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Abstract—The effectiveness of frequency hopping for anti- is found which achieves a positive throughput whose value
jamming protection of wireless channels is analyzed from an depends on the jammer’s strategies, e.g. whether or nohit ca
information-theoretic perspective. The sender can inputts sym- listen to the sender’s signals.

bols into one of several frequency subbands at a time. Each . L .
subband channel is modeled as an additive noise channel. No We take a different perspective in this work. The central

common randomness between sender and receiver is assumedfigure of merit for our communication system is the message
It is shown that capacity is positive, and then equals the transmission error incurred under a jamming attack. A good
common randomness assisted (CR) capacity, if and only if the FH protocol should make this error small. We assume that
sender power strictly exceeds the jammer power. Thus compad  1ha jammer cannot listen to symbols sent through the channel
to transmission over any fixed frequency subband, frequency L . . .
hopping is not more resilient towards jamming, but it does (this in particular differs from [6]?’_ that it knows the chrae .
increase the capacity. Upper and lower bounds on the CR and the code, but not the specific message sent, and that it
capacity are provided. knows when the transmission of a new codeword begins. It
can input symbols into any frequency subset of a given size.
We also assume that the receiver listens to all frequencies
A wireless channel is open to inputs from anybody opesimultaneously.
ating on the same frequency. Therefore communication hadwithin these boundaries, any jammer strategy is allowed.
to be protected against deliberate jamming. This means tfi&e jammer is successful if no coding strategy can be found
communication protocols have to be devised whose applicaaking the transmission error vanish with increasing cgdin
tion enables reliable data transmission even if attackeé byblocklength for any jamming strategy. This is an operationa
jammer. approach to measure the success of jamming, in contrast to
If a sufficiently broad frequency band is available, and & ththe approach of |6] described above.
jammer does not have simultaneous access to the completdsing the information-theoretic model of an additive Arbi-
band, a method which suggests itself is frequency hoppitrgrily Varying Channel (AVC) and the analysis inl [2], we
(FH). The frequency spectrum is divided into subbands. find that the success of a jammer indeed depends on the
each time slot, the sender chooses a subband in a random vedgtion between its own and the sender’s power. In fact, if
and uses only that frequency to transmit data in that time slthe sender power is strictly larger than the jammer power,
In some models[4],[16], the receiver hops over frequenciee same, positive capacity is achieved as in the case where
too, and only listens to one subband at a time. The idea is tisahder and receiver have access to common randomness which
in this way, the channel will not be jammed all the time witlis unknown to the jammer. If the converse relation between
positive probability, and some information will go through sender and jammer power holds, then no data transmission
To succeed, the basic FH idea requires common randomnassll is possible. This is independent of the numbepf
known to sender and receiver, but unknown to the jammer.sdbchannels the jammer can influence at the same time.
careful analysis of that situation has been performedlinlf4] On the other hand, it is known that for each frequency
is clearly necessary that the common randomness realizatsmbband the same holds: If the jammer has more power than
be known before transmission starts. As the channel careotthe sender, no communication is possible over this band,
used to distribute this knowledge, this leads to a circléedal whereas the common randomness assisted capacity is athieve
anti-jamming/key-establishment dependency_in [6]. in case the sender power exceeds the jammer power. Thus
In [6] it has been investigated for the first time whethen the case that no single frequency subband has a positive
FH can be used for data transmission without the availgbilitapacity without common randomness, then no FH scheme
of common randomness. Moreover, the jammer is allowed &ghieves a positive capacity either. Seen from this petispec
distribute its power arbitrarily over all frequency subban FH does not provide any additional protection against jangmi
and use these simultaneously. It is assumed that whether ¢benpared to schemes which stick to one single frequency.
jammer inserts, modifies or jams messages only dependsHowever, FH does in general increase the common random-
the relation of its own and the sender’'s power. A protocoless assisted capacity compared to the use of one single
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subchannel, and hence also the capacity without commaenoted by:?. The random vectofNy, ..., Nk)' is denoted

randomness if positive — the FH sequence may depend mnN.

the message and thus reveal additional information.[(In [8] Given sender inpute; and jammer inpusoer, the receiver

[7] this is called message-driven frequency hopping.) obtains a reals-dimensional output vectay, ..., yx) ' =
The common randomness assisted capacity will in genegathrough the FH channel which satisfies

depend on the numbey of subchannels the jammer can

simultaneously influence. Thus the capacity achievableouit

common randomness, if positive, also depends/olVe give |y particular, on frequencies without sender or jammer ispu
a lower bound for the common randomness assisted capagi¢ output is pure noise. The channel is memoryless over
If the noise is Gaussian andl is sufficiently large, we also time, j.e. outputs at different time instants are independe
provide an upper bound which differs from the lower boung,ngitional on the sender and jammer inputs. Note that ¢his i
by the logarithm of the number of frequency bands. Theg, aqgitive AVC, but as its input alphabet is a strict subget o
bounds involve a waterfilling strategy for the distributioh RX | the special results of[2] on additive-noise AVCs do not
the jammer’s power over the frequencies. apply here. The general theory developedin [2] is applEabl
Notation: For any random variablg, we denote its distribu- thoyugh: All alphabets involved are complete, separableimet
tion by P¢. The conditional distribution of a random variabl%pacdg the channel output distribution continuously depends
¢ given another random variableis denoted byr, . on the sender and jammer inputs, and the constraints onrsende
Organization of the paperSection Il presents the channebnd jammer inputs to be defined below are continuous. Hence
model and the main results. Sections Ill-VI contain the [B00the central hypotheses (H.1)-(H.4) of [2] are satisfied.
of these results. A discussion concludes the paper in $ectio The protocols used for data transmission are block codes. A
VII. blocklengthn code is defined as follows. We assume without
loss of generality that the set of messages, is the set
{1,...,|My|}. An encoder is a mapping, from M,, into
The total frequency band available for communication #e set of sequences of sender channel inputs of lemgth
divided into K frequency subbands. These are modeled as .
parallel channels v?ith ad)(;itive noise. The receiver listemall {(@ier, s wnep,) i (@i ki) € X (1< i <)}
frequencies simultaneously. Frequency hopping (FH) meanste that this means that the sequence of frequency bands
that the sender at each time instant chooses one ofstheused by the sender may depend on the message to be sent.
subchannels into which it inputs a signal. For a fixed numbekery codeword can be considered a& a< n-matrix whose
J with 1 < J < K, the jammer can at each time instanf-th column is thei-th channel input vector. The decoder at
choose a subséf of the K subchannels withZ| = J and blocklengthn is a mappingp,, : REX" — M,,.
input its own signals in subchannels belonging to this subse Additionally, for someI’ > 0, the sender has the power
The overall channel, called FH channel in the followingsonstrainty"""_, || f.(m);||> < =@ for all m € M,,, where
can be described as an additive Arbitrarily Varying Channg],(m), denotes the-th column of theK x n-matrix f,,(m)
(AVC) with additive noise. For any € K = {1,..., K}, we and||-|| denotes the Euclidean norm &1<. A code(f,,¢n)

y = xer +soez + N.

Il. SYSTEM MODEL AND MAIN RESULTS

set(eg1,...,exx)| = e to be the vector witte,, = 1 and  with blocklengthn which satisfies the power constraint fbr

exy = 0 for I # k. Further for anyZ with |Z| = J, we set s called an(n,T)-code.

(ez.1,-..,ez,x)" = ez to be the vector satisfyingz; = 1if ~ We are interested in the transmission error incurred by
l e andez,; =0 else. a code (f,, ). This error should be small for all pos-

If the sender chooses symbal € R to transmit over sible jammer input sequences. Thus we first define the
subchannek, it inputs ze;, into the channel. We denote thetransmission error for a given lengthjamming sequence

setR x K by X. The jammer choooses a subsetC K ((Zy,s1),...,(Z,,sn)). This sequence can be given matrix
of subchannels for possible jammin(f|(= J) and a vector form as well. We denote by the K x n-matrix whosei-
(s1,...,sx)" =s € R of real numbers satisfying; = 0 th column equalss;. By E € RE*" we denote the matrix
if [ ¢ Z. Then it inputss o ez into the channel, where thewith columnsez,,...,ez,. Of course,S o E = S. We
symbolo denotes component-wise multiplication. We denotieeep ' explicit becauses itself does not in general uniquely
the set of possible jammer choices by determine the sequenc¢®,...,Z,), as some components of
X s; could be zerq1l <i < n).
S:= U {Z} x{seR":lel=s5=0} Just like the sender, the jammer has a power constraint. We
ICK:|Z|=J require that)_" . [|s;]|> < nA for someA > 0 and denote

The noise on different frequencies is assumed to be e Set ofS o £ satisfying this power constraint by. It
dependent. Thus the noise probability distribution of thi§ clear that a realistic jammer cannot transmit at arblyrar
overall channel is determined by the noise distributionshen | _ , . ,

beh Is. For subchanriellet N, be the noise random Giving a discrete sek the metricp(k,l) = 1if k #1 andp(k,k) =0
su _C anneis. ; k - : for all k,1 € K makesKC a complete metric space whose Borel algebra is its
variable. Its mean is assumed to be zero and its variancedsiplete power set.



large powers, so this is a reasonable assumption. Note thheorem 1. C(T', A) is positive if and only if" > A. If it is

the jammer is free to distribute its power over the subchlnrmositive, it equalg”,.(T, A).

subset it has chosen for jamming. In particular, the powar ca !

be concentrated on one single frequency no matter wtiat Corollary. 1) If C(I', A) > 0, thgn every f!xed-frequency
Now let (.., ) be a blocklengths code andsS o £ ¢ sub(_:hannel also has a pos_ltlve capa_c!ty. In this sense

RE*" a jammer input. Then the average error incurred by FH is not necessary to achieve a positive rate.

(fn, n) under this jamming sequence is defined to equal 2) _If cr,a) > 0, Fhen commpn_randomness does not
increase the maximal transmission rate.

&(fn: on, S5 0 B) ForT > A, itis thus desirable to have bounds 6p(T', A).
_ 1 Z Plon(fo(m) + 8 o E + N) #m], These can be provided for all paifs, A). Note that the choice
| M| meM, of Ay,..., Ak below is a waterfilling strategy.

whereN is a matrix whose columns areindependent copies Theorem 2. 1) Let A, ..., Ax be nonnegative numbers
of the noise random vectd¥. The overall transmission error satisfying
for (fn,©n) under jammer power constraiftis given by

&(fnson:A) = sup  &(fn,n, S0 E).

SoEe€Ja

ol +A,=c ifol<ec,
A =0 if o2 > ¢

This error criterion makes the FH channel an AVC.

A nonnegative real number is said to beaghievable rate
under sender power constraintand jammer power constraint 1 r
A if there exists a sequence of codds,, ¢,))2>,, where Cr(I',A) 2 5 log (1 + Z) : @)
(fn,n) is an(n,T')-code, satisfying

with ¢ such thatA; +---+ Ag = A. Then

| In particular, C,.(T', A) > 0.
lim inf log|Mn| = R, 2) If the noise is Gaussian and > |{k € K : 02 < ¢},
lim é(fn,pn,A) =0. then

n—oo

1 r
The supremunC(T', A) of the set of achievable rates under Cr(I'A) < D) log <1 + ;) +log K. )
power constraint§' and A is called the(T", A)-capacityof the

channel. _ y _ Remark. 1) SetK’ := {k € K : 0} < c}. As comparison
Now we ask under which conditions tii€, A)-capacity of with (@) shows, [[L) is a good bound if > |K’| and

the FH channel is positive, and in case it is positive, how o hoise is Gaussian. The lack of a similar bound for

large it is. A precise statement can be made upon introductio 1o cases < IK’| can be explained by the fact that the

of the common randomness assisted capaCitif’, A). This jammer in this case has to leave some of the highest-

is the maximal rate achievable if sender and receiver have throughput subchannels unjammég.(T, A) in general

a common secret key unknown to the jammer. The key size depends or/, and should increase for7decreasljﬁg

is not restricted. As noted in the introduction, the presenc 2) The proof of Theorem 2 shows that t%dog(l + L

of a certain amount of common randomness is a frequent * (o1ms in (1), ) are achievable without frequenc§ hop-

assumption in the literature on frequency hopping. ping, whereas frequency hopping contributes at most
For given power constraint’ > 0, we describe a com- log K bits to capacity. According to the lower bound,

mon randomness assistéd, I')-code as a random variable the common randomness assisted capacity grows to

(Fy, ®,) on the set of(n,I')-codes with common message infinity as A is kept fixed and’ tends to infinity. Thus

size and(F,,®,) independent of channel noise. The error 55y mpiotically for large, the relative contribution to

it incurs under jamming sequenceo £ is defined to equal C, (T, A) of information transmitted through the FH

the meanE[e(F,,, ®,,S o E)] over all possible realizations sequence vanishes.

of (F,, ®,), and the overall transmission error under jammer 3) Non-trivial frequency hopping will in general be neces-

power constrain > 0 is set to equal sary both to achieve’,.(I', A) and C(T", A). Although
sup E[e(F,, ®,,S 0 E)]. we will not prove this, this is implied by the mutual
SoEeJn s information characterization af’.(I', A) (see the proof

The definition of common randomness assisted achievalage rat of Theorem 2).

under power constraints and A is now a straightforward

extension of the corresponding notion for the deterministi 1. PROOF OFTHEOREM2

case. The supremum of all common randomness assisted

rates under power constrairiisand A is called the common  Although Theorem 1 and its corollary are our main results,
randomness assistél, A)-capacity and denoted k,.(I', A). we first prove Theorem 2, which is needed for the proof of



Theorem 1. From ]2, Theorem 4] it follows that Hence the right-hand side dfl(4) can be lower-bounded by

Cr.(T,A) = sup min I (Xe,; Xe,+Soe, +N) 1 K Iy
X, k): (L,S2): min max — P, (k)log (1 + 27) , @)
E[x?)<T E[IIS]I7]<A A (k)2 Pt oj + Ay
- (rflér)l &uf). I(Xes; Xex+Soe, +N).  yhere the minimum is over vectors = (A1,...,Ag) with
E[IS|I?]<A g{x?)<T nonnegative components satisfyihg + --- + Ax < A. By

Here Xex is a random variable on the possible sender inpu?goosmg“ to be constant and equal to f[he:orresponding to
determined by anY-valued random paifX, «). Similarly, 1€ maximallog-term in [f) and by putting all powelr onto
S oe, is the jammer’s random channel input determined byiS &+ (@) is lower-bounded by
randomS-valued pair(¢, S) independent of X, ). . 1 1 1 r 8
DefineY = Xe, +Soe, + N. The expressiod(Xe,;Y) Ay g m _ max o log | L Z+ AL (8)
IS concave in the distributiorP,; of anq convex in the By this choice ofx, (8) is obtained without frequency hopping.
distribution P, of . Ther.efore the sender wil n genera_l ha\{?t is now straightforward to show by comparison that water-
to use frequency hopping to approach capacity and I|keW|§|(ﬁmg for the jammer is the optimal choice o Ax in
the jammer will not stick to one constant frequency su[‘i’set@ This bound onl{4) together witfll(3) prové (13
for jamming. . . N Next we prove the upper bound (2). Assume that all noise
The mutual |nformat|_on term appearing in the above forrm"r%mdom variables are Gaussian. It is sufficient to uppentiou
for C;.(I', A) can be written as (4). We are now free to choose afwy S) obeying the second
I(Xe.;Y)=1(Xe,,r;Y)—I(r;Y|Xe,) moment condition. Thus lety, . . ., A satisfy the waterfilling
= I(X;Y|k) + I(r;Y), (3) scheme. Further, I€f be a set containing’’ := {k : 07 < c}
L ) ) . and choose. to be constant and equal to this set (recall
upon application of the chain rule in each of the equalities Athat J > K’| by assumption). Define random variables

observing that the sequenge—~ Xe, < Y is Markov. IS S i ;
i ’ 1,--.,S5K, independent of each other and of the noise, by
The second term in13) is between 0 ahg K. Thus to setting Sy = 0 if k ¢ K’ and, fork € K', by letting S, be

boundC,.(I', A), it remains to bound Gaussian distributed with mean 0 and variafge

min sup I(X;Y]|k) 4) The independence of4,..., Sk makes [(b) an equality.
. (w8 (X Conditional on the evert = k, the k-th coordinate output
[ISIFI<AE[x?)<T : i
X« random variable is given by the formula
= min sup an(k) sup I(X;Y|k = k), Yr = T + Sk + N,
(1:8):  (wT) X:E[X2|k=K]<T} o N ) ) _ ) )
E[|IS|I*]<A which is an additive Gaussian noise channel with noise vari-

where the supremum ovér,T') is over x and nonnegative ances; + Ax. Applying [5, Theorem 7.4.2], we thus obtain
vectorsT’ = (T, . ,T'x) satisfying}_ P, (k)T <T. 1 Iy
We continue with the proof of the lower bound. For any sup I(X;Yi|k = k) = Jlog {1+ —5—+ ).
kek. X:E[X2|k=k]<T} o, + Ak
I(X;Y|k=k) > I(X; Y|k = k). (5) So altogether, recalling the choice 6f,. .., Ak, the right-

Fix any (:, S) with E[||S||?] < A. Let Sz, be distributed ac- hand side of[{k) can be at most

cording to the projection onto theth coordinate ofs, [+ = { Pl <1 E)

7] and denote the second momentSyf;, by Az ;. Note that (S,;llg) k%; w( )2 e\t

Az = 0 if k ¢ Z. The k-th coordinate output of the FH 1 r

channel conditional on the eveat= k has the form + Z P,{(k)g log <1 + 0—5) } (9)
k

Yk = 2+ Zy, (6) _ e . .
By replacing allo? by ¢ and exploiting the concavity of the
f?)garithm, one thus obtains théi (4) is upper-bounded by

whereZ;, is a real-valued random variable whose distributio
equals

1 r
Pz, =P.({Z:k ¢ I})Px, + > P(T)Pryiss, 5 log <1 + ;) ; (10)
I:keZ

If we setAy := Y ; P,(Z)Az, then Z; has the variance ) y .
o2 1 Ay. Observe thath; + --- + Ax < A. As (@) is an on one fixedk € K’ and the sender uses maximal power on

additive channel with the real numbers as input and outphﬂS kt'hs?inmth) Is also \f/aGhd W|tih(:]u;[1friequdenr;dcylcrlopipmgt.thote
alphabet, it is a well-known fact[5, Theorem 7.4.3] that aiso tha e case of Gaussian noise dnd |K'|, toge e
with the lower bound proved before, we have thus obtained a

. closed-form characterization dfl(4). This completes theopr
o 4+ Ag of Theorem 2.

as claimed. Note thaf}(9) is equal {0 (10)ifis concentrated

1
sup I(X; Y,k =k) > = log (1—|—
X:E[X?|k=k]<T 2



IV. PROOF OF DIRECT PART OFTHEOREM 1 and that for everyt € F, there is an X, ) concentrated on

The proof of Theorem 1 bases on the sufficient criterion fof and satisfying[X*] < T' with I(Xe;Y) = C, 5(T', A)
C(I', A) = C,.(T, A) provided by the corollary td 2, Theorem@nd 7 (X, s, A) > 1.
4]. To formulate this criterion, we first have to say what it e will now closely follow the proof of[[2, Theorem 5] to
means for the FH channel to ymmetrizecby a stochastic Prove that the above criterion is satisfied for the FH channel
kernel. if ' > A. Fix I'; A > 0. Let X, be a finite set satisfying

A stochastic kernel/ with inputs from’ and outputs ins ~ Cr.%, (I A) > Cr(I', A) for somel” > I'. Such a set exists
gives, for every(z, k) € X, a probability measuré/(-|z,k) DY the fact ([2, Theorem 4]) that for all, A,
on the Borel algebrqof such that for every B_orel-measurable C.(0,A) = sup C, (T, A)
A C S, the mapping(z, k) — U(Alz, k) is measurable. FCX finte
U(-|z, k) is specified by its values on all paif&, B), where
|Z| = J and B is a Borel set orR¥X such that for allb € B,
it holds thatl ¢ Z implies b; = 0. One can thus write

and the lower bound o6, (T', A) of Theorem 2 showing that
C,(I', A) tends to infinity as\ is fixed andl” tends to infinity.
We chooseF as the family of finite subset¥ of X' satisfying

U(Z, Blz, k) = Uy(Z|z, k)Us(B|z, k,T). Xy C X and
K
U, (-|x, k) determines a random variabl€ (z, k) on the set X = U Xy x {k},
of subsets offC with cardinality J. U(-|z, k) then deter- 1

mines a random variabl&Y (x, k) which, conditional on - . . .
the eventV(z,k) = Z, has the distributionls(-|z, k, 7). where X}, is symmetric about the origin. Obviously, every

These random variables give rise to a random jammer inp{ifite Subset ofX’ is contained in somet c . We first
7V, = SU(x,k) o e.v(ar). Thus any pair(a’, k) € X need to show that for every finite input s&t € F there

together withU' defines the following channel: exist C, (I, A)-achieving channel input distributions which
exhaust all the power and are symmetric on every frequency

Yy =reg + Zaljj/,k’/ + N, subband.
where (z,k) € X is the sender input, the output setRd, Lemma. Let ¥ € F. Then there exists a pai(X, ) of
and the noise iZY, ,, + N. random variables with values i’ satisfying

By definition, the FH channel isymmetrizedoy U if all ) _

sender input pairéz, k) and (2’, k') satisfy s): I(Xey; Xey+Soe, +N)=C, 3(I'A) (12)

U D, U E[|IS|*]<A

IekJer/k/ﬁLN:Iek/Jer_kJrN, d
’ ' an

whereZ means that the left-hand and the right-hand side have E[Xg] -7 (13)
the same distribution. In particular, this implies '
PX‘I{(U{:) :P7X|n(|k) (1 SkSK) (14)

ve +E[Zf) o + N] = a'ep +E[Z; + N] . . .
’ ' Here Px,,. denotes the conditional probability of givenx,

or equivalently, as the noise is mean-zero, and P_y,, is defined analogously.
vey +E[ZY ] = 2'er + E[Z0,]. (11) Proof: Fix X € F. By definition of X, andI’ we have
To state the criterion for the equality of tiE, A)-capacities C +(I",A)>C, ; (I",A) > C,_ (T, A).
T, ? — r,Xo ? T, ?

with and without common randomness, some more definitions B

are necessary. Let, be the class of stochastic kerndls Let (X, «) and (X', ") assume values i’ such that( X, )
that symmetrize the FH channel and for whigfi, has finite achievesC, (', A) and (X', x’) achievesC, (I, A). Then
variance for all(z, k). Let ¥ ¢ X be finite and(X, ) be any (X,#) distributed according to a nontrivial convex com-
concentrated on¥. Assume that for everyz, k) € &, the bination of P x ) and P x: . achieves a rate larger than
conditional distribution of the random variable , given C, ;(T',A) because the left-hand side @f112) is concave in

{X =z, = k} equals that o7, . Then define Pix.ry by [2, Lemma 5]. Moreove(X’, ') uses strictly more
1 power than(X, k), so the second moment & must equal

(X, k,A) =~ inf E[||Z%.]°]. I'. This proves[(IB3).
A veto If we replace(X, k) by (—X, ), then the left-hand side

We also writeC', (T, A) for the common randomness assistedf (12) remains unchanged. This is due to the symmetry of
capacity of the FH channel with the same power constraintege jammer input constraints. Hence a random infXit <)
but whose inputs are restricted to the finite subkenf X' distributed according toé—(P(X_,,{) + P_x,) satisfies [(IR)-

By the corollary of [2, Theorem 41(T, A) = C,.(T, A) if  (14). [ |
there exists a familyF of finite subsets oft’ satisfying that Let X € F and (X, x) as in the Lemma. We now show
every finite subset oft is contained in some member & thatr;(X,x,A) > 1if I' > A. To do so, choose arly € Uj.



Then for any(z’, k") € X, using Jensen’s inequality, Thus

1 B - -
E[|1Z% ./ ™ ZM &(fn pns S(m) 0 E(m))
= > Pxw(@RE[IZT,7] | - o )
(X7 ) I,k
(k)X = M2 ZEM Plon(fn(m) + S(m')oE(m') + N) # m]
2 m,m n
(z,k)eX > |_/\/ln|2 . 5 > Z

As U symmetrizes the FH channel, we can apglyl (11) artherefore one of the jammer input$(m) o E(m) makes
lower-bound [(Ib) by the average error incurred by the codg,, »,,) at least one

) guarter. This proves the converse of Theorem 1.

Z Pix o) (2, k) Hacek — e + E[Zg,,k,]
(x,k)EX

VI. PROOF OF THE COROLLARY TOTHEOREM 1

, U 9 The second claim of the corollary is obvious from Theorem
> an(k/’) Z Px(lk)|x — 2'ewr + E[Zy o (R)]I7, 1. The first statement follows fronil[2, Theorem 5], which
k zeXy says that an additive-noise channel wiRhas sender, jammer
(16) and output alphabet has positive capacity (then equal to the
common randomness assisted capacity) if and only if the
where we denote by, (k) the k-th component o/, By  sender power exceeds the jammer power. So if both the sender
(14), Px . (-|k) is symmetric for every:, so its mean equals 5nq the jammer in the FH channel concentrate their power on

0 and any frequency band¢ € K andT' > A, already a positive
) capacity equal to
min Z P){|m($|]f)|$*a|2 = Z Px\n($|k)|ff|2- i (XX 48+N
ceX, z€®, Al g (X; X + 8+ Ng)

Using this in [I6) and applyindg_(13) yields the lower boundand lower-bounded by

T
0
a,%—I—A) ~

will be achievable. In particular, this rate can be obtaivwitti-
for E[||2¥ ,.|?]. We conclude that (X, , A) > 1 for all out frequency hopping. On the other hand, if no transmission

X e F and the corresponding¥, ») if I' > A, implying that is possible over the subchar_mels, then< A, and the FH
C(T,A) = C,.(T,A). As the common randomness assistet'@nnel also has zero capacity.

(T, A)-capacity is positive for positiv&, this further implies VIl. DISCUSSION
thatC(I', A) > 0 if I' > A, and the proof of the direct part of

Theorem 1 is complete.

1
Z P(x,k)|z)> = E[X?] =T 3 log (1 +
(w,k)e./'?

For non-discrete AVCs, there is no general statement that
capacity without common randomness always equals O or
the common randomness assisted capacity like the Ahlswede

V. PROOF OF CONVERSE FOR HEOREM 1 dichotomy in [1] for discrete AVCs. Thus it is not possible to
justify Theorem 1 just by observing that the capacity of gver

The converse follows the lines of the proof of the conversgpchannel is positive if > A.
of [3, Theorem 1]. Letl’ < A. Let (fu,¢,) be any(n,I')-  |jke [8], [7] we assume here that the receiver simulta-
code with|M,,| > 2 messages. We will prove that there existieously listens on all frequencies. A different approach is
a jammer input sequenceo E such thate(f,, ¢n, S© E) > taken in [6], [4], where the receiver listens randomly onyonl
1/4. This sequence will be found among the following inputgne frequency band at a time. The above analysis can be
Assume thaff,,(m) = (z1ex,, ..., zney, ). Then letE(m) be  performed in a similar way for this situation and leads to
the matrix whose-th column isey;, and let thei-th column of - anaj0gous results: The capacity without common randomness
the matrixS(m) equalz;ey, . This gives a sefS(m)oE(m) :  shared between sender and receiver is positive if and only if
m € My} of jammer input sequences. Note that the powghe sender power exceeds the jammer power. Of course, the

of any of these is at most. capacity will in general be smaller than if the receiverelist
Observe that forn, m’ € M,, with m # m/, on all frequencies.
The converse shows that in order to find a good jamming
Pl (fr(m) + S(m') OE(m’) +N) # m] sequence, the jammer needs knowledge of the channel and
/ & - Y the transmission protocol. Further, it should know when the
= Pln (fu(m’) + S@ ° E(m~) ) 7% m] transmission of a Eodeword starts, so it has to be synchedniz
> 1= Plpn(fa(m') + S(m) o E(m) + N) # m/]. with the sender. If this is given, then the successful jangmin



strategy in the cas€ < A is to confuse the receiver: There
exists a legitimate codeword such that if the jammer inputs
this into the FH channel, the receiver cannot distinguish th
sender's messages.

The case of a jammer listening to the sender’s input into
the channel like in[6],[[4] was not treated here becauseether
exist few results on AVCs in this direction.
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