
Information Processing Letters 116 (2016) 367–372
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

2D Hash Chain robust Random Key Distribution scheme

Mohammad Ehdaie a,∗, Nikos Alexiou b, Mahmoud Ahmadian a,
Mohammad Reza Aref c, Panos Papadimitratos b

a CCL, K.N. Toosi University of Technology, Iran
b The School of Electrical Engineering, KTH, Sweden
c ISSL, Sharif University of Technology, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2013
Received in revised form 29 October 2015
Accepted 15 December 2015
Available online 18 December 2015
Communicated by L. Viganò

Keywords:
Wireless Sensor Network
Random Key Distribution
Node capture
Hash Chain
Distributed systems

Many Random Key Distribution (RKD) schemes have been proposed in the literature to
enable security applications in Wireless Sensor Networks (WSNs). A main security aspect
of RKD schemes is their resistance against node capture attacks, since compromising the
sensors and capturing their keys is a common risk in such networks. We propose a new
method, based on a 2-Dimensional Hash Chain (2DHC), that can be applied on any RKD
scheme to improve their resilience. Our method maintains the flexibility and low cost
features of RKD schemes and it doesn’t require any special-purpose hardware or extra
memory to store keys in the sensors. We demonstrate that our approach significantly
increases the resilience of RKD schemes against node capture at the cost of a few additional
computations, while maintaining network connectivity at the same level.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The first step for securing Wireless Sensor Network (WSN)
applications is to distribute keys amongst sensors. A Ran-
dom Key Distribution (RKD) scheme assigns key to sensors
and specifies how they can find common keys to establish
a secure channel. A physical node compromise is always a
risk: an adversary who captures some nodes in a network
obtains their keys and then, is able to compromise com-
munication links between benign nodes (e.g., see [1]).

We aim at increasing resilience of RKD schemes for
WSNs to node capture, while maintaining the flexibility
and low cost features of RKD. We propose the 2-Dimen-
sional Hash Chain (2DHC) scheme that leverages crypto-
graphic hash-chains to create a resilient and adaptive key
discovery mechanism. We demonstrate that our scheme
can significantly improve resilience against node capture
attacks and thus, the overall security of RKD schemes.

* Corresponding author.
E-mail address: mohammad@ehdaie.com (M. Ehdaie).
http://dx.doi.org/10.1016/j.ipl.2015.12.006
0020-0190/© 2015 Elsevier B.V. All rights reserved.
Moreover, this scheme does not increase per-node storage,
or any significant additional computation and communica-
tion overhead.

The rest of this paper is organized as follows: Section 2
presents succinctly related work on RKD schemes. Sec-
tion 3 defines the adversary models and the problem at
hand. 2D Hash Chain technique is presented in Section 4.
Finally, in Section 5 we conclude the results.

2. Related work

In a RKD scheme, each sensor is equipped with a set of
symmetric keys, called the key ring, randomly chosen from
a large pool of keys. To discover their common keys, a Key
Discovery Protocol (KDP) has to be run between the sensors
that want to establish a secure link. Two main approaches
to establish common symmetric keys between the sensors
are the basic scheme [2] and the q-composite [3] scheme,
where the sensors have to discover one and at least q com-
mon keys, respectively, to establish a secure link.

There are several works in the literature that engage
hash functions to increase the resilience of RKD schemes.

http://dx.doi.org/10.1016/j.ipl.2015.12.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mohammad@ehdaie.com
http://dx.doi.org/10.1016/j.ipl.2015.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.12.006&domain=pdf

368 M. Ehdaie et al. / Information Processing Letters 116 (2016) 367–372
They usually develop one or several chains of keys or key
materials and take advantage of the one-way property of
hash functions.

One interesting improvement is the so-called Key-Chain
improvement [4]: consider a key pool as in the basic
scheme. Extend the pool by creating some hash chains
with the primary keys as roots of the chains. For each
node, select m keys randomly from the extended key pool,
such that no more than one key is selected from each
chain.

If the primary key pool size and memory size are the
same as in the basic scheme, connectivity will not affected:
each pair of nodes can establish a secure channel, if and
only if they have keys from the same chain. The node that
owns the key which is closer to the chain root can tra-
verse the chain downwards to find the shared key carried
by the second node. This idea can decrease the chances of
an adversary to compromise secure links in the network:
consider a link that is secured with a key, say K . Even if
the adversary captures some nodes and obtains a key in
the chain corresponding to K , she succeeds if and only if
the adversary’s key is closer to the root than K . The proba-
bility the adversary fails to compromise the link given that
she owns a key in the same chain as of K , shows the per-
centage of improvement in the resilience of RKD scheme.
This probability depends on the chain length. For the best
case, when the chain length tends to infinity, the improve-
ment over the basic scheme would be 33% [4].

In the following section, we present our scheme using
a family of one-way functions and show that our scheme
can lead to a 55% improvement over the basic scheme.

3. System model & problem statement

Assume a WSN that runs the basic RKD scheme to dis-
tribute the keys between the sensors. Also, consider an
adversary who randomly captures s nodes and obtains m
stored keys per captured sensor. With the stolen keys in
his/her possession, the adversary is then able to compro-
mise communication links between benign nodes if the
key (or the keys) used to secure the link(s) is/are included
in the key rings of the captured nodes. The adversarial gain
is evaluated in terms of broken communication links given
s captured nodes, using a fail function [2] per key distribu-
tion scheme.

Fail(s) = Num. of comp. links given s comp. nodes

Number of all network links
(1)

Our objective is to reduce the fail function value, i.e.
the chance of the adversary to break secure communica-
tion links given captured sensors.

Notation: We summarize the notations we use through-
out the paper here:

• P : key pool.
• |P |: key pool size.
• m: Key ring size.
• pc : Probability that two nodes can establish a secure

connection.
• s: Number of captured nodes in the network.
• l: Key-chain length.
• p(i): Probability of two nodes sharing exactly i keys.
• q: The minimum number of shared keys for two nodes

to have a secure link (q-composite scheme).

4. 2D Hash Chain technique

4.1. Description of the technique

4.1.1. Preliminaries
Consider two one-way functions, say h and h′ , with

the commutative property, i.e. for every input x, we have
h(h′(x)) = h′(h(x)). Modular exponentiation is one exam-
ple of such functions. If we define h(x) = xa mod p and
h′(x) = xb mod p for some a, b and p, we have:

h(h′(x)) = h(xb mod p) = xa×b mod p

= h′(xa mod p) = h′(h(x)) (2)

Besides, if the parameters are properly chosen, com-
puting x from p, a and h(x) is hard (also from p, b and
h′(x)). These imply that modular exponentiation is a fam-
ily of one-way functions with the commutative property.
For more information about such functions, see [5].

Now, if we apply h, i times on an input like x, and apply
h′ on the result j times, we get h′ j(hi(x)) which is equal
to hi(h′ j(x)). In other words, the order of applying these
functions does not affect the result.

The above mentioned property implies that knowing
the value of hia (h′ ja (x)) for a given ia and ja , computing
hib (h′ jb (x)) is easy for any ib ≥ ia and jb ≥ ja . But, if we
have ib < ia or jb < ja , then computing hib (h′ jb (x)) from
hia (h′ ja (x)) is impractical.

4.1.2. Pool generation
Assume that we have a pool of keys like the basic

scheme, of size |P |. We extend the pool by creating a
2-dimensional chain from each key in the key pool. The
chains are created according to two one-way functions,
say h and h′ , with commutative property, as mentioned in
Sec. 4.1.1.

Fig. 1 shows an illustration of a chain. The root of the
chain, k1, could be any of the elements of the pool. The
element in ith row and jth column of the chain is obtained
by applying the functions h and h′ on the root, i − 1 times
and j − 1 times, respectively. The chain is assumed to be
of size l.

4.1.3. Keys assignment
For each node in the network, choose m chains ran-

domly, and then pick one element from each chain with
equal probability. Next, store the selected elements in the
sensor. In this way, each sensor has m random keys from
the extended pool and there is no more than one element
from each chain in a sensor.

4.1.4. Link establishment
Similar to the basic scheme, each pair of nodes that

owns keys from the same chain can find a shared key and
establish a secure channel. Assume that two nodes, say
node A and node B , both own a key from a chain. Let
hia (h′ ja (k0)) and hib (h′ jb (k0)) denote the keys belonging to
A and B , respectively. There are four potential cases:

M. Ehdaie et al. / Information Processing Letters 116 (2016) 367–372 369
Fig. 1. A 2-Dimensional Hash Chain.

• ia ≤ ib and ja ≤ jb: In this case, A can proceed in the
chain, probably both vertically and horizontally, to cre-
ate the same key held by B . Therefore, hib (h′ jb (k0))

can be used as a shared key between A and B to se-
cure their communications.

• ia ≥ ib and ja ≥ jb: Now, B can proceed in the chain
to reach the point by A.

• ia ≤ ib and ja ≥ jb: In this case, both A and B should
proceed in the chain, A, vertically and B , horizontally,
to reach a new point. So, hib (h′ ja (k0)) can be used as a
shared key between A and B to secure their commu-
nications.

• ia ≥ ib and ja ≤ jb: This is like the previous case, but,
in a reverse process. hia (h′ jb (k0)) can be used as a
shared key between A and B to secure their commu-
nications.

This shows that if the parameters of the system are the
same as in the basic scheme, the connectivity will not be
violated: every two nodes that share a key in the primary
pool can establish a secure channel. Their shared key will
be hmax(ia,ib)(h′max(ja, jb)(k0)).

4.2. Security analysis

Using the fail function [2], we study the effect of this
technique on the resilience of the scheme against node
capture.

In the basic scheme, when s nodes are captured in the
network, the fraction of compromised links between be-
nign nodes would be [2]:

Failbasic(s) = 1 − (1 − m

|P |)
s (3)

In the Key-Chain improvement scheme [4], the frac-
tion of compromised links between benign nodes is de-
creased to:

Failchain-improvement(s) = 1 − (1 − α × m

|P |)
s (4)

provided α is a parameter calculated according to the key
chain length, l, and is given by:

α = 1 −
∑l−1

i=1 i2

l3
(5)

Actually, this is a simplified formula to show the ef-
fect of the Key-Chain improvement technique. The exact
formula for the fraction of compromised links is given
in [4]. Numerical illustration shows that the result does not
change significantly. A sketch of the proof for the above
formula is appeared in Appendix A.

α is a parameter that shows the effect of the key chain
improvement on the resilience of the basic scheme. The
closer α to 0 is, the more improvement in the resilience
of the scheme is achieved. α = 1 is the same as the basic
scheme. Indeed, 1 − α could be seen as the approximate
percentage of improvement in the resilience of the scheme.
This is because:

1 − (1 − α × m

|P |)
s � α × (1 − (1 − m

|P |)
s) (6)

while s has a reasonably low value and m � |P |.
As a numerical illustration, when l tends to infinity, the

value of α tends to 2
3 , which is the best case for the re-

silience improvement (33% improvement: 1 − α = 1
3). It is

somehow trivial: when the chain length is large enough,
the probability that adversary’s key is the farthest from
the root among three keys (adversary’s key, A’s key and
B ’s key) will be 1

3 . It implies that if the adversary captures
a key from the same chain as that of A and B shared key,
the probability that he/she fails to break the link between
A and B is:

Prob{ic > max(ia, ib)} = 1

3
(7)

where ia , ib and ic denote the index of A’s, B ’s and the
captured key, respectively, in the chain.

Now, in the 2DHC, consider the link between A and B
and assume that hia (h′ ja (k0)) and hib (h′ jb (k0)) denote the
keys belonging to A and B , respectively. Thus, they can
use hmax(ia,ib)(h′max(ja, jb)(k0)) as the shared key to secure
their link. Given that the adversary obtains a key in the
same chain with k0, the link will be compromised if and
only if:

ic ≤ max(ia, ib) and jc ≤ max(ja, jb) (8)

Since the two above events are independent and iden-
tical, the probability that the adversary be likely is:

prob{ic ≤ max(ia, ib)and jc ≤ max(ja, jb)}
= prob{ic ≤ max(ia, ib)} × prob{ jc ≤ max(ja, jb)}

= prob2{ic ≤ max(ia, ib)} = α2 = (1 −
∑l−1

i=1 i2

)2 (9)

l3

370 M. Ehdaie et al. / Information Processing Letters 116 (2016) 367–372
Fig. 2. Fail function for the basic scheme, the 2-composite scheme, the chain improvement scheme and the 2DHC scheme with α = 0.71(l = 10).
and for the Fail function, we have:

Failbasic,2DHC(s) = 1 − (1 − α2 × m

|P |)
s � α2 × Failbasic(s)

(10)

As we observed in the previous section, α = prob{ic ≤
max(ia, ib)} tends to 2

3 for sufficiently large values of l.
Hence, in 2DHC, the “adversary chance” could reach (2

3)2 =
4
9 for proper chain length. It is a significant reduction in
the adversary chance for compromising the links (more
than 55% resilience improvement over the basic scheme).

As a numerical illustration, we plotted the Fail func-
tion for the 2DHC scheme with α = 0.71 (i.e. l = 10) in
comparison with the basic scheme as well as the Chain
Improvement scheme, in Fig. 2.

4.3. More discussions

4.3.1. The overhead
2DHC scheme needs no more storage for keys rather

than the basic scheme. Also, by using the same number
of keys in a key ring, it keeps the same level of connec-
tivity in the network. Thus, there is no communicational
overhead.

The significant improvement in the resilience costs only
a few extra computations, i.e. at most 2 × l hash com-
putations. Therefore, it is much better than the chain
improvement technique (as a 1-Dimensional Hash Chain
technique), since the chain improvement technique needs
at most l computations and decreases the Fail function by
a factor of α, while we need 2 × l computations and the
Fail function is decreased by α2.

As a numerical illustration, we let l = 5 in our scheme
(corresponding to at most 10 times hash) and get α = 1 −
0.24 = 0.76. It yields to a reduction in the Fail function by
a factor of α2 = 0.58. In contrast, we can use l = 10 in the
chain improvement technique to reach the same level of
complexity. In this situation, we have α = 1 − 0.29 = 0.71.
The Fail function is reduced by a factor of α = 0.71. Hence,
the reduction in 2DHC scheme is much better than the
reduction in the chain improvement technique with the
same level of complexity.

4.3.2. Comparison with the RSA and the ECC systems
We suggested modular exponentiation as a one-way

function with commutative property for using in our
scheme. However, it is not mandatory to use this func-
tion and the administrator of the system is free to select
any function with the mentioned properties.

Here, one question may arise: we know that modu-
lar exponentiation is a part of the RSA system, which is
impractical to implement on sensor nodes with such re-
stricted resources. So, how can we use it in our technique?

The answer is in the difference between exponents of
both systems. In the RSA system, while the exponent in
the encryption phase is small, for decryption it uses a very
huge number. Thus, it is not practical to implement de-
cryption in the sensor nodes. On the other hand, in 2DHC
technique, the exponent could be a small value that makes
it possible to be implemented in a restricted resource gad-
get like a sensor node.

The same argument can be made about the power con-
sumption. In [6], the power consumption for RSA-1024
signature generation and verification is calculated. While
signature generation, which corresponds to a large expo-
nent, consumes 304 mWs, signature verification which cor-
responds to a small exponent (like our one-way functions)
consumes less than 12 mWs. Therefore, we can conclude
that our one-way function consumes less than 4% of RSA
decryption power (equivalent to signature generation).1

Another question that may arise is that why not us-
ing ECC to encrypt the secret key, exchange it, and then
decrypt it in the destination node, instead of multiple
modular exponentiations? We first give a rough compar-
ison between the execution time of 2DHC and ECC. For

1 Some may argue that the power consumption is very high in compar-
ison with typical one-way functions such as SHA-1. While this argument
is true, it could be a trade-off between security and power consump-
tion. Since this power consumption occurs once in the neighbor discovery
phase of network, it is considered as a reasonable trade-off.

M. Ehdaie et al. / Information Processing Letters 116 (2016) 367–372 371
the comparison, we use the data in [7], where the to-
tal time for ECC is around 4.1 s while the execution time
for RSA public key operation is around 0.79 s If we set
l = 5 in 2DHC technique, which yields to a reduction in
Fail function by a factor of 0.58, the average number of
required RSA public key operations is 1.6 times (less than
two times) in each node (see Appendix B). Then, the to-
tal required time for 2DHC is around 2.5 s, which is better
than ECC required time. Additionally, the most significant
point is that in the asymmetric cryptography systems like
ECC, there should be a trusted center to certify node public
keys. Establishing such a trusted center forces an unavoid-
able and extortionary overhead to the network. Thus, it is
much better to run RSA public operation a few times in the
beginning of network establish time rather than handling
a trusted center for all the network life-time.

4.3.3. Non-RSA one-way functions
According to our best knowledge, examples of one-way

functions other than ones based on RSA have not been
found yet. If an example will be found with less computa-
tion, it could readily be used in 2DHC technique. However,
in this part, we introduce a more effective, less secure
function, to create the chain. If the network administra-
tor decides that RSA public operation is too expensive to
obtain the security, we can use another more effective
function that can supply lower security level than modular
exponentiation.

Define the first function, h(x), as x1| f (x2) and the sec-
ond function, h′(x), as f (x1)|x2, where x1 and x2 are the
first and the second half of the x bit string, respectively,
and f is an arbitrary one-way function such that its output
length is equal to the length of x1. This way, h and h′ are
two functions with commutative property. However, they
are not cryptographic one-way functions; because, know-
ing h(x), one can determine half of the x bit string (but
not all of x bits).

Using the above h and h′ functions, we can create
2D Hash Chains of keys. From information theoretical point
of view, these 2D chains have lower security rather than
chains created by modular exponentiation. However, in
practice, their security levels are almost the same. If the
adversary does not have overwhelming power to brute-
force check all the possible values for the unrevealed half
of the key, we can assume that h and h′ are almost one-
way functions with commutative property.

4.3.4. The nDHC technique
We can extend the idea to an n-Dimensional Hash

Chain. Assume that we have n one-way functions, say
h1, h2, . . . , hn , with commutative property, such that when
applying to an input, the result would be independent of
the order of indices.

Using such one-way functions, one can create an
n-Dimensional Hash Chain (nDHC) from each key in the
primary key pool, and distribute keys among sensors in
the same manner. The gain for using an nDHC is that the
adversary chance can be reduced by αn .
Fig. 3. An idea for mitigating the effect of node capture by using half of
the key space.

4.3.5. Using half chain
In 2DHC, if the adversary compromises a key, say

hi(h′ j(k0)), all the keys in the same chain with the in-
dices after (i, j) (below and right of (i, j) position) would
be compromised, too. If the adversary succeeds in com-
promising the chain root, i.e. the key with the index (0, 0),
all the chain will be compromised completely. While this
is a small probability, it leads to a big loss. Thus, it has
a considerable risk. Here, one may think to use a part of
key space, e.g. half of the chain, such that compromising
neither of the keys yield to compromising all the chain.
Fig. 3 shows the motivation for this idea. As illustrated in
the figure, if we use half of the key space (the keys on the
secondary diagonal of the matrix), the adversary can get at
most half of the usable space by compromising a key. This
will be discussed in the future work.

4.3.6. Applying on other schemes
2DHC technique is generally applicable to other

schemes since it can improve resilience of every RKD
scheme. The Fail function for the q-composite scheme can
be written as [3]:

Failq-comp(s) =
m∑

i=q

(1 − (1 − m

|P |)
s)i × p(i)

pc
(11)

By applying 2DHC technique, we have:

Failq-comp,2DHC(s)

=
m∑

i=q

(1 − (1 − α2 × m

|P |)
s)i × p(i)

pc

�
m∑

i=q

α2i × (1 − (1 − m

|P |)
s)i × p(i)

pc

≤ α2q ×
m∑

i=q

(1 − (1 − m

|P |)
s)i × p(i)

pc
(12)

Eq. (12) shows for the best case, the improvement in the
resilience becomes 1 −α2q . Therefore, the 2DHC has a bet-
ter effect on the q-composite than the basic scheme.

5. Conclusion

We considered the problem of increasing the resilience
of RKD schemes to node capture. We proposed a new tech-
nique, 2D Hash Chain (2DHC), which can significantly in-
crease the resilience of RKD schemes. Without increasing
the memory storage or mitigating the connectivity level,
it decreases the value of fail function. Finally, we have
shown that all these benefits come at a few extra commu-
nications/computations for the sensors. In upcoming work,

372 M. Ehdaie et al. / Information Processing Letters 116 (2016) 367–372
we will investigate the combination of 2DHC with other
RKD-based schemes.

Appendix A

The formula for α parameter:
Consider a link between A and B that is secured by

hmax(ia,ib)(k0). Assume that the adversary captures hic (k0).
1 − α denotes the probability that ic , is greater than the
other two indices and hence, the adversary cannot obtain
the common key hmax(ia,ib)(k0).

There are l choices for every index, i.e. from 0 to l − 1.
Thus, the total number of possible outcomes for three ran-
dom indices is l3.

For the number of desired outcomes, we set ic to all
possible values and count the desired outcomes in each
case. If ic = i, for any i from 1 to l − 1, the other indices
could be any thing from 0 to i −1, i.e. i2 desired outcomes.
Hence, we have:

1 − α =
∑l−1

i=1 i2

l3
(13)

Appendix B

The number of required hash: Consider a 1D Hash Chain
with length l and two nodes that have keys from this
chain. The closer node to the root has to run some hashes
to reach the other node’s key. The expected number of
hashes is calculated as following:

Assume that the first node has the ith key in the
chain and the other node has the jth key in the chain,
0 ≤ i, j ≤ l − 1. The required number of hashes in this sit-
uation is abs(i − j), where abs denotes the absolute value.
Since there is l2 possibilities for (i, j) pair, the expected
number of hashes is:

1

l2

l−1∑

i=0

l−1∑

j=1

abs(i − j) (14)

For example, for l = 5, the expected number of hashes
is 40/25 = 1.6. Note that in a 2D Hash Chain, the expected
number of all required hashes in both nodes is doubled.

References

[1] P. Papadimitratos, J. Deng, Stealthy pre-attacks against random key
pre-distribution security, in: Proceedings of the IEEE International
Conference on Communications – Communication and Information
Systems Security Symposium, ICC’12 CISS, Ottawa, Canada, 2012,
pp. 251–260.

[2] L. Eschenauer, V.D. Gligor, A key-management scheme for distributed
sensor networks, in: Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, CCS, 2002, pp. 41–47.

[3] H. Chan, A. Perrig, D. Song, Random key predistribution schemes for
sensor networks, in: Proceedings of the 2003 IEEE Symposium on Se-
curity and Privacy, Washington, DC, USA, 2003, pp. 197–213.

[4] J. Kur, V. Matyas, P. Svenda, Two improvements of random key pre-
distribution for wireless sensor networks, in: Proceedings of the Inter-
national Conference on Security and Privacy in Communication Net-
works, 2012.

[5] J. Benaloh, M. De Mare, One-way accumulators: a decentralized al-
ternative to digital signatures, in: Advances in Cryptology, EURO-
CRYPT’93, vol. 765, Springer, 1994, pp. 274–285.

[6] A. Wander, N. Gura, H. Eberle, V. Gupta, S. Shantz, Energy analysis of
public-key cryptography for wireless sensor networks, in: PERCOM’05:
Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications, 2005, pp. 324–328.

[7] H. Wang, Q. Li, Efficient implementation of public key cryptosystems
on mote sensors, in: Proceedings of the 8th International Conference
on Information and Communications Security, 2006, pp. 519–528.

http://refhub.elsevier.com/S0020-0190(15)00223-9/bib50616E6F73537465616C74683A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib50616E6F73537465616C74683A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib50616E6F73537465616C74683A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib50616E6F73537465616C74683A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib50616E6F73537465616C74683A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib45736368656E617565723A32303032s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib45736368656E617565723A32303032s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib45736368656E617565723A32303032s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib4368616E3A32303033s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib4368616E3A32303033s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib4368616E3A32303033s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib536563436F6D3A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib536563436F6D3A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib536563436F6D3A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib536563436F6D3A32303132s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib636F6D6D757461746976653A31393933s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib636F6D6D757461746976653A31393933s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib636F6D6D757461746976653A31393933s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib507772436F6E73s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib507772436F6E73s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib507772436F6E73s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib507772436F6E73s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib496D7054696D65s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib496D7054696D65s1
http://refhub.elsevier.com/S0020-0190(15)00223-9/bib496D7054696D65s1

	2D Hash Chain robust Random Key Distribution scheme
	1 Introduction
	2 Related work
	3 System model & problem statement
	4 2D Hash Chain technique
	4.1 Description of the technique
	4.1.1 Preliminaries
	4.1.2 Pool generation
	4.1.3 Keys assignment
	4.1.4 Link establishment

	4.2 Security analysis
	4.3 More discussions
	4.3.1 The overhead
	4.3.2 Comparison with the RSA and the ECC systems
	4.3.3 Non-RSA one-way functions
	4.3.4 The nDHC technique
	4.3.5 Using half chain
	4.3.6 Applying on other schemes

	5 Conclusion
	References

