequencies without sender or jammer inputs,
the output is pure noise. The channel is memoryless over
time, i.e. outputs at different time instants are independent
conditional on the sender and jammer inputs. Note that this is
an additive AVC, but as its input alphabet is a strict subset of
R

K , the special results of [2] on additive-noise AVCs do not
apply here. The general theory developed in [2] is applicable,
though: All alphabets involved are complete, separable metric
spaces1, the channel output distribution continuously depends
on the sender and jammer inputs, and the constraints on sender
and jammer inputs to be defined below are continuous. Hence
the central hypotheses (H.1)-(H.4) of [2] are satisfied.

The protocols used for data transmission are block codes. A
blocklength-n code is defined as follows. We assume without
loss of generality that the set of messagesMn is the set
{1, . . . , |Mn|}. An encoder is a mappingfn from Mn into
the set of sequences of sender channel inputs of lengthn,

{(x1ek1
, . . . , xnekn

) : (xi, ki) ∈ X (1 ≤ i ≤ n)}.

Note that this means that the sequence of frequency bands
used by the sender may depend on the message to be sent.
Every codeword can be considered as aK × n-matrix whose
i-th column is thei-th channel input vector. The decoder at
blocklengthn is a mappingϕn : RK×n −→ Mn.

Additionally, for someΓ > 0, the sender has the power
constraint

∑n
i=1‖fn(m)i‖

2 ≤ nΓ for all m ∈ Mn, where
fn(m)i denotes thei-th column of theK × n-matrix fn(m)
and‖·‖ denotes the Euclidean norm onRK . A code(fn, ϕn)
with blocklengthn which satisfies the power constraint forΓ
is called an(n,Γ)-code.

We are interested in the transmission error incurred by
a code (fn, ϕn). This error should be small for all pos-
sible jammer input sequences. Thus we first define the
transmission error for a given length-n jamming sequence
((I1, s1), . . . , (In, sn)). This sequence can be given matrix
form as well. We denote bỹS the K × n-matrix whosei-
th column equalssi. By Ẽ ∈ R

K×n, we denote the matrix
with columns eI1

, . . . , eIn
. Of course, S̃ ◦ Ẽ = S̃. We

keepẼ explicit becausẽS itself does not in general uniquely
determine the sequence(I1, . . . , In), as some components of
si could be zero(1 ≤ i ≤ n).

Just like the sender, the jammer has a power constraint. We
require that

∑n
i=1‖si‖

2 ≤ nΛ for someΛ > 0 and denote
the set ofS̃ ◦ Ẽ satisfying this power constraint byJΛ. It
is clear that a realistic jammer cannot transmit at arbitrarily

1Giving a discrete setK the metricρ(k, l) = 1 if k 6= l andρ(k, k) = 0
for all k, l ∈ K makesK a complete metric space whose Borel algebra is its
complete power set.



large powers, so this is a reasonable assumption. Note that
the jammer is free to distribute its power over the subchannel
subset it has chosen for jamming. In particular, the power can
be concentrated on one single frequency no matter whatJ is.

Now let (fn, ϕn) be a blocklength-n code andS̃ ◦ Ẽ ∈
R

K×n a jammer input. Then the average error incurred by
(fn, ϕn) under this jamming sequence is defined to equal

ē(fn, ϕn, S̃ ◦ Ẽ)

=
1

|Mn|

∑

m∈Mn

P[ϕn(fn(m) + S̃ ◦ Ẽ + Ñ) 6= m],

whereÑ is a matrix whose columns aren independent copies
of the noise random vectorN. The overall transmission error
for (fn, ϕn) under jammer power constraintΛ is given by

ē(fn, ϕn,Λ) = sup
S̃◦Ẽ∈JΛ

ē(fn, ϕn, S̃ ◦ Ẽ).

This error criterion makes the FH channel an AVC.
A nonnegative real number is said to be anachievable rate

under sender power constraintΓ and jammer power constraint
Λ if there exists a sequence of codes((fn, ϕn))

∞
n=1, where

(fn, ϕn) is an (n,Γ)-code, satisfying

lim inf
n→∞

1

n
log|Mn| ≥ R,

lim
n→∞

ē(fn, ϕn,Λ) = 0.

The supremumC(Γ,Λ) of the set of achievable rates under
power constraintsΓ andΛ is called the(Γ,Λ)-capacityof the
channel.

Now we ask under which conditions the(Γ,Λ)-capacity of
the FH channel is positive, and in case it is positive, how
large it is. A precise statement can be made upon introduction
of the common randomness assisted capacityCr(Γ,Λ). This
is the maximal rate achievable if sender and receiver have
a common secret key unknown to the jammer. The key size
is not restricted. As noted in the introduction, the presence
of a certain amount of common randomness is a frequent
assumption in the literature on frequency hopping.

For given power constraintΓ > 0, we describe a com-
mon randomness assisted(n,Γ)-code as a random variable
(Fn,Φn) on the set of(n,Γ)-codes with common message
size and(Fn,Φn) independent of channel noise. The error
it incurs under jamming sequencẽS ◦ Ẽ is defined to equal
the meanE[ē(Fn,Φn, S̃ ◦ Ẽ)] over all possible realizations
of (Fn,Φn), and the overall transmission error under jammer
power constraintΛ > 0 is set to equal

sup
S̃◦Ẽ∈JΛ

E[ē(Fn,Φn, S̃ ◦ Ẽ)].

The definition of common randomness assisted achievable rate
under power constraintsΓ and Λ is now a straightforward
extension of the corresponding notion for the deterministic
case. The supremum of all common randomness assisted
rates under power constraintsΓ andΛ is called the common
randomness assisted(Γ,Λ)-capacity and denoted byCr(Γ,Λ).

Theorem 1. C(Γ,Λ) is positive if and only ifΓ > Λ. If it is
positive, it equalsCr(Γ,Λ).

Corollary. 1) If C(Γ,Λ) > 0, then every fixed-frequency
subchannel also has a positive capacity. In this sense
FH is not necessary to achieve a positive rate.

2) If C(Γ,Λ) > 0, then common randomness does not
increase the maximal transmission rate.

ForΓ > Λ, it is thus desirable to have bounds onCr(Γ,Λ).
These can be provided for all pairs(Γ,Λ). Note that the choice
of Λ1, . . . ,ΛK below is a waterfilling strategy.

Theorem 2. 1) Let Λ1, . . . ,ΛK be nonnegative numbers
satisfying

{

σ2
k + Λk = c if σ2

k < c,

Λk = 0 if σ2
k ≥ c

with c such thatΛ1 + · · ·+ ΛK = Λ. Then

Cr(Γ,Λ) ≥
1

2
log

(

1 +
Γ

c

)

. (1)

In particular, Cr(Γ,Λ) > 0.
2) If the noise is Gaussian andJ ≥ |{k ∈ K : σ2

k < c}|,
then

Cr(Γ,Λ) ≤
1

2
log

(

1 +
Γ

c

)

+ logK. (2)

Remark. 1) SetK′ := {k ∈ K : σ2
k < c}. As comparison

with (2) shows, (1) is a good bound ifJ ≥ |K′| and
the noise is Gaussian. The lack of a similar bound for
the caseJ < |K′| can be explained by the fact that the
jammer in this case has to leave some of the highest-
throughput subchannels unjammed.Cr(Γ,Λ) in general
depends onJ , and should increase for decreasingJ .

2) The proof of Theorem 2 shows that the12 log(1 + Γ
c )

terms in (1), (2) are achievable without frequency hop-
ping, whereas frequency hopping contributes at most
logK bits to capacity. According to the lower bound,
the common randomness assisted capacity grows to
infinity asΛ is kept fixed andΓ tends to infinity. Thus
asymptotically for largeΓ, the relative contribution to
Cr(Γ,Λ) of information transmitted through the FH
sequence vanishes.

3) Non-trivial frequency hopping will in general be neces-
sary both to achieveCr(Γ,Λ) and C(Γ,Λ). Although
we will not prove this, this is implied by the mutual
information characterization ofCr(Γ,Λ) (see the proof
of Theorem 2).

III. PROOF OFTHEOREM 2

Although Theorem 1 and its corollary are our main results,
we first prove Theorem 2, which is needed for the proof of



Theorem 1. From [2, Theorem 4] it follows that

Cr(Γ,Λ) = sup
(X,κ):

E[X2]≤Γ

min
(ι,S):

E[‖S‖2]≤Λ

I(Xeκ;Xeκ + S ◦ eι +N)

= min
(ι,S):

E[‖S‖2]≤Λ

sup
(X,κ):

E[X2]≤Γ

I(Xeκ;Xeκ + S ◦ eι +N).

HereXeκ is a random variable on the possible sender inputs
determined by anX -valued random pair(X,κ). Similarly,
S ◦ eι is the jammer’s random channel input determined by a
randomS-valued pair(ι,S) independent of(X,κ).

DefineY = Xeκ+S ◦ eι+N. The expressionI(Xeκ;Y)
is concave in the distributionPκ of κ and convex in the
distributionPι of ι. Therefore the sender will in general have
to use frequency hopping to approach capacity and likewise,
the jammer will not stick to one constant frequency subsetI
for jamming.

The mutual information term appearing in the above formula
for Cr(Γ,Λ) can be written as

I(Xeκ;Y) = I(Xeκ, κ;Y)− I(κ;Y|Xeκ)

= I(X ;Y|κ) + I(κ;Y), (3)

upon application of the chain rule in each of the equalities and
observing that the sequenceκ ↔ Xeκ ↔ Y is Markov.

The second term in (3) is between 0 andlogK. Thus to
boundCr(Γ,Λ), it remains to bound

min
(ι,S):

E[‖S‖2]≤Λ

sup
(X,κ):

E[X2]≤Γ

I(X ;Y|κ) (4)

= min
(ι,S):

E[‖S‖2]≤Λ

sup
(κ,Γ)

K
∑

k=1

Pκ(k) sup
X:E[X2|κ=k]≤Γk

I(X ;Y|κ = k),

where the supremum over(κ,Γ) is over κ and nonnegative
vectorsΓ = (Γ1, . . . ,ΓK) satisfying

∑

Pκ(k)Γk ≤ Γ.
We continue with the proof of the lower bound. For any

k ∈ K,
I(X ;Y|κ = k) ≥ I(X ;Yk|κ = k). (5)

Fix any (ι,S) with E[‖S‖2] ≤ Λ. Let SI,k be distributed ac-
cording to the projection onto thek-th coordinate ofPS|ι[·|ι =
I] and denote the second moment ofSI,k by ΛI,k. Note that
ΛI,k = 0 if k /∈ I. The k-th coordinate output of the FH
channel conditional on the eventκ = k has the form

yk = x+ Zk, (6)

whereZk is a real-valued random variable whose distribution
equals

PZk
= Pι({I : k /∈ I})PNk

+
∑

I:k∈I

Pι(I)PNk+SI,k

If we set Λk :=
∑

I Pι(I)ΛI,k, then Zk has the variance
σ2
k + Λk. Observe thatΛ1 + · · · + ΛK ≤ Λ. As (6) is an

additive channel with the real numbers as input and output
alphabet, it is a well-known fact [5, Theorem 7.4.3] that

sup
X:E[X2|κ=k]≤Γk

I(X ;Yk|κ = k) ≥
1

2
log

(

1 +
Γk

σ2
k + Λk

)

.

Hence the right-hand side of (4) can be lower-bounded by

min
Λ

max
(κ,Γ)

1

2

K
∑

k=1

Pκ(k) log

(

1 +
Γk

σ2
k + Λk

)

, (7)

where the minimum is over vectorsΛ = (Λ1, . . . ,ΛK) with
nonnegative components satisfyingΛ1 + · · · + ΛK ≤ Λ. By
choosingκ to be constant and equal to thek corresponding to
the maximallog-term in (7) and by putting all powerΓ onto
this k, (7) is lower-bounded by

min
Λ1+···+ΛK≤Λ

max
k

1

2
log

(

1 +
Γ

σ2
k + Λk

)

. (8)

By this choice ofκ, (8) is obtained without frequency hopping.
It is now straightforward to show by comparison that water-
filling for the jammer is the optimal choice ofΛ1, . . . ,ΛK in
(8). This bound on (4) together with (3) proves (1).

Next we prove the upper bound (2). Assume that all noise
random variables are Gaussian. It is sufficient to upper-bound
(4). We are now free to choose any(ι,S) obeying the second
moment condition. Thus letΛ1, . . . ,ΛK satisfy the waterfilling
scheme. Further, letI be a set containingK′ := {k : σ2

k < c}
and chooseι to be constant and equal to this set (recall
that J ≥ |K′| by assumption). Define random variables
S1, . . . , SK , independent of each other and of the noise, by
settingSk = 0 if k /∈ K′ and, fork ∈ K′, by letting Sk be
Gaussian distributed with mean 0 and varianceΛk.

The independence ofS1, . . . , SK makes (5) an equality.
Conditional on the eventκ = k, the k-th coordinate output
random variable is given by the formula

yk = x+ Sk +Nk,

which is an additive Gaussian noise channel with noise vari-
anceσ2

k + Λk. Applying [5, Theorem 7.4.2], we thus obtain

sup
X:E[X2|κ=k]≤Γk

I(X ;Yk|κ = k) =
1

2
log

(

1 +
Γk

σ2
k + Λk

)

.

So altogether, recalling the choice ofΛ1, . . . ,ΛK , the right-
hand side of (4) can be at most

sup
(κ,Γ)

{

∑

k∈K′

Pκ(k)
1

2
log

(

1 +
Γk

c

)

+
∑

k/∈K′

Pκ(k)
1

2
log

(

1 +
Γk

σ2
k

)}

. (9)

By replacing allσ2
k by c and exploiting the concavity of the

logarithm, one thus obtains that (4) is upper-bounded by

1

2
log

(

1 +
Γ

c

)

, (10)

as claimed. Note that (9) is equal to (10) ifκ is concentrated
on one fixedk ∈ K′ and the sender uses maximal power on
this k, so (10) is also valid without frequency hopping. Note
also that in the case of Gaussian noise andJ ≥ |K′|, together
with the lower bound proved before, we have thus obtained a
closed-form characterization of (4). This completes the proof
of Theorem 2.



IV. PROOF OF DIRECT PART OFTHEOREM 1

The proof of Theorem 1 bases on the sufficient criterion for
C(Γ,Λ) = Cr(Γ,Λ) provided by the corollary to [2, Theorem
4]. To formulate this criterion, we first have to say what it
means for the FH channel to besymmetrizedby a stochastic
kernel.

A stochastic kernelU with inputs fromX and outputs inS
gives, for every(x, k) ∈ X , a probability measureU(·|x, k)
on the Borel algebra ofS such that for every Borel-measurable
A ⊂ S, the mapping(x, k) 7→ U(A|x, k) is measurable.
U(·|x, k) is specified by its values on all pairs(I,B), where
|I| = J andB is a Borel set onRK such that for allb ∈ B,
it holds thatl /∈ I implies bl = 0. One can thus write

U(I,B|x, k) = U1(I|x, k)U2(B|x, k, I).

U1(·|x, k) determines a random variableιU (x, k) on the set
of subsets ofK with cardinality J . U(·|x, k) then deter-
mines a random variableSU (x, k) which, conditional on
the eventιU (x, k) = I, has the distributionU2(·|x, k, I).
These random variables give rise to a random jammer input,
ZU
x,k := SU (x, k) ◦ eιU (x,k). Thus any pair(x′, k′) ∈ X

together withU defines the following channel:

y = xek + ZU
x′,k′ +N,

where (x, k) ∈ X is the sender input, the output set isRK ,
and the noise isZU

x′,k′ +N.
By definition, the FH channel issymmetrizedby U if all

sender input pairs(x, k) and (x′, k′) satisfy

xek + ZU
x′,k′ +N

D
= x′ek′ + ZU

x,k +N,

where
D
= means that the left-hand and the right-hand side have

the same distribution. In particular, this implies

xek + E
[

ZU
x′,k′ +N

]

= x′ek′ + E
[

ZU
x,k +N

]

or equivalently, as the noise is mean-zero,

xek + E
[

ZU
x′,k′

]

= x′ek′ + E
[

ZU
x,k

]

. (11)

To state the criterion for the equality of the(Γ,Λ)-capacities
with and without common randomness, some more definitions
are necessary. LetU0 be the class of stochastic kernelsU
that symmetrize the FH channel and for whichZU

x,k has finite
variance for all(x, k). Let X̃ ⊂ X be finite and(X,κ) be
concentrated onX̃ . Assume that for every(x, k) ∈ X , the
conditional distribution of the random variableZU

X,κ given
{X = x, κ = k} equals that ofZU

x,k. Then define

τX̃ (X,κ,Λ) =
1

Λ
inf

U∈U0

E
[

‖ZU
X,κ‖

2
]

.

We also writeCr,X̃ (Γ,Λ) for the common randomness assisted
capacity of the FH channel with the same power constraints,
but whose inputs are restricted to the finite subsetX̃ of X .

By the corollary of [2, Theorem 4],C(Γ,Λ) = Cr(Γ,Λ) if
there exists a familyF of finite subsets ofX satisfying that
every finite subset ofX is contained in some member ofF

and that for everyX̃ ∈ F , there is an(X,κ) concentrated on
X̃ and satisfyingE[X2] ≤ Γ with I(Xeκ;Y) = Cr,X̃ (Γ,Λ)
andτX̃ (X,κ,Λ) > 1.

We will now closely follow the proof of [2, Theorem 5] to
prove that the above criterion is satisfied for the FH channel
if Γ > Λ. Fix Γ,Λ > 0. Let X̃0 be a finite set satisfying
Cr,X̃0

(Γ′,Λ) > Cr(Γ,Λ) for someΓ′ > Γ. Such a set exists
by the fact ([2, Theorem 4]) that for allΓ,Λ,

Cr(Γ,Λ) = sup
X̃⊂X finite

Cr,X̃ (Γ,Λ)

and the lower bound onCr(Γ,Λ) of Theorem 2 showing that
Cr(Γ,Λ) tends to infinity asΛ is fixed andΓ tends to infinity.
We chooseF as the family of finite subsets̃X of X satisfying
X̃0 ⊂ X̃ and

X̃ =
K
⋃

k=1

X̃k × {k},

where X̃k is symmetric about the origin. Obviously, every
finite subset ofX is contained in someX̃ ∈ F . We first
need to show that for every finite input set̃X ∈ F there
exist Cr,X̃ (Γ,Λ)-achieving channel input distributions which
exhaust all the power and are symmetric on every frequency
subband.

Lemma. Let X̃ ∈ F . Then there exists a pair(X,κ) of
random variables with values iñX satisfying

min
(ι,S):

E[‖S‖2]≤Λ

I(Xeκ;Xeκ + S ◦ eι +N) = Cr,X̃ (Γ,Λ) (12)

and

E
[

X2
]

= Γ, (13)

PX|κ(·|k) = P−X|κ(·|k) (1 ≤ k ≤ K) (14)

Here PX|κ denotes the conditional probability ofX givenκ,
andP−X|κ is defined analogously.

Proof: Fix X̃ ∈ F . By definition of X̃0 andΓ′ we have

Cr,X̃ (Γ′,Λ) ≥ Cr,X̃0
(Γ′,Λ) > Cr,X̃ (Γ,Λ).

Let (X,κ) and (X ′, κ′) assume values iñX such that(X,κ)
achievesCr,X̃ (Γ,Λ) and(X ′, κ′) achievesCr,X̃ (Γ′,Λ). Then
any (X̃, κ̃) distributed according to a nontrivial convex com-
bination of P(X,κ) and P(X′,κ′) achieves a rate larger than
Cr,X̃ (Γ,Λ) because the left-hand side of (12) is concave in
P(X,κ) by [2, Lemma 5]. Moreover(X ′, κ′) uses strictly more
power than(X,κ), so the second moment ofX must equal
Γ. This proves (13).

If we replace(X,κ) by (−X,κ), then the left-hand side
of (12) remains unchanged. This is due to the symmetry of
the jammer input constraints. Hence a random input(X̃, κ̃)
distributed according to12 (P(X,κ) + P(−X,κ)) satisfies (12)-
(14).

Let X̃ ∈ F and (X,κ) as in the Lemma. We now show
thatτX̃ (X,κ,Λ) > 1 if Γ > Λ. To do so, choose anyU ∈ U0.



Then for any(x′, k′) ∈ X , using Jensen’s inequality,

E
[

‖ZU
X,κ‖

2
]

=
∑

(x,k)∈X̃

P(X,κ)(x, k)E
[

‖ZU
x,k‖

2
]

≥
∑

(x,k)∈X̃

P(X,κ)(x, k)
∥

∥E
[

ZU
x,k

]∥

∥

2
. (15)

As U symmetrizes the FH channel, we can apply (11) and
lower-bound (15) by

∑

(x,k)∈X̃

P(X,κ)(x, k)
∥

∥xek − x′ek′ + E[ZU
x′,k′ ]

∥

∥

2

≥
∑

k

Pκ(k)
∑

x∈X̃k

PX|κ(x|k)|x − x′ek′k + E[ZU
x′,k′(k)]|2,

(16)

where we denote byZU
x,k(k) the k-th component ofZU

x,k. By
(14), PX|κ(·|k) is symmetric for everyk, so its mean equals
0 and

min
a

∑

x∈X̃k

PX|κ(x|k)|x − a|2 =
∑

x∈X̃k

PX|κ(x|k)|x|
2.

Using this in (16) and applying (13) yields the lower bound

∑

(x,k)∈X̃

P (x, k)|x|2 = E[X2] = Γ

for E
[

‖ZU
X,κ‖

2
]

. We conclude thatτX̃ (X,κ,Λ) > 1 for all
X̃ ∈ F and the corresponding(X,κ) if Γ > Λ, implying that
C(Γ,Λ) = Cr(Γ,Λ). As the common randomness assisted
(Γ,Λ)-capacity is positive for positiveΓ, this further implies
thatC(Γ,Λ) > 0 if Γ > Λ, and the proof of the direct part of
Theorem 1 is complete.

V. PROOF OF CONVERSE FORTHEOREM 1

The converse follows the lines of the proof of the converse
of [3, Theorem 1]. LetΓ ≤ Λ. Let (fn, ϕn) be any(n,Γ)-
code with|Mn| ≥ 2 messages. We will prove that there exists
a jammer input sequencẽS ◦ Ẽ such that̄e(fn, ϕn, S̃ ◦ Ẽ) ≥
1/4. This sequence will be found among the following inputs.
Assume thatfn(m) = (x1ek1

, . . . , xnekn
). Then letẼ(m) be

the matrix whosei-th column iseki
, and let thei-th column of

the matrixS̃(m) equalxieki
. This gives a set{S̃(m)◦Ẽ(m) :

m ∈ Mn} of jammer input sequences. Note that the power
of any of these is at mostΛ.

Observe that form,m′ ∈ Mn with m 6= m′,

P[ϕn(fn(m) + S̃(m′) ◦ Ẽ(m′) + Ñ) 6= m]

= P[ϕn(fn(m
′) + S̃(m) ◦ Ẽ(m) + Ñ) 6= m]

≥ 1− P [ϕn(fn(m
′) + S̃(m) ◦ Ẽ(m) + Ñ) 6= m′].

Thus
1

|Mn|

∑

m∈Mn

ē(fn, ϕn, S̃(m) ◦ Ẽ(m))

≥
1

|Mn|2

∑

m,m′∈Mn

P[ϕn(fn(m) + S̃(m′)◦Ẽ(m′) + Ñ) 6= m]

≥
1

|Mn|2
·
|Mn|(|Mn| − 1)

2
≥

1

4
.

Therefore one of the jammer inputs̃S(m) ◦ Ẽ(m) makes
the average error incurred by the code(fn, ϕn) at least one
quarter. This proves the converse of Theorem 1.

VI. PROOF OF THE COROLLARY TOTHEOREM 1

The second claim of the corollary is obvious from Theorem
1. The first statement follows from [2, Theorem 5], which
says that an additive-noise channel withR as sender, jammer
and output alphabet has positive capacity (then equal to the
common randomness assisted capacity) if and only if the
sender power exceeds the jammer power. So if both the sender
and the jammer in the FH channel concentrate their power on
any frequency bandk ∈ K and Γ > Λ, already a positive
capacity equal to

max
X:E[X2]≤Γ

min
S:E[S2]≤Λ

I(X ;X + S +Nk)

and lower-bounded by

1

2
log

(

1 +
Γ

σ2
k + Λ

)

> 0

will be achievable. In particular, this rate can be obtainedwith-
out frequency hopping. On the other hand, if no transmission
is possible over the subchannels, thenΓ ≤ Λ, and the FH
channel also has zero capacity.

VII. D ISCUSSION

For non-discrete AVCs, there is no general statement that
capacity without common randomness always equals 0 or
the common randomness assisted capacity like the Ahlswede
dichotomy in [1] for discrete AVCs. Thus it is not possible to
justify Theorem 1 just by observing that the capacity of every
subchannel is positive ifΓ > Λ.

Like [8], [7] we assume here that the receiver simulta-
neously listens on all frequencies. A different approach is
taken in [6], [4], where the receiver listens randomly on only
one frequency band at a time. The above analysis can be
performed in a similar way for this situation and leads to
analogous results: The capacity without common randomness
shared between sender and receiver is positive if and only if
the sender power exceeds the jammer power. Of course, the
capacity will in general be smaller than if the receiver listens
on all frequencies.

The converse shows that in order to find a good jamming
sequence, the jammer needs knowledge of the channel and
the transmission protocol. Further, it should know when the
transmission of a codeword starts, so it has to be synchronized
with the sender. If this is given, then the successful jamming



strategy in the caseΓ ≤ Λ is to confuse the receiver: There
exists a legitimate codeword such that if the jammer inputs
this into the FH channel, the receiver cannot distinguish the
sender’s messages.

The case of a jammer listening to the sender’s input into
the channel like in [6], [4] was not treated here because there
exist few results on AVCs in this direction.
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