Multiparameter Persistence and Nonlinear
Hierarchical Clustering

Oliver Gafvert

KTH Royal Institute of Technology/ICERM

oliverg@kth.se

1/32

Multiparameter Persistence and Nonlinear
Hierarchical Clustering

Oliver Gafvert

KTH Royal Institute of Technology/ICERM
oliverg@kth.se

Contour Learning

2/32

Contour Learning

Non-increasing functions

Persistence from R>o to Ry

Modules

Metric(0) Invariant Evaluation

Preliminaries

Persistence modules are functors F: R" — Vectgk.

4/32

Preliminaries

Persistence modules are functors F: R" — Vectgk.

The free functor K(v, —): R? — Vectx on one generator:

4/32

Preliminaries

Persistence modules are functors F: R" — Vectgk.

The free functor K(v, —): R? — Vectx on one generator:

m F is finitely gen. if there is a surjection & K(v;,—) — F.

4/32

Preliminaries

Persistence modules are functors F: R" — Vectgk.

The free functor K(v, —): R? — Vectx on one generator:

. . . N @
m F is finitely gen. if there is a surjection & K(v;,—) — F.
m The minimal such m is called the rank of F.

4/32

Preliminaries

Persistence modules are functors F: R" — Vectgk.

The free functor K(v, —): R? — Vectx on one generator:

. . . N @
m F is finitely gen. if there is a surjection & K(v;,—) — F.
m The minimal such m is called the rank of F.

m F is finitely presented if it is f.g and the kernel of ¢ is also f.g.

4/32

Metrics on Persistence Modules

The most common distance is the interleaving distance.

5/32

Metrics on Persistence Modules

The most common distance is the interleaving distance.

F and G are e-interleaved if there are maps s.t the following
diagram commutes for all v:

v) ——= F(v+¢) —— F(v + 2¢)

><X

V) —= G(v +€) —= G(v + 2¢)

5/32

Metrics on Persistence Modules

The most common distance is the interleaving distance.

F and G are e-interleaved if there are maps s.t the following
diagram commutes for all v:

v) ——= F(v+¢) —— F(v + 2¢)

><X

V) —= G(v +€) —= G(v + 2¢)

dw = inf{e | F and G are e-interleaved}

5/32

Multiparameter Persistent Homology

I
The categories of:

e finitely presented persistence modules
o f.g n-graded K|[x,...,xn]-modules

have the same formal properties:

6/32

Multiparameter Persistent Homology

I
The categories of:

e finitely presented persistence modules
o f.g n-graded K|[x,...,xn]-modules
have the same formal properties:

m enough projectives

6/32

Multiparameter Persistent Homology

I
The categories of:

e finitely presented persistence modules

o f.g n-graded K|[x,...,xn]-modules
have the same formal properties:

m enough projectives

m all projectives are free

6/32

Multiparameter Persistent Homology

I
The categories of:

e finitely presented persistence modules

o f.g n-graded K|[x,...,xn]-modules
have the same formal properties:

m enough projectives

m all projectives are free

m any object has a minimal resolution of length at most n.

6/32

Multiparameter Persistent Homology

The categories of:
e finitely presented persistence modules
o f.g n-graded K|[x,...,xn]-modules
have the same formal properties:
m enough projectives
m all projectives are free
m any object has a minimal resolution of length at most n.

Slogan

We can identify a finitely presented persistence module with an
n-graded K|[xi, ..., xp]-module by restricting to a small enough
grid N" C R".

6/32

Invariants

Invariants

Algebraic

Geometry

Betti Diagrams
Betti Numbers
Euler Ch.
Finitely generated Hilbert Polynom
Primary Decomp.

modules

Finitely presented

Data Sets ey 4 F:R" — VectK

Rank Invariant
Feature Count. Inv.

8/32

Invariants

Algebraic

Geometry

Betti Diagrams
Betti Numbers
Euler Ch.
Finitely generated Hilbert Polynom
Primary Decomp.

} modules

Finitely presented

DataSets pupmemmmm g - R™ — Vect K

Rank Invariant
Feature Count. Inv.

Need for stable invariants!

8/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

9/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].
] B\()(F)(T) = min{rank(G) | d(F,G) <7}

9/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

9/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric.

9/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric. (This is what we
will use.)

9/32

Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric. (This is what we

will use.)

Using persistence contours, we can show:

Theorem (G. and Chachélski, 2017, [2

For n > 2, computing ﬁ/\o(F) is NP-hard.

9/32

Persistence Contours

(Metrics on persistence modules)

Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).

11/32

Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).
Similar to superlinear families by Bubenick et. al. [1].

11/32

Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).
Similar to superlinear families by Bubenick et. al. [1].

m The e-shift,

Flel = ({F(vi < C(vi, €))(&i) € F(C(vi, €))})
for any generating set {g; € F(v;)} of F.

11/32

Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).
Similar to superlinear families by Bubenick et. al. [1].

m The e-shift,

Flel = ({F(vi < C(vi, €))(&i) € F(C(vi, €))})
for any generating set {g; € F(v;)} of F.

|
H
N
F G
F and G are e-close if ker p[a] = coker ¢[b] = ker ¢[c] =
= cokeryy[d] =0and a+ b+ c+d <e.

11/32

Persistence Contours

Given a choice of persistence contour:

d(F,G) :=inf{e | F and G are e-close}

12/32

Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

= a class of extended pseudometrics on persistence modules.

12/32

Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

= a class of extended pseudometrics on persistence modules.

Example

Let C(v,€) = v+ €l. This is called the standard persistence
contour.

12/32

Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

— a class of extended pseudometrics on persistence modules.

Example

Let C(v,€) = v+ €l. This is called the standard persistence
contour.

For the standard persistence contour:

Ld(F, 6) < dulF, 6) < d(F, G)

12/32

Constructing Persistence Contours

Constructing Persistence Contours

We define Cy: Ry X R = R, as the solution to the following

equation:
CQ(V’t)
t= / po(a)da
v

where pg(«) is some positive real-valued function, parametrized by
0 cR™

14/32

Constructing Persistence Contours

We define Cy: Ry X R = R, as the solution to the following

equation:
CQ(V’t)
t= / po(a)da
v

where pg(«) is some positive real-valued function, parametrized by
0 cR™

v Co(v, t)

14/32

Constructing Persistence Contours

The kernel function pgy can be chosen as:
m step-function
m neural network

m mixture of gaussians

15/32

Constructing Persistence Contours

The kernel function pgy can be chosen as:
m step-function
m neural network

m mixture of gaussians

We consider persistence contours parametrized by # € R, with
the property:

Co(v, t) = (CE(va, 1), ..., Cl (Vi 1))

where v = (vi,...,vp).

15/32

Tree Contour Example

Forest tree data from Henri Riihimaki:

0.0000 0.0002 0.0004 00006 0.0008 o 0.0010

800 1000

The feature counting function for two different kinds of contours on the forest tree dataset.

16 /32

Tree Contour Example

Forest tree data from Henri Riihimaki:

0.0000 0.0002 o 00004 _0.0006 0.0008 - 0.0010

The feature counting function for two different kinds of contours on the fore:”*

03

16 /32

Contour Learning

Contour Learning

Problem

18/32

Contour Learning

Problem
Given the following information:

18/32

Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},

18/32

Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},
a map ¢: F — {0,1}, assigning a class to each module,

18/32

Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},
a map ¢: F — {0,1}, assigning a class to each module,
we want to find a (pseudo)metric that discriminates the modules
of different classes.

18/32

Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},
a map ¢: F — {0,1}, assigning a class to each module,
we want to find a (pseudo)metric that discriminates the modules
of different classes.

Solution

18/32

Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},
a map ¢: F — {0,1}, assigning a class to each module,
we want to find a (pseudo)metric that discriminates the modules
of different classes.

Solution
Define a distance dy, using persistence contours, and solve the
following metric learning problem:

. ! !/
min S d(FFY+ D> de(FLF)
F,F'e¢—1(0) F,F'ep=1(1)
Z do(F, F') > (1)
Feg~1(0)
F'eg™(1)
18/32

One-parameter contour learning

When n =1, F has a unique bar decomposition B.

19/32

One-parameter contour learning

When n =1, F has a unique bar decomposition B.

Theorem

For n =1, the feature counting function is computed as:

Bo(F)(7) = #{[a, b] € B| b> C(a,7)}

19/32

One-parameter contour learning

When n =1, F has a unique bar decomposition B.

Theorem

For n =1, the feature counting function is computed as:

Bo(F)(7) = #{[a, b] € B| b> C(a,7)}

Sketch of proof.

When n = 1, the bar decomposition of F[r] consists of
B = {[C(a,T),b] | [a,b] € B and C(a,T) < b}.

19/32

One-parameter contour learning

When n =1, F has a unique bar decomposition B.

Theorem

For n =1, the feature counting function is computed as:

Bo(F)(7) = #{[a, b] € B| b> C(a,7)}

Sketch of proof.

When n = 1, the bar decomposition of F[r] consists of
B = {[C(a,T),b] | [a,b] € B and C(a,T) < b}.

m Claim: any 7-close functor to F contains F|[r].

19/32

One-parameter contour learning

When n =1, F has a unique bar decomposition B.

Theorem

For n =1, the feature counting function is computed as:

Bo(F)(7) = #{[a, b] € B| b> C(a,7)}

Sketch of proof.

When n = 1, the bar decomposition of F[r] consists of
B = {[C(a,T),b] | [a,b] € B and C(a,T) < b}.

m Claim: any 7-close functor to F contains F|[r].

m If H D F[r], then rank(H) > rank(F[7]).

19/32

One-parameter contour learning

Define the kernel function
Choose py as a step-function, where pg(a) = 6; if aj_1 < a < a;.

20/32

One-parameter contour learning

Define the kernel function
Choose py as a step-function, where pg(a) = 6; if aj_1 < a < a;.

20/32

One-parameter contour learning

Define the kernel function
Choose py as a step-function, where pg(a) = 6; if aj_1 < a < a;.

we will adjust the step heights 6; to solve the metric learning
problem (1).

20/32

One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to
make it smooth.

21/32

One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to

make it smooth.Define
1
GIOESDY 1+ ek(Co(a,t)-b)
[a,b]eB

where B is the bar decomposition of F.

21/32

One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to

make it smooth.Define
1
w(F)(t) = > 1+ ek(Co(a,t)-b)
[a,b]eB

where B is the bar decomposition of F.

Choose the metric on persistence modules

Smoothed version of the interleaving distance for non-increasing
functions from R>¢ to R>q:

dw(f,g) = miniemize /OO f(t)—g(t+e)+g(t)—f(t+e)dt

st f(t)
g(t)

(+€)VtERZQ

gt
f(t+¢€) Vt € Rxg

>
>

21/32

One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to

make it smooth.Define
1
w(F)(t) = > 1+ ek(Co(a,t)-b)
[a,b]eB

where B is the bar decomposition of F.

Choose the metric on persistence modules

Smoothed version of the interleaving distance for non-increasing
functions from R>¢ to R>q:

dw(f,g) = miniemize /OO f(t)—g(t+e)+g(t)—f(t+e)dt

st f(t)
g(t)
Then, dy(F, F’) = dN(tg(F),tg(F/)) 21/32

g(t+e) Vit € R>o
f

>
> (t—f-e)VtERZO

Example

m B consists of ten barcodes, with five in each class.
m Choose pg(a) :=0; if i <a <i+1and welet §; =01 if
i > 19. Consequently, # € RO,

H 5

a a

3 3

oo 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
16

1.04 b
12

102
10

1.00 8
6

0.98 .
2

096
o

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

22/32

Nonlinear Hierarchical Clustering

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

24/32

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

24/32

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

This happens for multiparameter clustering.

24/32

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

This happens for multiparameter clustering.
Use the Hilbert function, HF(v) := dimF(v), to construct a
smoothed feature counting function.

24/32

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

This happens for multiparameter clustering.

Use the Hilbert function, HF(v) := dimF(v), to construct a
smoothed feature counting function.

It can be decomposed into rectangular blocks of the same hight,

HF = UihiI(ail7~-~aain)’(bi17-~~’bin)

24/32

Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

This happens for multiparameter clustering.

Use the Hilbert function, HF(v) := dimF(v), to construct a
smoothed feature counting function.

It can be decomposed into rectangular blocks of the same hight,

HF = UihiI(ail7~-~aain)’(bi17-~~’bin)

and thus

n

1 1
F = h; : i
t(F)(7) Z ! I<1:[1 1 + ek(@a—C45(0,7)) 1 4 ok(Cy(0,7)—bix)

24/32

Nonlinear Hierarchical Clustering

m Solve problem (1) using gradient descent as in one-parameter
case.

25/32

Nonlinear Hierarchical Clustering

m Solve problem (1) using gradient descent as in one-parameter
case.

m Produces a nonlinear hierarchical clustering of the data by
restricting the module to the curve outlined by C(0, 7).

25/32

Approximating the Feature Counting Invariant

Approximations

What problem are we approximating?

27/32

Approximations

What problem are we approximating?
Observation:

Bo(F)(€) = min{rank(G) | F[e] € G C F and d(F,G) < ¢}

27/32

Approximations

What problem are we approximating?
Observation:

Bo(F)(€) = min{rank(G) | F[e] € G C F and d(F,G) < ¢}

It suffices to minimize over the subfunctors of F.

27/32

Approximations

What problem are we approximating?
Observation:

Bo(F)(€) = min{rank(G) | F[e] € G C F and d(F,G) < ¢}

It suffices to minimize over the subfunctors of F.

{gi € F(vi)} {F(vi < C(vi,€))(&i) € F(C(vi,€))}
Generating set for F Genrating set for F|e]

27/32

Approximations

What problem are we approximating?
Observation:

Bo(F)(€) = min{rank(G) | F[e] € G C F and d(F,G) < ¢}

It suffices to minimize over the subfunctors of F.

{gi € F(vi)} {F(vi < C(vi,€))(&i) € F(C(vi,€))}
Generating set for F Genrating set for F|e]
C(viy€)
For € large enough, there is u s.t: u

Ui

27/32

Approximations

Want to find minimal number of elements in:

UF(U <)) H(F(vi < C(vi, 0))(8i)) S F(u)

that generate Fle|.

28/32

Approximations

Want to find minimal number of elements in:

U Fu < vi) H(F(vi < C(vie))(&1) € F(u)

that generate Fle|.

Can be phrased as the following matrix rank minimization problem
with an affine constraint set:

Input Vectors x1,...,xn € R" and subspaces Li,...,L, CR"
Output min{rank([c1 ... ¢m])|c —x € L}

28/32

Approximations

Want to find minimal number of elements in:

U Fu < vi) H(F(vi < C(vie))(&1) € F(u)

that generate Fle|.
Can be phrased as the following matrix rank minimization problem
with an affine constraint set:

Input Vectors x1,...,xn € R" and subspaces Li,...,L, CR"
Output min{rank([c1 ... ¢m])|c —x € L}

This is NP-hard, by reduction from a graph colouring problem [2].

28/32

Example

Calculating BAO(F)(2) for the following functor requires you to solve
such a rank minimization problem:

5/0] 0 0 0 0 |0
s K| K? | K3/Ly 0 0o |o
3| K| K?| K | K3/Ly 0 |o
2| K| K2| K3 K3 | K3/Lo |0
10 K| K? K? K? |0
ol0] O K K K |0

0 2 3 4 5

29/32

Approximations

min rank(A)
AECCRm*m

30/32

Approximations

min rank(A)
AECCRm*m

Case K = R: The problem can be efficiently approximated by the
nuclear norm [3]:

30/32

Approximations

min rank(A)
AECCRmM*m

Case K = R: The problem can be efficiently approximated by the
nuclear norm [3]:

min rank(A) ~ min ||A]|.

AeC AeC
where ||All. = > gi(A).

30/32

Approximations

min rank(A)
AeCCRmxm

Case K = R: The problem can be efficiently approximated by the
nuclear norm [3]:

min rank(A) ~ min ||A]|.
AcC AcC

where [|A||« = > gi(A).

Case K = Z/2Z: For each k, we can write the determinants of the
k x k minors as Boolean clauses. Can be solved using a modern
SAT solver, which can handle millions of variables and clauses.

30/32

Approximations

min rank(A)
AECCRmXm
Case K = R: The problem can be efficiently approximated by the
nuclear norm [3]:

min rank(A) ~ min ||A]|.
AcC AcC

where [|A||« = > gi(A).

Case K = Z/2Z: For each k, we can write the determinants of the
k x k minors as Boolean clauses. Can be solved using a modern
SAT solver, which can handle millions of variables and clauses.

Case F = Hy(X(—); K): The F is a functor F: R"” — Sets and
the matrix rank minimization turns into a vertex covering problem

(which can be approximated).
30/32

Next steps

31/32

Next steps

m Implementing and experimenting.

31/32

Next steps

m Implementing and experimenting.

m Generalizing contour learning to work for more classes of
multi-persistence modules.

31/32

Next steps

m Implementing and experimenting.

m Generalizing contour learning to work for more classes of
multi-persistence modules.

m Incorporating contour learning into common macine learning
methods (logistic regression, SVM, etc).

31/32

References |

) &) &

Peter Bubenik, Vin de Silva, and Jonathan Scott.

Metrics for generalized persistence modules.

Foundations of Computational Mathematics, 15(6):1501-1531, Dec 2015

O. Gafvert and W. Chachdlski.

Stable Invariants for Multidimensional Persistence.

ArXiv e-prints, March 2017

B. Recht, W. Xu, and B. Hassibi.

Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization.

In 2008 47th IEEE Conference on Decision and Control, pages 3065-3070, Dec 2008.

Martina Scolamiero, Wojciech Chachdlski, Anders Lundman, Ryan Ramanujam, and Sebastian Cberg.

Multidimensional persistence and noise.
Foundations of Computational Mathematics, pages 1-40, 2016.

32/32

