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Preliminaries

Persistence modules are functors F: R" — Vectgk.

The free functor K(v, —): R? — Vectx on one generator:

. . . N @
m F is finitely gen. if there is a surjection & K(v;,—) — F.
m The minimal such m is called the rank of F.

m F is finitely presented if it is f.g and the kernel of ¢ is also f.g.
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Metrics on Persistence Modules

The most common distance is the interleaving distance.

F and G are e-interleaved if there are maps s.t the following
diagram commutes for all v:

v) ——= F(v+¢) —— F(v + 2¢)

><X

V) —= G(v +€) —= G(v + 2¢)

dw = inf{e | F and G are e-interleaved}
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Multiparameter Persistent Homology

The categories of:
e finitely presented persistence modules
o f.g n-graded K|[x,...,xn]-modules
have the same formal properties:
m enough projectives
m all projectives are free
m any object has a minimal resolution of length at most n.

Slogan

We can identify a finitely presented persistence module with an
n-graded K|[xi, ..., xp]-module by restricting to a small enough
grid N" C R".
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Invariants

Algebraic

Geometry

Betti Diagrams
Betti Numbers
Euler Ch.
Finitely generated Hilbert Polynom
Primary Decomp.

} modules

Finitely presented

DataSets pupmemmmm g - R™ — Vect K

Rank Invariant
Feature Count. Inv.

Need for stable invariants!

8/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

9/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].
] B\()(F)(T) = min{rank(G) | d(F,G) <7}

9/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

9/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric.

9/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric. (This is what we
will use.)

9/32



Feature Counting Invariant

m Introduced by Scolamiero et. al. in [4].

m B\()(F)(T) = min{rank(G) | d(F,G) <7}

m Can be seen as a stabilization of a classical invariant, namely
the zeroth Betti number.

m Depends strongly on the underlying metric. (This is what we

will use.)

Using persistence contours, we can show:

Theorem (G. and Chachélski, 2017, [2

For n > 2, computing ﬁ/\o(F) is NP-hard.
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Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).
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Persistence Contours

A persistence contour is a functor C: R2 x R — RZ s.t, for any
veRI and any e, 7 € R:

v < C(v,e),

C(C(v,e),7) < C(v,e+ 7).
Similar to superlinear families by Bubenick et. al. [1].

m The e-shift,

Flel = ({F(vi < C(vi, €))(&i) € F(C(vi, €))})
for any generating set {g; € F(v;)} of F.

|
H
N
F G
F and G are e-close if ker p[a] = coker ¢[b] = ker ¢[c] =
= cokeryy[d] =0and a+ b+ c+d <e.

11/32



Persistence Contours

Given a choice of persistence contour:

d(F,G) :=inf{e | F and G are e-close}

12/32



Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

= a class of extended pseudometrics on persistence modules.

12/32



Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

= a class of extended pseudometrics on persistence modules.

Example

Let C(v,€) = v+ €l. This is called the standard persistence
contour.

12/32



Persistence Contours

Given a choice of persistence contour:
d(F,G) :=inf{e | F and G are e-close}

— a class of extended pseudometrics on persistence modules.

Example

Let C(v,€) = v+ €l. This is called the standard persistence
contour.

For the standard persistence contour:

Ld(F, 6) < dulF, 6) < d(F, G)

12/32
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Constructing Persistence Contours

We define Cy: Ry X R = R, as the solution to the following

equation:
CQ(V’t)
t= / po(a)da
v

where pg(«) is some positive real-valued function, parametrized by
0 cR™
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We define Cy: Ry X R = R, as the solution to the following

equation:
CQ(V’t)
t= / po(a)da
v

where pg(«) is some positive real-valued function, parametrized by
0 cR™

v Co(v, t)
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Constructing Persistence Contours

The kernel function pgy can be chosen as:
m step-function
m neural network

m mixture of gaussians

We consider persistence contours parametrized by # € R, with
the property:

Co(v, t) = (CE(va, 1), ..., Cl (Vi 1))

where v = (vi,...,vp).
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Tree Contour Example

Forest tree data from Henri Riihimaki:

0.0000 0.0002 0.0004 00006 0.0008 o 0.0010

800 1000

The feature counting function for two different kinds of contours on the forest tree dataset.
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Tree Contour Example

Forest tree data from Henri Riihimaki:

0.0000 0.0002 o 00004 _0.0006 0.0008 - 0.0010

The feature counting function for two different kinds of contours on the fore:”*

03
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Contour Learning

Problem
Given the following information:
a set of persistence modules F = {Fy,..., Fp},
a map ¢: F — {0,1}, assigning a class to each module,
we want to find a (pseudo)metric that discriminates the modules
of different classes.

Solution
Define a distance dy, using persistence contours, and solve the
following metric learning problem:

. ! !/
min S d(FFY+ D> de(FLF)
F,F'e¢—1(0) F,F'ep=1(1)
Z do(F, F') > (1)
Feg~1(0)
F'eg™(1)
18/32
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When n =1, F has a unique bar decomposition B.
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One-parameter contour learning

When n =1, F has a unique bar decomposition B.

Theorem

For n =1, the feature counting function is computed as:

Bo(F)(7) = #{[a, b] € B| b> C(a,7)}

Sketch of proof.

When n = 1, the bar decomposition of F[r] consists of
B = {[C(a,T),b] | [a,b] € B and C(a,T) < b}.

m Claim: any 7-close functor to F contains F|[r].

m If H D F[r], then rank(H) > rank(F[7]).

19/32
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One-parameter contour learning

Define the kernel function
Choose py as a step-function, where pg(a) = 6; if aj_1 < a < a;.

we will adjust the step heights 6; to solve the metric learning
problem (1).
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The feature counting invariant is a step function, and we want to
make it smooth.
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One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to

make it smooth.Define
1
w(F)(t) = > 1+ ek(Co(a,t)-b)
[a,b]eB

where B is the bar decomposition of F.

Choose the metric on persistence modules

Smoothed version of the interleaving distance for non-increasing
functions from R>¢ to R>q:

dw(f,g) = miniemize /OO f(t)—g(t+e)+g(t)—f(t+e)dt

st f(t)
g(t)

( +€)VtERZQ

gt
f(t+¢€) Vt € Rxg

>
>
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One-parameter contour learning

Define a smoothed version of the feature counting invariant
The feature counting invariant is a step function, and we want to

make it smooth.Define
1
w(F)(t) = > 1+ ek(Co(a,t)-b)
[a,b]eB

where B is the bar decomposition of F.

Choose the metric on persistence modules

Smoothed version of the interleaving distance for non-increasing
functions from R>¢ to R>q:

dw(f,g) = miniemize /OO f(t)—g(t+e)+g(t)—f(t+e)dt

st f(t)
g(t)
Then, dy(F, F’) = dN(tg(F),tg(F/)) 21/32

g(t+e) Vit € R>o
f

>
> (t—f-e)VtERZO



Example

m B consists of ten barcodes, with five in each class.
m Choose pg(a) :=0; if i <a <i+1and welet §; =01 if
i > 19. Consequently, # € RO,

H 5

a a

3 3

oo 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
16

1.04 b
12

102
10

1.00 8
6

0.98 .
2

096
o

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
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Nonlinear Hierarchical Clustering

For n > 1, the feature counting invariant is NP-hard to compute.

Theorem

I/fF(v < w) is a surjection for all v < w € R", then:
Bo(F)(1) = rank(F|[7]) = dim(F(C(0,7)))

This happens for multiparameter clustering.

Use the Hilbert function, HF(v) := dimF(v), to construct a
smoothed feature counting function.

It can be decomposed into rectangular blocks of the same hight,

HF = UihiI(ail7~-~aain)’(bi17-~~’bin)

and thus

n

1 1
F = h; : i
t(F)(7) Z ! I<1:[1 1 + ek(@a—C45(0,7)) 1 4 ok(Cy(0,7)—bix)

24/32



Nonlinear Hierarchical Clustering

m Solve problem (1) using gradient descent as in one-parameter
case.
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Nonlinear Hierarchical Clustering

m Solve problem (1) using gradient descent as in one-parameter
case.

m Produces a nonlinear hierarchical clustering of the data by
restricting the module to the curve outlined by C(0, 7).
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Approximations

What problem are we approximating?
Observation:

Bo(F)(€) = min{rank(G) | F[e] € G C F and d(F,G) < ¢}

It suffices to minimize over the subfunctors of F.

{gi € F(vi)} {F(vi < C(vi,€))(&i) € F(C(vi,€))}
Generating set for F Genrating set for F|e]
C(viy€)
For € large enough, there is u s.t: u

Ui
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Approximations

Want to find minimal number of elements in:

UF(U <)) H(F(vi < C(vi, 0))(8i)) S F(u)

that generate Fle|.
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Approximations

Want to find minimal number of elements in:

U Fu < vi) H(F(vi < C(vie))(&1) € F(u)

that generate Fle|.
Can be phrased as the following matrix rank minimization problem
with an affine constraint set:

Input Vectors x1,...,xn € R" and subspaces Li,...,L, CR"
Output min{rank([c1 ... ¢m])|c —x € L}

This is NP-hard, by reduction from a graph colouring problem [2].

28/32



Example

Calculating BAO(F)(2) for the following functor requires you to solve
such a rank minimization problem:

5/0] 0 0 0 0 |0
s K| K? | K3/Ly 0 0o |o
3| K| K?| K | K3/Ly 0 |o
2| K| K2| K3 K3 | K3/Lo |0
10 K| K? K? K? |0
ol0] O K K K |0

0 2 3 4 5
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Approximations

min rank(A)
AECCRm*m
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Approximations

min rank(A)
AECCRmXm
Case K = R: The problem can be efficiently approximated by the
nuclear norm [3]:

min rank(A) ~ min ||A]|.
AcC AcC

where [|A||« = > gi(A).

Case K = Z/2Z: For each k, we can write the determinants of the
k x k minors as Boolean clauses. Can be solved using a modern
SAT solver, which can handle millions of variables and clauses.

Case F = Hy(X(—); K): The F is a functor F: R"” — Sets and
the matrix rank minimization turns into a vertex covering problem

(which can be approximated).
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Next steps

m Implementing and experimenting.

m Generalizing contour learning to work for more classes of
multi-persistence modules.

m Incorporating contour learning into common macine learning
methods (logistic regression, SVM, etc).
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