Data Verification and Privacy-respecting User
Remuneration in Mobile Crowd Sensing

Stylianos Gisdakis, Thanassis Giannetsos, Panos Papadimitratos
Networked Systems Security Group
KTH Royal Institute of Technology, Stockholm, Sweden
{gisdakis, athgia, papadim}@kth.se

Abstract—The broad capabilities of current mobile devices have paved the way for Mobile Crowd Sensing (MCS) applications. The
success of this emerging paradigm strongly depends on the quality of received data which, in turn, is contingent to mass user
participation; the broader the participation, the more useful these systems become. This can be achieved if users are gratified for their
contributions while being provided with strong guarantees for the security and the privacy of their sensitive information. But this very
openness is a double-edge sword: any of the participants can be adversarial and pollute the collected data in an attempt to degrade the
MCS system output and, overall, its usefulness. Filtering out faulty reports is challenging, with practically no prior knowledge on the
participants trustworthiness, dynamically changing phenomena, and possibly large numbers of compromised devices. This work presents
a holistic framework that can assess user-submitted data and sift malicious contributions while offering adequate incentives to motivate
users to submit better quality data. With a rigorous assessment of our system’s security and privacy protection complemented by a
detailed experimental evaluation, we demonstrate its accuracy, practicality and scalability. Overall, our framework is a comprehensive
solution that significantly extends the state-of-the-art and can catalyze the deployment of MCS applications.

Index Terms—Mobile Crowd Sensing, Security, Privacy, Incentive Mechanisms, Homomaorphic Encryption

1 INTRODUCTION AND BACKGROUND

Mobile Crowdsensing [1, 2] (MCS) leverages the proliferation
of modern sensing-capable devices to build a wide-scale
information collection network that can provide insights for
practically, anything, from anywhere and at anytime. Emerging
applications range from environmental monitoring [3, 4],
intelligent transportation [5, 6, 7] to assistive health-care [8,
9] and public safety [10, 11]. Overall, MCS will lead to a
new understanding of our environment, thus, creating added
value for the participating users.

However, MCS systems entail a number of challenges.
First, users are increasingly concerned with the security
and the privacy of their sensitive information; revelations
of mass surveillance [12] aggravate such anxieties. Users
are expected to contribute sensed data tagged with spatio-
temporal information (e.g., time and/or location). Misus-
ing such information could reveal sensitive user-specific
attributes including their whereabouts, personal activities,
health condition, etc. [13]. Therefore, user privacy is vital for
any successful and large-scale deployment of MCS systems.

A second challenge is user participation. Simply put, MCS
systems will be successful if users embrace them in great
numbers and provide a sufficient influx of contributions (i.e.,
information) to the system. Unfortunately, users may opt
out at any time for any reason. In fact, user participation is
driven either by intrinsic (i.e., contributing to applications
targeting societal welfare) or extrinsic (i.e., reward-based)
motivation. The latter one requires incentive mechanisms that
can reinforce user motivation [14]. The way incentives are
materialized largely depends on the MCS application and the
involved stakeholders. However, the common denominator
is the provision of incentives in a privacy-preserving manner:

users should be gratified without being associated to the
data they contribute to the system. Nonetheless, this sets
the challenge ahead: assessing the overall contributions made by
anonymous (for privacy-protection) users.

Besides recruiting users, MCS systems must also retain
them by offering accurate and useful information. Systems
relying on, presumably, trusted information sources (e.g.,
traffic cameras and/or environmental sensors deployed and
managed by the authorities) can offer accurate information
but at a high deployment cost and with limited spatial
coverage. On the contrary, MCS systems collect information
not necessarily from trustworthy sources; they opt for con-
tributions from anyone possessing a sensing-capable device.
This very openness, however, renders them vulnerable to
malicious users that can pollute the data collection process,
thus, manipulating (or even dictating) the system output;
thwarting such attacks is the main challenge ahead.

Many works aim to secure the data collection [15, 16,
17, 18] from unauthorized adversaries. However, registered
MCS users, i.e., insiders, might also misbehave and target the
system. More specifically, compromised devices possessing
valid cryptographic credentials, can still (easily) pollute the
MCS data. Evicting malicious users is possible [19] but it
mandates fine-grained and node-specific identification of
offending behavior. Unfortunately, this is not straightforward
especially in the presence of intelligent, numerous and
cooperating adversaries. Relying on reputation schemes [20,
21] is not an option: users must build their reputation from
the trustworthiness of the data they contribute to the MCS
system. But assessing data trustworthiness is exactly the
problem at hand: in other words, a circular dependency.
What we need is to assess and sift faulty data without any
assumption on the trustworthiness of their source. Designing such

mechanisms is not easy: it requires fusing (contradictory)
data, originating from untrustworthy sources describing
dynamic and uncertain phenomena for which we may not
have any prior statistical description or model.

Motivation & Contributions: The problems of privacy-
protection, data-trustworthiness and incentive-provision have
been studied separately in the literature: schemes either
focus on the privacy and security without considering
data pollution attacks [15, 16, 17, 18]; or they facilitate
mass participation by linking incentives to users’ contri-
butions and, thus, without considering user privacy [22,
23]. Finally, although SHIELD [24], the state-of-the-art data-
trustworthiness framework for MCS systems, can efficiently
detect and mitigate pollution attacks, it does not consider
extrinsic incentive features. Nonetheless, user remuneration
and data verification are strongly connected: malicious users
should not be rewarded but instead detected and evicted,
whereas benign users should be gratified on the basis of the
quantity and the quality of their contributions.

This work, systematically addresses all the aforemen-
tioned challenges by building on SHIELD and extending it
into a holistic framework offering: (i) a data-trustworthiness
framework that can assess user-submitted data and sift
malicious contributions, (i) a privacy-preserving incentive
provision mechanism that is resilient to dishonest users,
while (iii) holding them accountable for their actions, (iv)
under weakened assumptions on the trustworthiness of the
MCS system entities.

The rest of the paper is organized as follows. In Sec. 2,
we first describe the system and adversarial models for
our scheme. We then provide an overview of our data
verification protocol, followed by a detailed description
of its core components (Sec. 3). Sec. 4 presents the user
remuneration protocol along with a detailed analysis of the
security and privacy properties achieved by our rewarding
scheme. The experimental setup, used to evaluate our system,
along with the performance results are presented in Sec. 6
and 7, respectively, before we conclude the paper in Sec. 8.

2 PRELIMINARIES
2.1 System Model

Our secure and privacy-preserving MCS system comprises
the following entities:

Users: Individuals operating mobile devices (e.g., smart-
phones, tablets and smart vehicles) equipped with embed-
ded sensors (e.g., inertial and proximity sensors, cameras,
microphones and gyroscopes) and navigation modules (e.g.,
GPS). User mobile devices collect and report sensory data
to the MCS infrastructure over any available network (e.g.,
3/4G, WiFi). Users (devices) can also query the results of
sensing tasks. In case the chosen remuneration method is
bitcoin payments (Sec. 4), each participating user possess (or
generates) a bitcoin address. In the rest of the paper, we refer
to users and their mobile devices or clients interchangeably.

Task Initiators (TI): Organizations or individuals ini-
tiating data collection campaigns by recruiting users and
distributing descriptions of sensing tasks to them [25].

Identity & Credential Management Infrastructure: It
supports sensing tasks by registering users, providing cryp-
tographic credentials and enabling or offering Authentication,

2

Authorization and Access Control services. We consider the
following credential management entities:

e Group Manager (GM): It is responsible for registering
and authenticating user devices to sensing tasks. Moreover,
the GM enables user privacy protection, during the remuner-
ation protocol, leveraging homomorphic encryption .

Our system utilizes the Benaloh’s additive and ran-
domized homomorphic encryption scheme [26]: given a
private/public key pair (p = a,P = g¢%) the encryption
of a message m, withm € Z,, is H.(m,r) = (¢", 9" - h'™);
where g, h are generators of a cryptographic group G of
order g. The additive homomorphic property of the scheme
yields that H.(mq,71) - He(me, r2) = He(r1 +r2, my +ma),
where the multiplication is component-wise. Decryption is
H,y(C4,C3) = DiscreteLogp(C2/CY).

e Pseudonym Certification Authority (PCA): It provides
anonymized ephemeral credentials, termed pseudonyms, to
users. Pseudonymous authentication ensures the integrity
and the authenticity of all information submitted by the
clients. To ensure unlinkability, devices can obtain multiple
pseudonyms from the PCA.

We require that the credential management system is
Sybil-proof: no registered user can obtain multiple identi-
ties and credentials valid simultaneously. We assume our
system operates on top of a credential management such
as SPPEAR [19], the state-of-the-art security and privacy-
preserving architecture which offers such properties.

Reporting Service (RS): The RS exposes the interfaces
that allow registered users to submit their data and query
the results of a sensing task. Furthermore, it also offers the
mechanism that enables participants to claim their rewards
without being linked to their contributed data. Data verifica-
tion is performed on this entity: we first assess and remove
invalid, faulty data and, then, remunerate users based on the
level of their participation and the quality of information they
provide. The RS retrieves (from the GM) the public key, P, of
the additive homomorphic scheme instantiated by the GM.

Our system is designed according to the separation-of-
duties principle [27]: each entity is given the minimum
information required to execute a designated task. This way,
single system entities have limited access to user information
and thus they cannot breach user privacy (Sec. 5.3).

The area of interest of a sensing task is the locality within
which participating users must contribute data. The area
of interest can be defined either explicitly (e.g., coordinates
forming polygons on maps) or implicitly (through annotated
geographic areas, e.g., Stockholm). In any case, the area of
interest is divided into spatial units: homogeneous, with re-
spect to the sensed phenomenon, areas [28]. More specifically,
the sensed phenomenon has temporal but not significant
spatial variations within a spatial unit. Defining spatial
units largely depends on the MCS application and, hence,
on the underlying monitored phenomenon. For instance,
for traffic monitoring systems (e.g., [6, 29]), road links (i.e.,
road segments between two junctions) serve as spatial units.
Similarly, for public transport MCS applications (e.g., [30])
spatial units can be individual bus, metro and train lines.
Finally, areas around pollution points (e.g., factories) are
spatial units [31] for environmental monitoring tasks.

Users submit to the RS streams of measurements over a

time interval, ¢, specified in the MCS campaign [25]. These
data are submitted in successive reports, each containing n
measurements, v;:

ri = {[v1,v2,v3, ..., vn] ||]| loc]|| oProKcey || Ps}

The number of measurements, n, is subject to the ap-
plication and is specified by the campaign administrator.
Depending on the phenomenon to be monitored, collected
data should be of certain quality level which can be influ-
enced by the sampling frequency (other parameters include
the overall sensing time, the location accuracy, etc.); higher n
may yield a better perception of the monitored phenomenon.
loc is the device’s location and o py key is a digital signature
with some private key. The corresponding public key is
included in the certificate Ps (obtained by the PCA). User-RS
communication is done over an authenticated TLS channel.

2.2 Threat Model

We assume malicious users (clients) participating in sensing
campaigns that try to compromise the system: having ob-
tained valid credentials, they submit authenticated yet faulty
reports to the RS. We do not consider only human operators
with malevolent intentions, but also compromised devices
(clients), e.g., running a rogue version of the MCS application.
Each compromised client can pollute the data collection
process. This will distort the MCS system perception of
the sensed phenomenon, and thus degrade the usefulness
of the campaign. For instance, consider traffic monitoring
campaigns, during which users submit their velocity to the
RS: malicious users could try to impose a false perception
on the congestion levels of the road network, thus, claiming,
e.g., traffic jams or accidents.

We allow adversaries to submit values (arbitrarily) dif-
ferent than the (truthful) ones characterizing the sensed
phenomenon. Let V;, be the adversary-free system output
for a spatial unit ¢, and V,., the system output in the presence
of adversaries. The objective of the adversaries is to create a
V., that deviates from V,,. In extremis, the adversaries will
try to maximize the distortion:

maw{"/h - Vai }

Adversaries can act individually or collectively. Here, we
focus on the latter, i.e., coordinated attacks, as they can have
far graver impact on the system. We assume adversaries
following the same strategy, i.e., submitting reports drawn
from the same set of values, or even optimally selecting where
to inject faulty reports: they spoof their (device) location and
submit reports for regions they are not physically present.

Our aim is the design of a system which, in the presence
of such adversaries, can safeguard the accuracy of the RS.
Simply put, minimize the distortion imposed by adversaries:

min {|Ve, = Va,[}

Adversaries may have a strong motive to manipulate the
incentive provision mechanism. For instance, leveraging their
(for privacy protection) anonymity, they could try to obtain
inordinate, to their contributions, rewards (more details on
specific types of misbehavior can be found in Sec. 5.1). It
is therefore imperative for the remuneration mechanism to
be able to detect and isolate such malicious behavior. With
respect to user privacy, our goal is to ensure that rewards
cannot be linked to a particular user even if she has accepted
multiple rewards for the data she has provided over time.

Classification Phase

Training Phase

Random
m; Forest

Fig. 1: System Overview

Finally, we also consider honest-but-curious infrastructure
entities; they execute the protocols correctly but are curious
to extract user personal information by, e.g., trying to profile
them and reveal their identities by (possibly) colluding with
other entities in the system.

3 DATA VERIFICATION FRAMEWORK

In this section, we start by looking how to examine the quality
of information that each participant provides. This allows the
system not only to increase the quality of service offered back
to the MCS users but also to fairly compensate them (Sec. 4):
benign users should be gratified based on the quantity and,
more importantly, the quality of their contributions.

The RS preprocesses incoming user reports and then acts
in three phases (Fig. 1): a) bootstrapping, b) region merging
and training and c) classification. During the bootstrapping,
user reports are classified as inlying or outlying essentially
corresponding to non-faulty and faulty ones. As the system
has no a-priori knowledge of what makes reports inliers or
outliers, this phase explores their innate structure. Reports
are classified not as raw data but as evidence: each incoming
report is processed; i.e., it is transformed into a mass function
(Sec. 3.1), and a feature vector, one for each report, is created
and classified (Sec. 3.2). Bootstrapping is run separately for
each spatial unit (recall: measurements of honest users follow
the same distribution within a spatial unit).

Subsequently, the system examines the spatial character-
istics of the sensed phenomenon and merges neighboring
spatial units into larger regions. To do this, our system derives
an empirical distribution from all the data of all inlying
reports within a spatial until. Then, it examines the statistical
similarity of the empirical distributions of neighboring spatial
units and merges them if they are deemed similar. This
way region merging (Sec. 3.3) creates larger homogeneous
(with respect to the phenomenon) geographical regions. For
each of these regions, training is performed: it is similar to
the bootstrapping phase except that it is performed for the
reports of all the spatial units that now comprise a region.

At the third phase, the output of the training and re-
gion merging phase (i.e., user reports labeled as inliers
and outliers) is fed to an ensemble of classifiers (Sec. 3.4).
This ensemble, a supervised learning mechanism, leverages
the previously acquired training data in order to classify
subsequent user reports. A different ensemble is created for
each of the regions that was extracted during the region
merging phase. Then, each new incoming report is assessed
by the ensemble of classifiers; the individual decisions of the
classifiers are then combined into a majority-based decision,
which classifies the report as inlying or outlying.

The statistical properties of the sensed phenomena can
change over time in unforeseen ways. Such events, known
as concept drifts [32], deteriorate the performance of any
classification model. Our system leverages a triggering
mechanism that detects and adapts to such changes (Sec. 3.5).

3.1

The RS is an agent that reasons on the actual value of the
sensed phenomenon. To do this, it relies on multiple sources
of evidence (i.e., user reports). For instance, the RS has to
decide whether the congestion level of a street is “high”,
based on the velocities that participating users report, or
whether the temperature of an area is within the interval
10°C — 11 °C, based on temperature measurements.

This is a decision making problem. The canonical approach
for such problems is Bayesian Inference (BI): computing the
posterior probability of a hypothesis given the available
supporting evidence and its prior probability. Nonetheless,
defining prior probabilities is an obstacle. For example, it is
hard to estimate the prior probability of hypotheses stating
that the road is congested or that the temperature (of an
area) is within some interval. Instead, we have to handle
uncertainty: reports stating that the temperature is within an
interval v does not preclude another interval 3 (as is the case
for BI). We leverage the Dempster-Shafer Theory (DST) [33]
that allows reasoning about uncertainty.

3.1.1

O is the exhaustive set of hypotheses about the actual value
of the sensed phenomenon; the frame of discernment. Since the
phenomenon can only have a single actual value, it follows
that all hypotheses of © are mutually exclusive. A mass function
m is a probability assignment from the power set of O (i.e.,
29) to [0, 1] so that:

Handling Evidence (pre-processing)

Use of Dempster-Shafer Theory

m(0) =0 1

> m4) =1 @)
ACe
where m(A) is the basic probability number for A and it is
a measure of the belief committed exactly to this hypothesis.
The belief of all possible subsets of A, Bel(A) : 2° — [0,1],
is the sum of all masses of all subsets that support A:

Bel(A) = Y m(B) ©)
BCA
Simply put, Bel(A) is a measure of the strength of the
evidence in favor of A and it corresponds to a lower bound
on the probability that A is true. The upper probability bound
is given by the plausibility function, PI(A) : 2° — [0, 1]:

> m(B) (4)
BN A0
Plausibility is the amount of evidence not contradicting
hypothesis A. For Bel(A) and PI(A), two properties hold:

Bel(A) < PI(A)

PI(A) = 1 — Bel(A)

PI(A) =

Two independent sets of probability mass assignments,
mq, My, can be combined (to a joint mass) with Dempster’s
rule of combination:

mi2(A) = (m1 @ma)(A) = ——+ (5

where K = Z m1(B)ma(C) and my 2(0) =0
BN C=0
This rule derives the shared belief between the two
masses and can be extended to combine multiple masses.
Two masses are considered conflicting to the extent they
support incompatible hypotheses. An indication of the
conflict of the masses is given by K. A quantification can be
extracted by the weight of conflict, C'on, metric:
1
Con(bely,bely) = log(1 — K) (6)
In case of no conflict between bel; and bels,
Con(bely,bely) = 0. If these two beliefs have nothing in
common, Con(bely, bely) = .
There are different ways to measure the uncertainty of a
mass function. Here, we use the classical entropy measure:

LCon(m) = — Z m(A)loga(m(A)) (7)
Aco

LCon is a measure of the inconsistency within a mass
function. Intuitively, the larger the number of mutually
disagreeing hypotheses, the larger U becomes.

Assume two devices, ¢; and ¢, participating in a task
measuring a phenomenon that takes the values a, b, c and d
(either numerical or nominal). As described in Sec. 2, each
participating user submits a stream of measurements of the
sensed phenomenon. The transformation of these streams
to probability masses is as follows: the system generates
a probability density function (p.d.f) by constructing a
normalized histogram [34] from each user-submitted stream.
This p.d.f will be used to assign masses to the different
hypotheses for the phenomenon. Note that better accuracy
requires smaller discretization intervals (i.e., small histogram
bin size). For instance, for temperature monitoring tasks
we assume 1° intervals. This, however, has an impact on
the system performance because the frame of discernment
grows (more hypotheses to consider). To compensate for
this, we can exclude improbable hypotheses; e.g., we do
not consider temperatures outside the operational limits of
modern smart-phones (e.g., 0 — 32°)!. Moreover, histogram
bins do not need to have the same granularity. One bin could
include temperature measurements < 0° (i.e., an unlikely
hypothesis during summer months in cities of the northern
hemisphere); another temperatures > 30°. Intermediate bins,
corresponding to more probable hypotheses, can have .5°
granularity (e.g., 0.5,1, 1.5, ..., 30°).

Assume that the mass of device c; is the vector m., =
[ab : 0.6,bc : 0.3,a : 0.1,ad : 0.0]. This states that device
c1 assigns a mass of 0.6 to the hypothesis that the value
of the phenomenon is a or b, a mass of 0.3 that the correct
hypothesis is either b or ¢ and a mass of 0.1 that a holds.
Similarly, the mass of device ¢y is m., = [ab: 0.5,bc : 0.4,b :
0.05,a : 0.05]. The combination rule (5) yields m = m., ®
Me, = [b: 0.46,ab : 0.32,¢b : 0.12,a : 0.09]. Using (4)
we get the plausibility that the value of the phenomenon is

1. https:/ /support.apple.com/en-us/HT201678

Algorithm 1 Pseudocode for DBSCAN [35]
1: procedure DBSCAN(D, ¢, MinPoints)

2: Cluster < empty

3: for each unvisited feature f of D do

4: [+ visited

5: Neighbors < QUERYREGION(f, €)

6: if size(Netghbors) < MinPoints then

7: f <+ outlier

8: else

9: EXPAND(f, Neighbors, Cluster, e, MinPoints)
10:

11: procedure QUERYREGION(f, €)
12: return e—neighborhood of f

14: procedure EXPAND(f, Neighbors, Cluster, €, MinPoints)
15: f < member(Cluster)
16: for each n in Neighbors do

17: if n visited then

18: n < visited

19: Neighbors’ + QUERYREGION(n, €)

20: if size(Neighbors’) > MinPoints then
21: Neighbors + = Neighbors’

22: if n ¢ any cluster then

23: n < memberof(Cluster)

a, Pl (a) = 0.41. Finally, with (6) we get that the conflict
between m., and m,, is 0.06.2

3.2 Bootstrapping Phase

By collecting user reports and transforming them into proba-
bility masses, the system enters the bootstrapping phase
for each spatial unit. The goal is to give the system an
initial understanding of the sensed phenomenon (within each
spatial unit) and to remove deviating, or potentially polluting,
reports. To do this, the system trains itself to identify structure
in user measurements. More specifically, for each report
(transformed into a probability mass), it computes a) the
hypothesis, H,,qz, with the maximum belief, b) the belief,
Bel(Hpmaz), of this hypothesis, and c) the local conflict of
the probability mass. These are included in a 3-dimensional
feature vector v, (one for each report r,):

Ur, = [Hmaza Bel(Hmam)7 LCOﬂ(mL)]

e

where m, denotes the probability mass derived from the
user report (Sec. 3.1.1). The system waits until a sufficient
number of reports has been collected for a spatial unit®
and then initiates the DBSCAN density-based topological
clustering algorithm [35] (Alg. 1). The algorithm input is the
set, D, of all feature vectors, the maximum distance, ¢, that
two feature vectors must have to be considered “close”, and
the MinPoints number. A vector (i.e., point) is considered
central if there are MinPoints other vectors close to it. To
calculate the distance between two feature vectors v, and
vy, we use the Canberra distance metric [36]:

23 |1)7»a (i)—v,,wﬁ (7,)|

d(vra) 'Urﬁ) = =1 |U7'a (z) ‘+ Urg (l)|

If d(vr,, ,vr,) < € we say that v, is in the e-neighborhood
of v,.,. By setting MinPoints to be low, the algorithm will
create many clusters. Nevertheless, since honest reports
within a spatial unit follow the same distribution (Sec. 2.1),
honest feature vectors will be close to each other. As a result,

2. The numbers used in this example were rounded for easy presenta-
tion.

3. This can be identified heuristically depending on the phenomenon;
based on our evaluations, 20 reports suffice.

Fig. 2: Clustering with DBSCAN (circles denote inliers).

we can set MinPoints to be rather large (for example, a
feature vector can be considered a core point if it has in its
neighborhood 45% of all vectors). This expected high density
of feature vectors implies that the distance between them
will be relatively small. Hence, we can set € to be small (e.g.,
to be equal to the 30" percentile of all the pairwise vector
distances). To estimate the proper values for these parameters,
we employ the heuristic described in the original DBSCAN
paper [35]. This heuristic leverages the k — distance of the
dataset to compute the € and MinPoints of the thinnest
cluster created by the algorithm.*

The output of the algorithm is a partitioning of all feature
vectors in D into inliers and outliers. Fig. 2 illustrates such
a partitioning: most of the inlying reports suggest H,,q =
50, whereas outlying reports suggest H,,q, to be around
55. Inlying and outlying reports are easily separable when
considering the LCon feature. Compared to inlying reports,
outlying ones have higher conflict because they support (i.e.,
they assign masses to) more hypotheses.

DBSCAN examines the topological density of the feature
vectors and relies on honest majorities to (correctly) identify
inliers and outliers. Simply put, it learns what the majority
of users suggests for each spatial unit.

As we discuss in Sec. 7, such honest majorities can be
marginal; however, it is not certain that they will exist at all
spatial units at all time. It might be the case that a spatial unit
can be targeted by adversaries in an attempt to locally change
the system’s perception about the monitored phenomenon.
This implies that the data/evidence deemed as inlying is of
“malicious” provenance; the majority of users (collectively)
exhibit deviant behavior and submit faulty reports from a set
of values different than the truthful ones (Sec. 2.2). This will
result to a system understanding of the phenomenon (for this
spatial unit) that deviates from the correct, adversary-free
output. Nonetheless, even in this extreme case, our system
manages to limit the impact of such adversarial behavior
since the polluted spatial unit will be isolated from further
affecting the adjacent spatial units (Sec. 3.3).

3.3 Region Merging and Training Phases

In this phase, the system essentially learns the topolog-
ical variation of the sensed phenomenon. The previous
phase labeled user reports (for each spatial unit) as inliers
and outliers. Leveraging the inlying reports, the system
then merges neighboring spatial units within which user
measurements and, thus, in all likelihood, the underlying
sensed phenomenon follows (almost) the same distribution.

4. Additional details are presented in [35]

Algorithm 2 Pseudocode for the Region Growing Algorithm

1: procedure REGIONGROWIN G(Seed s)
: s <— visited

3 region <

4 region.add(s)

5: active_set < s

6: while active_set not) do

7: ¢ = dequeue_point(active_set)

8 for n in neighbors_of(c) do

9 if n(—visited) and KSTEST (¢, n) : True then

10: active_set.add(n)
11: region.add(n)
12: visited <— n

return region

To compare the similarity between the inlying reports of
two neighboring spatial units, we perform a two-sample
Kolmogorov-Smirnov (K-S) test. The system first constructs
two empirical distributions, from the inlying reports of each
spatial unit, and verifies the null hypothesis: i.e., reports are
drawn from the same distribution. The K-S statistic is:

Fe, ()]

where F,, and F., denote the empirical distributions.
Based on D, .,, the system accepts the null hypothesis (and
merges the two spatial units) at a significance level of 5%.

De, c; = sup, |Fe,(z) —

Alg. 2 gives the details of the region merging. The
algorithm is initiated with a spatial unit as a starting point.
It then traverses all neighboring spatial units and examines
whether the null hypothesis holds. Its output is a region of
units within which the sensed phenomenon follows the same
(or almost the same) distribution. Executing the algorithm
multiple times, for different starting units (not yet belonging
to any region), yields a unique segmentation of the area of
interest for the sensing task. If the monitored phenomenon
exhibits extreme spatial diversity no (larger) regions will be
formed and, thus, each spatial unit will be considered as a
separate region. The same holds in the case of adversary-
controlled spatial units.

Fig. 3 shows an execution instance of this algorithm for
an emulated traffic sensing campaign where participating
users contribute their velocities to the RS (Sec. 6). On the left
side of the figure, we see a part of the road network of the
city of Stockholm. In this context, each road link corresponds
to a spatial unit (Sec. 2.1). The right side of Fig. 3 depicts the
output of the region merging algorithm, where individual
spatial units have been merged into 4 larger regions based on
the homogeneity of the reported velocities. The color density
of the road links is as an indication of the average speed of
each road segment (darker colors indicate smaller velocities).

Once the region merging phase concludes, the system
enters the training phase for each formed region. It is
identical to the bootstrapping phase except that the clustering
algorithm runs over reports originating from all the merged,
into a region, spatial units. Again, the output is a labeling of
all user reports (of a region) into inliers and outliers.

Our system can operate on data measurements pertain-
ing to any phenomenon. Recall that our system leverages
Hmax, Bel(Hmax), LCon(mc) (Sec. 3.3). These features
are not specific to any type of distribution. Moreover, this
phase employs empirical distributions relevant to any type
of distribution.

2000

1500

1000

500 1000 1500 2000 2500 500 1000 1500 2000 2500

Fig. 3: Illustration of the output of the Region Merging
algorithm for a traffic monitoring MCS campaign.

3.4 Classification Phase

Clustering is not efficient for data streams because it requires
the execution of the clustering algorithm for each incoming
user report. This is why, as described previously, we employ
clustering for a small number of initial reports (Sec. 3.2), suf-
ficient to craft an understanding of the sensed phenomenon
in each spatial unit. With this knowledge, the system then
trains (supervises) an ensemble of classifiers comprising ()
a random forest, (i7) a naive Bayes (NB) classifier and (iii) a
nearest neighbor (NN) classifier. The goal of this ensemble
is to assess subsequent incoming reports in each region (i.e.,
their characterization as inliers and outliers).

A random forest [37] is a collection of decision trees, each
trained over a different bootstrap sample. Each decision tree
is a classification model created during the exploration of
the training data. More specifically, the interior nodes of the
tree correspond to feature values of the input data. Recall
that our system considers three features: Hy, 4y, Bel(Hpmaz)
and LCon(m.). For instance, according to the example of
Fig. 2, an interior node could be H,,,,, > 52. Nodes can have
other nodes as children, thus, creating decision paths (e.g.,
Hppaw > 52 and Bel(Hpqa,) < 0.1). Tree leaves describe
the decision (i.e., classification) of all training data described
by the path from the root to the leaf. For example, training
data for which H,,4, > 52 and Bel(Hpnqz) < 0.1 are inlying.
Once a new report arrives, each decision tree estimates its
class by examining all the possible paths the report could
follow. The estimations of all decision trees are combined
into the decision of the random forest.?

The classification rule for the NB classifier is:

§ = argmaxP(y) [Ty P(wily)

where § is the decision (i.e., inlying or outlying) and
x; is a feature of the feature vector (i.e., Hyar, Bel(Hmaz),
LCon(m¢)). Prior probabilities are estimated by examining
the fraction of inlying/outlying reports for the training set.
The NN classifier implements a simple k-nearest neighbors
voting scheme (our system operates with £ = 10). All
classifiers are trained with the output of the previous phase:
labeling of inlying and outlying reports for each region.

Classifiers make their decisions (on inlying or outlying
reports) which are, in turn, combined in a majority voting
scheme to form the system'’s final decision. If deemed inlying,
then a report is taken into consideration for updating the
system’s perception of the phenomenon (in a region). More
precisely, the system generates a mass function that is the

5. Due to space limitations, we omit the details of this process and we
refer the interested readers to the relevant work [37].

o] o]

Participants | RS

Fig. 4: Remuneration Protocol

combination (according to Dempster’s rule of combination)
of all probability masses of all inlying reports in a region.
Finally, for each assessed report r; the classification ensemble
computes a trustworthiness score sc,,: the probability that
the report is trustworthy.

3.5 Concept Drift Detection Module

This module is responsible for detecting changes in the sta-
tistical properties of the sensed phenomenon. It continuously
monitors the disagreement between the probability mass, the
system has for each region and each new incoming report.
This is done by computing the Con metric (Eq. 6). More
specifically, if the conflict between the already computed
probability mass and the incoming user reports exceeds a
predefined threshold, then an alert is triggered. Based on the
type of concept drift, different actions can be taken by the
system. We consider the following cases:

Local Concept Drifts: They concern only one, or a small
number of regions. In this case, the system retrains (i.e., it
enters the Training Phase) the classifiers of these regions (in
question) with the new data it received from the users.

Global Concept Drifts: They affect the whole area of interest
for a task. As a result, the system has to be bootstrapped; the
area of interest is broken down to the original spatial units
and the training and region merging phases are executed.
The system differentiates between these cases of concept drift
by leveraging the location information in the user reports.

In general, there is no particular threshold (i.e., weight of
contflict) for the concept drift, but rather an entire range of
threshold values depending on how sensitive the model is to
changes of the underlying phenomenon. Lower thresholds
imply faster detection but, at the same time, may result to
(possibly unnecessary) retraining of the system. This is espe-
cially so for incremental concept drifts slowly evolving [38]
over time. On the other hand, higher thresholds imply slower
adaptation to changes. Identifying the proper thresholds
strongly depends on the underlying phenomena and is
orthogonal to this investigation.

3.6 Querying the System

Any authenticated entity can query the system sending:
q= {Hma:v H ZOCH OPrvKey H PS}
Again, 0pryKey is a digital signature (of the querier)
produced with some private key. The corresponding pub-
lic key is certified by the credential management system

7

and included in the certificate Ps. When queried, the sys-
tem identifies the region relevant to the query based on
loc. Then, it responds with the region’s [H 4z, Bel(Hpmaz),
Pl(Hpaz), LCon(msg)]. ms denotes the mass the system
assigns to the different hypotheses derived from the combi-
nation of all inlying reports for that region; from the moment
of the latest concept drift till the issued query.
Users can issue fine-grained queries as follows:

q={Bel/PL|[H [|loc|[oprvrey || Ps}

will return the belief and the plausibility that the system
assigns to hypothesis H (for the region containing loc).
Queriers measuring the same phenomenon (as the task) can
assess the degree of agreement (or contradiction) between
their measurements and the system’s belief, by issuing:

g =A{Con||[v1,v2,v3,...,v,] || loc|| O proKey || Ps}

The RS will respond with the C'on (Eq. (6)) value between
its mass function and the mass function derived by the
measurements that the user provided (i.e., [v1, v2, V3, ..., Up]).

Users can also receive the whole mass function of the
system for a region with the query:

q = {m||loc||oproKey || Ps}

Queriers can then perform a pignistic transformation [39]
of m; a transformation of the system’s belief function to a
probability function that can yield optimal decisions [40].

4 USER REMUNERATION PROTOCOL

Upon completion of the sensing campaign the RS must
decide on the reward that user-contributed reports should
receive. Although our protocol is not restricted to any specific
remuneration method (e.g., micro-payments, service quotas)
in what follows we consider Bitcoin payments: a rewarding
mechanism that can offer immediate value (i.e., monetary)
to contributing users [41].

An overview of the protocol is presented in Fig. 4. For
each report, r;, the RS computes a value ¢;; the importance
of the report (Sec. 4.1). This value is encrypted homomorphi-
cally under the public key P (Sec. 2). The homomorphically
encrypted ¢; values are signed by the RS and encrypted
with the corresponding public key of the pseudonym Ps
(Sec. 2) included in the report. These encrypted values are
then published on-line on a Public Bulletin Board (PBB)
instantiated as a web-server. Participating users retrieve from
the PBB an Extensible Markup Language (XML) document
containing all the signed and encrypted ¢; and open the ones
belonging to them; i.e., the ones for which they possess the
corresponding private keys. Subsequently, the mobile clients
re-randomize H, {¢;} by adding a unique homomorphic
encryption of 0; the probabilistic nature of the employed
homomorphic encryption scheme [26] allows the GM to
provide each client with a unique homomorphic encryption
of 0. More specifically, for each H, {¢;} the mobile clients
compute H, {gf);} = H.{¢:} + H. {0} and submit it back
to the RS. This randomization step protects user privacy
against honest-but-curious infrastructure entities as discussed
in Sec. 5.3.

Once all clients have submitted the randomized H, {¢; },
the RS and the GM examine possible client misbehavior; i.e.,

if they have randomized H. {¢;} by adding values other than
H, {0}. If such a misbehavior is detected, then a resolution
protocol is initiated (Sec. 5.1.1). In any other case, the RS
signs and publishes all H, {(b;} on the PBB and informs
the participating users to proceed and claim their rewards
from the TI. Clients retrieve the signed, randomized, and
homomorphically encrypted values and present the ones
belonging to them (along with their bitcoin address) to the
TI. The TI then computes the homomorphic sum of all

the H, {(b;} which will be decrypted by the GM. At this

point, dishonest clients might present some H, {gb;} (not
belonging to them) as their own. Our system is capable of
thwarting such misbehavior (Sec. 5.1.2). Finally, in case no
misbehavior is detected, the TI credits each user address with
the corresponding bitcoin amount.

Communications between system entities are performed
over secure TLS channels. Each system entity possesses
digital certificates which are installed on the mobile clients
of participating users. A discussion on the performance and
efficiency of the protocol is presented in Sec. 7.

4.1

To assess the value (i.e., importance) of each user report
the RS works as follows: let IT = [ry,ra,...,7n] be the set
of all N reports the RS has received during the task. We
define as S(II,r;) the set of reports, in II, which arrived
no later than the report r;. Each user contributed report, ;,
corresponds to vector [reg,,, sc,,] where reg,, is the region
(Sec. 3.3) that the location (loc) of the report specifies. The
value sc,, is the report trustworthiness score (Sec. 3.4). For
each set S(IL,7;) the RS constructs the vector Rg) =
[Rg(n,n)’R%(H,n)’ ...,ng((n)”)] where K is the number of
regions. For instance, the sum of scores of all inlying reports
for region j can be computed as R]S(Hﬂ"i) =)_g, S¢r, where
S; ¢+ {ri|ri € S(IL,r;) and, reg,, = j and, sc¢,, > 0.5}. The
value of the report r; for a region z is computed as follows:

0if sc, < 0.5
i) = ‘ . 8
¢(ri) {log(R“g(mm) —log(R%(x ,—1)) otherwise ®

Evaluating User Contributions

Intuitively, this remuneration mechanism favors reports
that are trustworthy and were submitted for regions for
which the system has not received many user contributions.

5 SECURITY & PRIVACY ANALYSIS

In this section, we assess the security and privacy protection
offered by the user remuneration protocol. We begin with
a discussion on how our system can detect and deter
misbehaving users (possessing valid cryptographic credentials)
and proceed with a formal analysis of the protocol in the
presence of external, Dolev-Yao [42] adversaries. Finally, we
analyze how user-privacy is affected in the presence of honest-
but-curious system entities.

5.1
5.1.1 Type | Misbehavior - Increasing H, {¢; }

Malicious users might try to increase the H,. {¢;} values
they receive from the RS: instead of randomizing it -adding
a homomorphic value of 0 (Sec. 4)- they might attempt

Detecting and Deterring Misbehavior

8

Algorithm 3 Modeling Homomorphic Encryption in ProVerif

type h_pkey.
type h_skey.
fun hpk (h_skey): h_pkey.
fun h_encrypt (bitstring, h_pkey): bitstring.
fun h_randomize (bitstring, bitstring): bitstring.
reduc forall
x: bitstring,
r: bitstring,
y: h_skey;
h_decrypt (h_randomize (

h_encrypt (x, hpk (y)),

h_encrypt (r,hpk(y)), vy

)

) = Xx.

oUW N

to increase it by adding a positive value. This way, they
manage to increase the score their report received. The RS,
in coordination with the GM, can detect such misbehavior:
More specifically, although the RS cannot map any H. {¢;}
to its randomized value H, {gb; }, it can collaborate with the
GM to detect whether the sum of all H, {¢;} values is equal

to the sum of the H, {¢>;} Towards that, the RS computes
c= > H, igﬁ;} — > H.{¢;} and sends it to the GM for
decryption (recall that the GM is the only entity possessing
the private key of the homomorphic encryption scheme). If
¢ # 0, then a misbehavior has occurred. In this case, the RS
sends to the GM the set of all randomized H. ¢; values
it received from the clients. Subsequently, the GM initiates a
Publish/Subscribe channel in which all participating clients
are registered as subscribers. The GM publishes to this
channel one H, {(;5;} at a time. Upon reception, the client
that produced this randomized value must reveal to the GM
the corresponding, signed by the RS and, thus, not forgeable,
H.{$;}. The GM checks if H, {(;5;} = H, {¢;}. If this is not
the case, a pseudonym revocation protocol [19] is initiated
for the pseudonym associated with H, {¢;}. The process
continues until all invalid H, {qb;} are detected and the
pseudonyms corresponding to malicious users are revoked.

5.1.2 Type Il Misbehavior - Claiming/Decreasing the contri-
butions of other participants

A second type of possible misbehavior is when malicious
clients try to claim rewards for H, {gzﬁ;} values not belonging

to them. This type of misbehavior is easily detectable: a
conflict will occur when the legitimate owner also claims
the H, {(b;} Resolving such a conflict is straight-forward;
the GM will again request the corresponding, signed by the
RS, H. {¢;} value. Then it will initiate a Proof-of-Possession
protocol for the private key corresponding to the pseudonym
Ps that authenticated the report r; (which the value H, {¢;}
was assigned to). A pseudonym revocation protocol [19] can
again ensure malicious client(s) are evicted.

Finally, malicious users cannot manipulate the homomor-
phic encrypted ¢ values of other users: these are encrypted
with the public key corresponding to the pseudonym Ps
(Sec. 2) attached to each report.

5.2 Secrecy Analysis for Dolev-Yao adversaries

In this section we formalize the security of the remuner-
ation protocol by using ProVerif: an automated protocol

Datum Entity | Secrecy | Strong Secrecy/
Unlinakbility

Dev. id (id) GM v v

Subm. report. RS v v

Device pseud. RS v v

H.{¢:} RS v v

H, { o } RS, TI v v

TABLE 1: Secrecy Analysis for Dolev-Yao Adversaries

verifier [43] that enables the modeling of the protocol in 7-
Calculus [43]. This allows for an increased confidence in the
analysis results.

In ProVerif, entities (infrastructure components and users)
are described as processes. Protocols are modeled as a parallel
composition of multiple copies of these processes. ProVerif
assumes sets of names and variables along with a finite
signature, 3, comprising all the function symbols accompa-
nied by their arity. The basic cryptographic primitives are
modeled as symbolic operations over bit-strings representing
messages encoded with the use of constructors and destructors.
Constructors generate messages whereas destructors retrieve
parts of the messages they operate on.

Alg. 3 illustrates the modeling of homomorphic encryp-
tion in ProVerif. More specifically, we first define two key
types corresponding to the public and private keys of the
employed homomorphic encryption (lines, 1 and 2); the
mapping between these two keys is done in line 3. In line
4 we define the homomorphic encryption function: given a
bitstring and a public key, it produces a homomorphically
encrypted bitstring. The randomization function is modeled
as follows: given any two homomorphically encrypted
bitstrings we produce a third one. Finally, line 6 models
the destructor, i.e., the decryption function: for a bitstring,
output of the randomize function, and the corresponding
private key it produces the original bitstring.

Adversaries in ProVerif follow the Dolev-Yao model [42]:
they can eavesdrop, modify and forge messages according
to the cryptographic keys they possess. To protect com-
munications, every emulated MCS entity in the analysis
maintains its own private keys/credentials. In ProVerif, the
attacker’s knowledge on a piece of information i, is queried
with the use of the predicate attacker(i). This initiates a
resolution algorithm whose input is a set of Horn clauses
that describe the protocol. If ¢ can be obtained by the attacker,
the algorithm outputs true (along with a counter-example) or
false otherwise. ProVerif can verify strong-secrecy properties
implying the adversary cannot infer changes over secret
values. To examine strong-secrecy for datum ¢, the predicate
noninterf is used.

Table 1 summarizes our findings: our system ensures
the secrecy of all the critical pieces of information, thus,
guaranteeing the secrecy of sensitive information in the
presence of external, Dolev-Yao adversaries.

5.3 Honest-but-Curious System Entities

We begin with a discussion on the knowledge of each system
entity and proceed with an analysis of the privacy implica-
tions resulting from different combinations of information-
sharing honest-but-curious system entities.

5.3.1 Knowledge of System Entities

The RS receives user reports and assigns them a score
(Sec. 3.4). Moreover, each user contributed report contains

9

location information also known to the RS. Nonetheless, the
unlinkability achieved due to the use of pseudonyms pre-
vents the RS from knowing which reports were contributed
by the same user and, thus, from reconstructing the user
whereabouts. Of course, inference attacks leveraging filtering
techniques [19] such as Kalman Filters [44], to link reports
based on mobility predictions, are still feasible; such attacks
are beyond the scope of this work.

The GM decrypts the homomorphic sum of all the
randomized ¢; i.e., it learns Y {¢;} for each user. In case
of a detected misbehavior, the GM also links (some) H, {¢;}
to the corresponding randomized H, {qb; . The GM could
also misbehave and abuse the misbehavior detection protocol
(Sec.5.1.1) to reconstruct the whereabouts of users. Nonethe-
less, such a case is beyond the adversarial model consid-
ered in this work (Sec. 2.2): MCS system entities, besides
users/ clients, are honest-but-curious but not malicious.

The TI receives all the H, {qﬁ;} values belonging to the
same user: it knows how many values each user submits.
Nonetheless, these pieces of information contain no location
information. Moreover, since this entity does not have the
private key of the homomorphic encryption scheme it cannot
decrypt them. The TI also learns from the GM the Y~ {¢;}.

5.3.2 Colluding RS - Tl

None of these two entities can decrypt the homomorphically
encrypted ¢ values. Nevertheless, given their knowledge of
all ¢, values the RS assigned and the number (and sum) of
the ¢ values users submitted to the TI, these two honest-
but-curious entities can try to infer which reports belong to
each user in an attempt to reconstruct all users” whereabouts.
More specifically, they can try to solve the following problem:

SUM_TO_VALUES Problem: Let ® = {¢1,¢2,...,dn}
be the values the RS has assigned to all NV user reports.
Let S = {s1, 82, ..., Sk } be the set of all decrypted, by the
GM, sums of the homomorphically encrypted ¢ values the
TI has received from all K users. The TI also knows the
number of ¢ values (i.e., the summands) for each s;: the set
L ={ly,ls,...,lx}. Based on the sets @, S, and L, the two
colluding entities can try to infer the set U = {uy, ug, ..., ux },
where u; is the set of ¢ values corresponding to user i.
Simply put, the set U is a partition of ®: all elements in U are
disjoint (a ¢ value is assigned to only one user report), thus,
it holds that |, = @.

Theorem 1. The SUM_TO_VALUES Problem is in NP-Hard.

Proof. We will reduce the SUM_TO_VALUES problem to the
MAXIMUM_WEIGHTED_CLIQUE.

We construct a multipartite, edge-weighted graph G' =
(V,E) with K independent sets: each independent set ¢
corresponds to all possible, p;, allocations of /; values of
the set ® summing to s;. For instance, an allocation, i.e., a
vertex v, could indicate that the values {¢,, ¢, } belong to
user u;. Each vertex v has a weight which is the probability
that the allocation described by the vertex is correct. For
example, let us assume that user u; contributed two reports
to the RS. Moreover, let the following be possible allocations
of two ¢ values for u; summing to si: u1,1 = {@z, Oy}

and w12 = {d)lz,qb;/} and let rg,ry,r,» and Ty be the
corresponding reports that these values were assigned to.

w1 1 ws, 1
) s wg

e O
i1 T
U pa | O O U3, Ips|

w1 wa,2 Wy, |py|

u Uy
4,1 4,2 Uy 1pa]

Fig. 5: SUM_TO_VALUES Graph with a 4-Clique

One way of deriving vertex weights is by leveraging the
euclidean distance of the respective reports. For instance, if
the euclidean distance of the locations of r, r, is less than
the one of r,/,7,/ and the time difference of these report
pairs is approximately the same, then the colluding RS and
TI can conclude that P(uq,1 = correct) > P(uq 2 = correct);
ie, wy,1 > w2 Vertex weights essentially capture the
additional knowledge, or inference, the two colluding entities
can perform over the collected data. Such inferences can be
either simplistic (as the one described above) or the result of
more sophisticated filtering techniques: Kalman Filters [44]
or multi-hypothesis testing [45].

In G, two vertices v, v, are connected by an edge e,
if the allocations they describe are disjoint; i.e., they do not
allocate the same ¢ value to two different users. For example,
no edge connects a vertex v1 = {¢,, ¢, } with a vertex vy =
{¢, d,} since ¢, is a common element. Furthermore, no
edge connects two vertices containing values assigned to
reports signed by the same pseudonym: each pseudonym is
bound to a single user. Fig. 5 illustrates such a graph. The
weight w of an edge captures the overall probability that the
allocations described by the two connected vertices are true.
This is computed as the product of the respective weights of
the two connected vertices.

Obviously, all K-cliques of G are maximum and corre-
spond to partitions of ® (recall that the graph is K-partite).
Based on G, to find the most probable (i.e., the correct U)
partition of ®, the colluding RS and TI will have to find the
MAXIMUM_WEIGHTED_CLIQUE of G. This optimization
problem is known to be NP-Hard [46]. O

Overall, when the honest-but-curious RS and TI entities
collude, they have to devise some effective (and probably
costly) method to compute the vertex weights. Assuming
that this is the case, they still have to solve a computationally
hard problem with a complexity that increases exponentially
as more users join the sensing task.

5.3.3 Colluding RS - GM

This collusion does not have the strong repercussions as the
previous case of colluding RS and TI entities. The RS and
GM do not know how many ¢ values each user submitted:
recall, the TI sums all the homomorphically randomized
and signed ¢ values and sends the sum to the GM. As a
result, in order to build a SUM_TO_VALUES graph they will
have to enumerate, for each user ¢, all possible combinations

10

of ¢ values summing to s;. This problem is the counting
version of the SUBSET-SUM problem, which belongs to the
#P complexity class: it is at least as hard as the NP-Complete
SUBSET-SUM problem [47].

5.3.4 Colluding GM - Tl

In case the GM and TI entities collude, they can infer no
additional information about the users besides the one they
already possess. More specifically, they neither know the
set @ (this is known only to the RS) nor the corresponding
locations of the user reports contributed to the RS.

5.3.5 Colluding RS - GM - T|

In the extreme case where all three system entities collude,
then they can completely breach user privacy; i.e., infer all
the reports belonging to the same user and reconstruct their
whereabouts.

6 EXPERIMENTAL SETUP

Our data verification comprises machine learning mecha-
nisms and heuristics and, thus, getting theoretical bounds on
its quality is intractable. Instead, we provide strong empirical
evidence on the performance of the system leveraging both
real-world and synthetic datasets.

Datasets - The real-world dataset relates to MCS-based
environmental monitoring applications, whereas the syn-
thetic dataset relates directly to a traffic monitoring sensing
campaign. In both cases, we inject faulty reports originating
from adversaries, as detailed below, and we evaluate the
system’s ability to accurately yield a truthful and undistorted
view of the underlying phenomenon.

We use the Strata Clara (SC) dataset, from the Data
Sensing Lab [48], as a reference point in the domain of
environmental monitoring applications [4, 49]. It contains
raw measurements of different physical phenomena (i.e.,
humidity, sound and temperature), from 40 sensors deployed
at the Strata Clara convention center in 2013. The underlying
(normal) distributions of the monitored phenomena are:
(1, 0) = {(31,5)|(3,2)](21,1.3) }, respectively.

The synthetic dataset is an emulation of a traffic monitoring
MCS task [5]: drivers” smart-phones report their location and
velocity to the RS. We consider 250 users and simulate urban
road links (and traffic conditions) by generating “actual”
location traces for each vehicle/mobile with the SUMO [50]
traffic simulator. To produce “realistic” measurements, a per-
centage of the location updates was degraded by introducing
a random error, for example, due to weak GPS signal.

Adversarial Behavior - To emulate adversaries we inject
faulty reports drawn from distributions different than those
of the adversary-free datasets (i.e., the ones corresponding
to the underlying phenomena and containing reports only
from honest users (devices)). We instantiate coordinated
adversaries by having them inject data in the same manner.
We consider the following three cases:

o “Uniform” Adversaries report values drawn from a uni-
form distribution (i.e., they assign an equal mass to all
hypotheses).

e “Normal” Adversaries report values drawn from a normal
distribution.

o “N-value” Adversaries select N hypotheses (Sec. 3.1) and
randomly distribute probability masses to them.

o
>

== Sensors (i: 31 0: 5)
— Outliers (u: 31 0: 1)
i I e ¥— Outliers (u: 26 0: 5)
%=X Outliers (u: 41 0: 1.5)
i Outliers (u: 45 o: 10)

o
w

Humidity
o
Y

O e

20 25 30 35 40 45 50 55 60
Values

== Sensors (: 21 0: 1.3)
— Outliers (u: 21 0: 2)
+— Outliers (u: 23 0: 2)
%= Outliers (: 30 0: 2)
_|— outiiers (u: 30 o: 10)

Temperature

15 20 25 30 35 20
Values

Fig. 6: Adversarial data distributions and their similarity with
the original SC humidity and temperature sensor datasets
(depicted with thick lines).

The adversarial strategy determines the distortion ad-
versaries try to impose on the system. Among the above,
“normal” adversaries may cause significant distortion (by
increasing the distance between the j of their distribution
and the mean of the distribution that honest samples follow).
On the other hand, adversaries may try to increase the un-
certainty of the system, choosing a normal distribution with
large o or a uniform distribution (thus, causing maximum
uncertainty). They could also try to increase the system’s
certainty about the true value of the phenomenon (e.g., by
selecting a normal distribution with ;2 equal to the mean of
the honest distribution but with significantly smaller o). The
system should react even in this case; its output must reflect
the innate uncertainty of the sensed phenomena.

For “normal” adversaries the employed (1, o) determine
the similarity (i.e., the overlap) between the honest and
adversarial distributions. This is as an indication of the
detection difficulty: larger overlaps render the detection
of malicious contributions hard. Nevertheless, even for
highly similar distributions, our system manages to correctly
identify both the honest and malicious samples (Sec. 5).

Fig. 6 presents examples of adversarial strategies (Sec. 6)
for the humidity and temperature measurements datasets.
Recall that the underlying (normal) distributions for these
phenomena are: (i, o) = {(31,5)|(21, 1.3)}, respectively. For
humidity (upper part of Fig. 6), adversaries using the (u =
41,0 = 1.5) distribution aim for a large deviation from
the actual value of the phenomenon. Adversaries using the
(u = 31,0 = 1) try to increase the system’s certainty with
respect to the actual value of the phenomenon.

We do not consider malicious users acting independently
with different strategies: in that case, their effect on the system
would be significantly smaller compared to collaborative
attackers; the more reports (users) support the same hypotheses,
the more probable it is for the system to believe them.

To assess the impact of pollution attacks, we examine
two cases: local attacks, targeting specific regions, and global
attacks that aim to distort the system output for as many (if
not all) regions as possible. For local attacks, we examine
the trade-off between the detectability of adversarial reports
(depending on the distribution chosen by the adversaries)
and the distortion they inflict on the system’s output. Ad-
versarial report distributions that significantly differ from

11

Classification Performance

0.017 * -» Classification H
0.016] -
/.’
0.015
) .
-
() a4
E 0.01 s
£
0.013 v ‘.
0.012
0.011 ¢
0 100 200 300 400 500 600

User Reports

(@)
Fig. 7: Performance analysis of the classification ensemble.

the actual one (i.e., based on honest users’ reports) can more
effectively distort the system’s output. But, at the same time,
such reports can be detected and sifted easier.

For global attacks, we assume adversaries do not simply
decide on a common distribution, but they also jointly agree
on the optimal allocation of their faulty reports across the
different regions, in order to maximally affect the system [51,
52]. Simply put, they try to gain the majority in as many
regions as possible. This is possibly irrespective of the
physical placement of the adversaries: they can forge the
location of their reports. To model this enhanced adversarial
coordination, we assign a popularity value, p;, to each region:
the number of user queries expected to be issued for region
1. We also assign c;, the number of honest users, expected to
be within the region 7, and we assume that ¢; is proportional
to p;; a popular region (e.g., roads around the city center)
is expected to have more users. The problem of optimally
allocating adversarial reports to each region, based on the
knowledge of p; and c¢;, is formulated as:

N
27::1 T - Pi

N
Zi:1x'ci <M,

Maximise:

subject to:

z €{0,1}

M is the number of malicious reports (or, equivalently,
users, as we assume a sybli-proof security scheme and that
the RS accepts reports at the same rate from all devices,
adversarial or not) and N is the number of regions. While RS
can estimate v; and ¢; relatively accurately, based on the large
volume of data it has, this is harder for the adversaries. Exact
knowledge of v; and ¢; is unrealistic, thus, we assume that
adversaries have inaccurate estimates of those values. We
assume that they solve this optimization problem centrally.
This way, we emulate their ability to coordinate and decide
on the allocation of faulty reports to different regions.

7 RESULTS AND ANALYSIS

First, we evaluate the efficiency of our classification ensemble
since MCS applications can generate massive amounts of
data. We, then, analyze its accuracy in the presence of
adversaries. Our focus is on the system’s ability to identify
and filter out faulty reports; i.e., the labeling of user reports
as inlying and outlying. We use five performance metrics [53]:
(i) precision, (i) recall, (iii) F-score, (iv) Matthew’s correlation

Humidity Sensor Ambient Sound Sensor

12

Temperature Sensor Humidity Sensor

c=Recall Honest &8 Precision Malicious| [Recall Honest &5 Precision Malicious|
=1 Recall Malicious @ F-Score Honest

o0 Precision Honest &3 F-Score Malicious

[cRecall Malicious & F-Score Honest
[coPrecision Honest = F-Score Malicious

1.00--
0.8} -
0.6} -
0.4} -
0.2} -

Scores
Scores

30% b 40%
Fraction of Malicious User:
(a)

Humidity Sensor

(b)

Ambient Sound Sensor

Scores

c=Recall Honest &8 Precision Malicious| 5 Precision Malicious|
Recall Malicious 0 F-Score Honest

[CPrecision Honest &3 F-Score Malicious

= Recall Honest

[cRecall Malicious & F-Score Honest
[coPrecision Honest = F-Score Malicious

1.0r--
0.8 -
0.6} -
0.4 -
0.2 -

1.0r-- 3
0.8 -
0.6} -

Scores

0.4} -
0.2} -

raavAvaTaavsaY)
Oz 77 77 A7

wi

o

T35% 40% A T 1
Fraction of Malicious users buti

(c) (d)

Temperature Sensor Temperature Sensor

[c—=Recall Honest £ Precision Malicious
[cRecall Malicious & F-Score Honest
[coPrecision Honest = F-Score Malicious

c=Recall Honest &8 Precision Malicious|
[iRecall Malicious @0 F-Score Honest
[Precision Honest &3 F-Score Malicious

1.0f--
0.8 -
0.6} -
0.4 -
0.2-

Scores
Scores

- -~ ——
SEERIXXOCK O
o

Lh
7

= N
T 35% 40%
Fraction of Malicious Users

(e

®

Scores

[Recall Honest &5 Precision Malicious|
[cRecall Malicious & F-Score Honest
[coPrecision Honest = F-Score Malicious

[C=Recall Honest & Precision Malicious
[iRecall Malicious 0 F-Score Honest
[CPrecision Honest &3 F-Score Malicious

1.0
0.8
0.6
0.4
0.2]

|

1.00--
08 -]
0.6l-
0.4]-
0.2}-

Scores

SR NS K S0

iy
I
t
g
f
l
d
(

Nim 2 9

350

= N
T 35% 40%
Fraction of Malicious Users

(8)

@32) (30,2
Adversarial Distributions (u,

(h)

Fig. 8: Precision, Recall and F-score metrics, for uniform (a, b, and c), N-value (e, f, and g) and normal (d, h) adversarial

strategies. SC dataset.

coefficient (MCC) and (v) Jaccard similarity score.; they measure
a system’s classification accuracy and of its ability to correctly
identify instances inliers and outliers. Next, we continue
with an evaluation of the adversarial impact on the system
responses to user queries and we compare our scheme
with different robust aggregation functions. For an analysis
of the system’s adaptiveness to concept drifts, we refer
readers to [24]. We conclude this section with a performance
evaluation of the user remuneration protocol.

In each experiment, we provide the system with reports
originating from both honest and malicious users (Sec. 6).
This dataset is partitioned into two sub-sets: a training set
(T'S) and an evaluation set (ES). Based on the T'S, the
bootstrapping (Sec. 3.2) and training (Sec. 3.3) phases take
place. Then, the E'S is used to assess the performance of
the supervised classification part (Sec. 3.4). Due to space
limitations, we refrain from evaluating the accuracy of
DBSCAN as this is reflected on the performance of the
unsupervised classification: better training yields better
classification results. For each simulation we perform ten-
fold cross validation to avoid overfitting. We show results
based on both datasets (Sec. 6); due to space limitations, we
do not repeat similar figures from both datasets.

Classification Complexity Analysis and Efficiency. The
complexity of the DBSCAN algorithm is O(r - logr), where r
is the number of reports within a spacial unit. Furthermore,
the complexity of the region merging algorithm, for an area
of interest with n spatial units, is O(n?). Each KS test is
executed in approximately 0.0005 sec. The low complexity
of both algorithms serves as an indication of the efficiency
of the training phase. This is important for highly dynamic
and regularly changing phenomena (entailing many concept
drifts) that require retraining of the system.

MCS campaigns might result in large amounts of user
contributions. These must be examined by the ensemble
of classifiers (Sec. 3.4) in an efficient manner. Fig. 7 (a)

shows the performance of the ensemble as a function of
the number of user reports per sec: the classification time
increases (linearly) with the number of user reports. The
classification of 200 user reports requires less than 0.013 sec
whereas 500 concurrent reports are classified in less than
0.017 sec. For the performance analysis the RS is deployed
on a commodity server with an 8-Core, 3.6 GH z CPU.

Classification Accuracy. Fig. 8 shows the precision, recall
and F-score metrics for the SC dataset for different adversarial
strategies (i.e., uniform, N-value and normal distributions).
Bars depict the scores both for honest and malicious reports.
The overall correctness of the system remains high, regardless
of the number of malicious users (Average F-score > 0.85); in
almost all cases, the percentage of correctly classified samples
is at least 80%. However, higher accuracy is achieved for
larger number of adversaries (> 35%). This happens because
the number of negative samples increases in the evaluation
set and, thus, mis-classifying one such sample has a smaller
impact on the overall precision.

Fig. 8 (d), (h) examine the system’s accuracy for adver-
saries following a normal distribution (for the humidity
and temperature sensors). We fix the number of malicious
users to be 45% and we vary the percentage of overlapping
regions (with the honest distribution) by changing the (u, o)
values of the adversarial distribution. We see that our
framework manages to correctly classify both positive and
negative samples with high accuracy even for rather similar
distributions. For instance, even when the humidity dataset
is injected with malicious reports drawn from a normal
distribution with high overlap (1 = 26,0 = 5 ie., 70%
overlap, Fig. 6), accuracy remains high (F-score > 0.78).

We further examine the impact of overlapping regions
(Fig. 9 (a)) for the synthetic datasets generated from the
emulated traffic monitoring sensing task (Sec. 6). Honest
users report their velocities drawn from a normal dis-
tribution with (u = 16,0 2). For each simulation

13

0.2

Il
o

*+ MCC = Precision Malicious v ».u 30% Adversaries [— SHIELD
2 1.0 e «x Jaccard Index = Returned Value E 2 . *x 20% Adversaries " .
£ \ urned Value Erro g 40 . + + 40% Adversaries [Random] 015 N ~ median
Fos8 L < RN S =+ RANBAR|
., [T T
7 . £ 30 . - S
n N 0 0.8 ko] E £
5 0.6 S o g - So0.19
© g g - 7
o i e o=
Soa B2 5 i E 29 e a
2 0.4 g N B
= S
g o2 g 10 0.05
= 0.2 4o AL 2 A SN RS S S
0.0 2 -
ol 0.00
(22,2) (20,2) (18,2) (17,2) (16,2) 19 16.7 0 60 70 16.7

« * 40% Adversaries

18 17 168
Adversarial Distributions

(b)

Adversarial Distributions (, o)

(@)

6 85 11 135
Adversarial Strategy

(d)

10 20 30 40 5
Estimation Error [%]

(©

Fig. 9: (a) MCC and Jaccard coefficients as a function of the percentage of overlapping regions. (b) Analysis of Local and (c)
Global Adversarial Impacts. (d) Comparison of SHIELD with robust aggregation functions. Transportation dataset.

run, we used different normal (adversarial) distributions;
{(M = 22,0 = 2)‘(:“’ = 20,0 = 2)[(p = 18,0 = 2)‘(:“/ =
17,0 = 2)|(x = 16,0 = 2)}. Each case corresponds to a
different percentage of overlapping regions; 35%, 55%, 80%,
90% and 100% respectively. Again, we set the number of
malicious users to be 45%.

We see that the system achieves perfect prediction when
the overlap between the distributions is relatively small
(i-e., their similarity is less than 35%). For a 50% overlap,
the classification accuracy still remains high (MCC, Jaccard)
> 0.85. Even for high overlap percentages (> 80%), accuracy
is close to 60%. Considering that the two distributions
are almost identical, adversaries cannot significantly distort
the system’s output. Finally, for identical distributions, the
system exhibits an average random behavior (MCC = 0,
Jaccard = 0.5) since malicious and honest reports do not
differ at all (same as classifying based on a “coin toss”).

In conclusion, both honest and malicious reports are
shown to be assessed correctly, irrespectively of the employed
adversarial strategy. Honest data following distributions
with small standard deviations can be classified better with
almost perfect scores (e.g., temperature SC dataset with
(b = 21,0 = 1.3)). However, even for high standard de-
viation values - a measure of the phenomenon’s uncertainty -
the impact on classification accuracy is negligible (< 10%).

Impact of Adversaries. For local attacks, within a region,
we measure the detectability of adversaries data through the
precision metric. We employ the traffic monitoring dataset
and set the fraction of adversaries to 45% of the total number
of users (reports) in the region. We assess their impact
by examining the distortion they cause; i.e., the difference
between the value the system would report for a region in
an adversary-free state and the value the system reports in
the presence of adversaries. As Fig. 9 (a) shows, adversaries
with report values drawn from the (¢ = 19, 0 = 2) normal
distribution are easily detected and, thus, the distortion they
inflict is negligible (0.03). As the adversarial distribution
moves towards the actual one, precision drops; but so does
the distortion of the system output (for the targeted region).

For global attacks, we assume overwhelming adversaries;
they comprise almost the majority of system users and
coordinate their attacks by deciding an optimal allocation of
their reports (by solving the optimization problem presented
in Sec. 6). Note that this optimal allocation is computed
against a non-optimal allocation of honest users (honest users
report data from their current location and thus, they do not
coordinate). Figure 9 (b) shows the utility that adversaries

20

«« Malicious Utility|
S
= 15
=1
£
=
=1
5 10
=
©
4
L 5
>
e
<
o a4
(82 (852 (11,2) (135,2)
Adversarial Distributions
35
.
3.0 o
,I

—2.5 5
g
920 e
° -
€15
= .

1.0 g

,"
0.5
0.0l ”

0 500 1000 1500
Num of Reports

2000

Fig. 10: (a) Adversarial Utility, (b) Performance Analysis of
the Remuneration Protocol.

achieve (i.e., the number of queries they manage to arbitrarily
pollute) as a function of M (i.e., the adversarial strength) and
the estimation error for ¢; (Sec. 6). Small estimation errors
yield high utility for the adversaries. Nonetheless, as the
estimation error grows, this utility significantly reduces.

We also compare our system to robust aggregation
schemes proposed for wireless sensor networks. More specif-
ically, we consider the median robust aggregation function,
discussed in [54] and used in [31], and the RANBAR ag-
gregation scheme [55]. We compare them to our system
for different adversarial strategies. We set the fraction of
adversary-controlled nodes to 25% (because it was shown
that median performs well in this case [55]) and we assume
adversaries report values from a normal distribution; we
vary i and fix o to 3. Recall that honest users report
(velocity) values from the (u = 16,0 = 2) distribution. We
assess the impact of adversaries by examining the distortion
they impose to the system output. Figure 9 (c) shows
that our system significantly outperforms both schemes
for all examined adversarial strategies. More specifically,
for adversarial distributions that significantly differ from
the actual one, our system correctly identifies and removes
malicious contributions, thus, achieving no distortion.

Remuneration Protocol Analysis & Efficiency. First we
examine the (possible) utility achieved by malicious users

REFERENCES

as a function of their strategy. More specifically, we employ
the transportation dataset and set the fraction of adversarial
users to 45%. The adversarial distributions are the same
as the ones considered in Fig. 9 (d). Fig. 10 (a) presents
our findings: adversaries with report values drawn from
the (1 = 19,0 = 2) normal distribution can be easily
detected by the RS, and, thus, the utility they receive is
0. As the adversarial distribution moves towards the ac-
tual one, detectability decreases and thus, the utility that
adversaries receive from the remuneration protocol increases.
Nonetheless, this increase is small (i.e., 5% of the total utility)
especially when considering the adversarial strength (i.e.,
45%). Recall that in this case adversaries are reporting almost
truthful values: the distortion they inflict to the system output
is negligible (0.03) (Fig. 9 (d)).

Fig. 10 (b) depicts the performance of the remunera-
tion protocol ran on a mainstream workstation. We plot
the execution time as a function of the number of user
contributions received during a sensing task. We have
also considered the time needed for the calculation of the
score values of the reports (Sec. 4.1), their homomorphic
encryption, randomization and digital signing® and, finally,
their decryption by the GM (Sec. 4). As the figure shows, the
remuneration protocol overhead scales linearly with respect
to the number of received user reports. But still, it adds a
modest complexity on the data verification framework: for
example, it requires less than 3.5 sec for 2000 user reports.

On the client side, homomorphic randomization is a
simple addition of elliptic curve points. Moreover, the proto-
col requires each client to decrypt, with its private key, the
cipher-text of H, {¢;} encrypted by the RS. A modest Quad-
Core phone (we used Sony Z3) performs approximately 65
decryptions/sec. Finally, the size of a signed, randomized
and homomorphically encrypted ¢ value is 320 bytes.

8 CONCLUSIONS

Technological advances in sensing, microelectronics and
their integration in everyday consumer devices laid the
groundwork for the rise of participatory sensing. However,
its success requires effective protocols that guarantee security
and privacy for MCS systems and their users. To meet this
challenge, we presented a novel data verification protocol
that ensure resilience against strong adversaries that pollute
sensing campaigns. At the same time, our system enables
the provision of incentives in a privacy-preserving manner;
a catalyst for user participation. We formally evaluated the
achieved security and privacy properties and provided a
strong empirical evidence of its accuracy and efficiency.

REFERENCES

[1] B.Guo etal. “From Participatory Sensing to Mobile Crowd
Sensing”. In: CoRR abs/1401.3090 (2014).

[2] G. Chatzimilioudis et al. “Crowdsourcing with Smart-
phones”. In: Internet Comp, IEEE 16.5 (2012).

[3] M. V. Kaenel, P. Sommer, and R. Wattenhofer. “Ikarus:
Large-scale Participatory Sensing at High Altitudes”.
In: Proceedings of the 12" Workshop on Mobile Computing
Systems and Applications. Phoenix, USA, 2011.

6. The RS signs the randomized homomorphically encrypted values
with 2048-bit RSA keys.

(4]

[5]

(6]

(7]

(8]

9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

14

D. Mendez et al. “P-Sense: A Participatory Sensing
system for air pollution monitoring & control”. In: IEEE
International Conference on Pervasive Computing and Com-
munications (PerCom). Seattle, 2011.

S. Gisdakis et al. “Secure and Privacy-Preserving
Smartphone-Based Traffic Information Systems”. In: IEEE
Transactions on Intelligent Transportation Systems (2015),
pp. 1428-1438.

A. Thiagarajan et al. “VTrack: Accurate, Energy-aware
Road Traffic Delay Estimation Using Mobile Phones”.
In: Proceedings of the 7" ACM Conference on Embedded
Networked Sensor Systems. Berkeley, USA, 2009.

S. Gisdakis et al. “SEROSA: SERvice oriented security
architecture for Vehicular Communications”. In: IEEE
Vehicular Netw Conf. Boston, USA, 2013, pp. 111-118.

T. Giannetsos, T. Dimitriou, and N. R. Prasad. “People-
centric sensing in assistive healthcare: Privacy challenges
and directions”. In: Security and Communications Network
4.11 (Nov. 2011), pp. 1295-1307.

N. Lane et al. “BeWell: A Smartphone Application to Mon-
itor, Model and Promote Wellbeing”. In: 5th International
ICST Conference on Pervasive Computing Technologies for
Healthcare. Dublin, Apr. 2012.

J. Ballesteros et al. “Safe cities. A participatory sensing
approach”. In: IEEE Conf on Local Computer Netw. 2012.
R. Gimenez et al. “Moving Advanced Safety to the Cloud:
Some Outcomes of SafeCity Project.” In: Future Security.
Vol. 318. Communications in Computer and Information
Science. Springer, 2012, pp. 85-88.

G. Greenwald. “NSA Prism Program Taps in to User Data of
Apple, Google and Others”. June 2013. URL: http://www.
theguardian.com /world /2013 /jun/06 / us-tech-giants-
nsa-data.

I. Krontiris, F. Freiling, and T. Dimitriou. “Location privacy
in urban sensing networks: research challenges and
directions”. In: [EEE Wireless Communications 17.5 (Oct.
2010), pp. 30-35.

S. Reddy et al. “Examining Micro-payments for Partici-
patory Sensing Data Collections”. In: ACM International
Conference on Ubiquitous Computing. UbiComp. Copen-
hagen, Denmark, 2010.

M. Shin et al. “AnonySense: A system for anonymous
opportunistic sensing.” In: Pervasive and Mobile Computing
7.1 (2011), pp. 16-30.

E. De Cristofaro and C. Soriente. “Extended Capabilities
for a Privacy-Enhanced Participatory Sensing Infrastruc-
ture (PEPSI)”. In: IEEE Transactions on Information Forensics
and Security 8.12 (2013), pp. 2021-2033.

T. Das et al. “PRISM: platform for remote sensing using
smartphones”. In: Proceedings of the 8" International Con-
ference on Mobile Systems, Applications, and Services. San
Francisco, USA, 2010.

L. Kazemi and C. Shahabi. “TAPAS: Trustworthy privacy-
aware participatory sensing”. In: Knowledge and Informa-
tion Systems 37.1 (2013), pp. 105-128.

S. Gisdakis, T. Giannetsos, and P. Papadimitratos. “SP-
PEAR: Security & Privacy-preserving Architecture for
Participatory-sensing Applications”. In: Proceedings of the
2014 ACM Conference on Security and Privacy in Wireless &
Mobile Networks. WiSec. Oxford, United Kingdom, 2014.
D. Christin et al. “IncogniSense: An anonymity pre-
serving reputation framework for participatory sensing
applications.” In: Pervasive and Mobile Comp. 9.3 (2013),
pp- 353-371.

Xinlei Oscar Wang et al. “ARTSense: Anonymous repu-
tation and trust in participatory sensing.” In: 32nd Int.
Conference on Computer Communications. Turin, Italy, 2013.
T. Luo and C. K. Tham. “Fairness and social welfare in
incentivizing participatory sensing.” In: IEEE Conf. on

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]
[44]

Sensor, Mesh and Ad Hoc Communications and Networks.
Seoul, 2012.

I. Krontiris and A. Albers. “Monetary incentives in
participatory sensing using multi-attributive auctions”.
In: International Journal on Parallel Emerging Distributed
Systems 27.4 (2012), pp. 317-336.

S. Gisdakis, T. Giannetsos, and P. Papadimitratos.
“SHIELD: A Data Verification Framework for Participatory
Sensing Systems”. In: ACM Conference on Security &
Privacy in Wireless and Mobile Networks. New York, 2015.
T. Giannetsos, S. Gisdakis, and P. Papadimitratos. “Trust-
worthy People-Centric Sensing: Privacy, Security and User
Incentives Road-map”. In: IEEE 13" Mediterranean Ad Hoc
Networking Workshop (Med-hoc-Net). Piran, Slovenia, 2014.
J. Benaloh Clarkson. “Dense Probabilistic Encryption”.
In: In Proceedings of the Workshop on Selected Areas of
Cryptography. 1994, pp. 120-128.

J. H. Saltzer and M. D. Schroeder. “The protection of
information in computer systems”. In: Proceedings of the
IEEE 63.9 (1975), pp. 1278-1308.

L. Anselin and A. Getis. “Spatial statistical analysis
and geographic information systems”. In: The Annals of
Regional Science 26.1 (1992).

B. Hull et al. “CarTel: a distributed mobile sensor com-
puting system”. In: International Conference on Embedded
networked Sensor Systems. Boulder, USA, 2006.

K. Farkas et al. “Participatory sensing based real-time pub-
lic transport information service”. In: IEEE International
Conference on Pervasive Computing and Communications
Workshops. Budapest, Hungary, 2014, pp. 141-144.

D. Mendez and M. A. Labrador. “On Sensor Data Verifi-
cation for Participatory Sensing Systems”. In: Journal of
Networks 8.3 (2013), pp. 576-587.

M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. “Mining
Data Streams: A Review”. In: ACM Special Interest Group
on Management of Data Record 34.2 (June 2005).

G. Shafer. A Mathematical Theory of Evidence. Princeton
University Press, 1976.

S. Garcia et al. “A Survey of Discretization Techniques:
Taxonomy and Empirical Analysis in Supervised Learn-
ing”. In: IEEE Transactions on Knowledge and Data Engineer-
ing 25.4 (2013), pp. 734-750.

M. Ester et al. “A Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise”.
In: 2nd International Conference on Knowledge Discovery and
Data Mining. Portland, OR, USA, 1996.

G. N. Lance and W. T. Williams. “Mixed-Data Classifica-
tory Programs I - Agglomerative Systems.” In: Australian
Computer Journal 1.1 (1967), pp. 15-20.

L. Breiman. “Random Forests”. In: Machine Learning 45.1
(2001), pp. 5-32.

J. Gama et al. “A Survey on Concept Drift Adaptation”.
In: ACM Computing Surveys 46.4 (Mar. 2014).

P. Smets. “Data fusion in the transferable belief model”.
In: 3rd International Conference on Information Fusion. Paris,
France, 2000, pp. 21-33.

P. Smets. “The Combination of Evidence in the Transfer-
able Belief Model”. In: IEEE Trans on Pattern Analysis and
Machine Intelligence 12.5 (May 1990), pp. 447-458.

D. Worner and T. von Bomhard. “When Your Sensor Earns
Money: Exchanging Data for Cash with Bitcoin”. In: ACM
Int. Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication. Seattle, Washington, 2014, pp. 295-298.
D. Dolev and A. C. Yao. On the security of public key
protocols. Tech. rep. Stanford University, 1981.

B. Blanchet. “Automatic proof of strong secrecy for secu-
rity protocols”. In: IEEE Symposium on Security. 2004.

R. Emil Kalman. “A New Approach to Linear Filtering &
Prediction Problems”. In: Transactions of the ASME—Journal
of Basic Engineering 82.Series D (1960), pp. 35-45.

[45]

[46]
[47]
[48]
[49]

[50]

[51]

(52]

(53]

[54]

[55]

15

B. Wiedersheim et al. “Privacy in inter-vehicular networks:
Why simple pseudonym change is not enough”. In:
Wireless On-demand Network Systems and Services (WONS),
2010 Seventh International Conference on. 2010.

R. Karp. “Reducibility among Combinatorial Problems”.
In: Complexity of Computer Computations. 1972.

L.G. Valiant. “The complexity of computing the perma-
nent”. In: Theoretical Computer Science (1979), pp. 189 —201.
Data Sensing Lab. “Strata Santa Clara Dataset”. Feb. 2013.
URL: http:/ /datasensinglab.com/data/.

E. Miluzzo et al. “Tapping into the Vibe of the City
Using VibN, a Continuous Sensing Application for Smart-
phones”. In: ACM Symp. From Digital Footprints to Social
and Community Intelligence SCI. Beijing, China, 2011.

D. Krajzewicz et al. “Recent Development and Applica-
tions of SUMO - Simulation of Urban MObility”. In: Inter-
national Journal On Advances in Systems and Measurements
5.4 (Dec. 2012), pp. 128-138.

S. Gisdakis and P. Papadimitratos. “On the Optimal Allo-
cation of Adversarial Resources”. In: 1st ACM Workshop
on Mission-oriented Sensor Networks. Istanbul, Turkey, 2012.
S. Gisdakis, D. Katselis, and P. Papadimitratos. “Allocating
adversarial resources in wireless networks”. In: 21st IEEE
EU Conf. on Signal Processing. Marrakech, Morocco, 2013.
R.]J. G. B. Campello. “Generalized External Indexes for
Comparing Data Partitions with Overlapping Categories”.
In: Pattern Recogn. Lett. 31.9 (July 2010), pp. 966-975.

D. Wagner. “Resilient Aggregation in Sensor Networks”.
In: 2nd ACM Workshop on Security of Ad Hoc and Sensor
Networks. Washington DC, USA, 2004, pp. 78-87.

L. Buttyan, P. Schaffer, and I. Vajda. “RANBAR: RANSAC-
based resilient aggregation in sensor networks”. In: 4"
ACM Workshop on Security of Ad-Hoc and Sensor Networks.
Alexandria, VA, USA, 2006, pp. 83-90.

Stylianos Gisdakis received his Diploma in
Computer Science from Athens University of
Economics and Business (AUEB) in 2008. He
received his MSc degree in 2011 on Information
and Communication Systems Security from the
Royal Institute of Technology (KTH), Sweden,
where he is currently working towards the Ph.D.
degree in Networked Systems Security.

Thanassis Giannetsos earned his Ph.D. degree
from University of Aalborg, Denmark in 2012. Cur-
rently he is a Senior Researcher at the Networked
Systems Security group with KTH Royal Institute
of Technology, Stockholm, Sweden. His research
interests span from the theoretical foundations of
cryptography to the design and implementation
of efficient and secure communication protocols.

Panagiotis (Panos) Papadimitratos earned his
Ph.D. degree from Cornell University, Ithaca, NY,
in 2005. He then held positions at Virginia Tech,
EPFL and Politecnico of Torino. Panos is cur-
rently an Associate Professor at KTH, where he
leads the Networked Systems Security Group.
His research agenda includes a gamut of security
and privacy problems, with emphasis on wireless
networks. Web page: www.ee.kth.se/nss

