-
Matematik I och II för IT-linjen i Kista, ht
2000 och vt 2001.
Tentamen här och
tentamenslösning här!
Se Kursutvärderingen!
-
5B1103 Differential och integralkalky för T1, ht 2000 och vt 2001.
-
5B 1473 Elementär differentialgeometri
för teknologer och doktorander, vt 2001.
-
Doktorandkurs i Elementär differentialgeometri
II i period 1 och 2, ht 2001.
-
5B 2101 Komplex analys för T i period 2,
ht 2001. Ordinarie tentamen här,
lösning till denna här,
omtenta här, samt lösning
till omtentan här.
-
5B1107 Differential- och integralkalkyl
för F1 i period 3, vt 2002. Ordinarie tentamen
här, lösning till denna
här,
omtenta här, samt lösning till
omtentan
här.
Andra omtentan här, lösning till denna
här.
-
5B1115 Matematik I för ME i period 1,
ht 2002.
-
5B1301 Matematik f.k. för K3 i period 4,
vt 2003.
Have written the book
LIE'S STRUCTURAL APPROACH TO PDE SYSTEMS, Cambridge Univ. Press, 2000.
A general approach to systems of partial differential equations, based
on ideas developed by Lie,
Cartan and Vessiot.
The most basic question is that of
existence of local solutions,
but the methods used also provide further information - in particular as
regards classifications of various families of PDE systems.
Solving a PDE system is equivalent to integrating a vector
field system. The salient idea for doing the latter is to exploit the
Monge characteristic vector field subsystems and their first
integrals. Somewhat unexpectedly this very naturally leads to
the consideration of local Lie groups and Lie pseudogroups.
Table of Contents:
- Preface
- Introduction and summary
- PDE systems, pfaffian systems and vector field systems
- Cartan's local existence theorem
- Involutivity and the prolongation theorem
- Drach's
classification, second order PDEs in one dependent variable and Monge
characteristics
- Integration of vector field systems V satisfying dim V' = dim V +1
- Higher order contact transformations
- Local Lie groups
- Structural classification of 3-dimensional Lie algebras over the complex
numbers
- Lie equations and Lie vector field systems
- Second order PDEs in one dependent and two independent variables
- Hyberbolic PDEs with Monge system admitting 2 or 3 first integrals
- Classification of hyperbolic Goursat
equations
- Cartan's theory of Lie pseudogroups
- The equivalence problem
- Parabolic PDEs for which the Monge system admits at least two first integrals
- The equivalence problem for general 3-dimensional pfaffian systems in five
variables
- Involutive second order PDE systems in one dependent and three independent
variables, solved by the method of Monge
Current interest: Cartan's theory of geometric structures - including
Lie pseudogroups, the equivalence problem, moving frames and Cartan
geometries.
Här kan du se vad jag gjort vid KTH sedan jag
kom hit 1964.